Study of the Effects of Spraying Non-Bagging Film Agent on the Contents of Mineral Elements and Flavonoid Metabolites in Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Objects
2.2. Instruments and Reagents
2.3. Measurement of Physical and Chemical Indexes
2.4. Determination of Mineral Elements
- (1)
- Dissolving the samples using the microwave digestion method, with the specific operation steps as follows: Weigh 0.5 g of Lycium barbarum sample (with a precision of 0.0001 g), and put it in a microwave digestion tube. After the addition of 10 mL of nitric acid, let the sample stand at room temperature for 3 h, and then put it in a microwave digestion instrument for sample digestion. Select temperature control to let the temperature rise to 120 °C in 5 min, and keep the temperature there for 10 min. Then, let the temperature rise to 150 °C in 5 min and keep it there for 20 min. After that, let the temperature further rise to 185 °C in 5 min and keep it there for 30 min. After the completion of digestion, the sample is cooled. Then, gently unscrew the lid and place the microwave digestion tube on an acid-driven processor to perform acid removal at 120 °C for 2 h. Then, cool the sample to room temperature and wash it with ultra-pure water in a test tube with scale of 25 mL. After that, dilute it with ultra-pure water to volume and shake the solution well. Meanwhile, prepare a reagent blank.
- (2)
- Measure the contents of elements in apple fruits through the ICP-MS method under the following specific working conditions: Generator power: 1300 W; Atomizer flow rate: 0.95 L·min−1; Plasma torch cooling gas flow rate: 17.0 L·min−1; Auxiliary device flow rate: 1.20 L·min−1; Detector analog stage voltage: −2350 V; Ion lens voltage: 6.00 V.
2.5. Metabolites Extraction
2.6. UPLC-ESI-MS/MS Analysis
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Non-Bagging Film Agent Treatment on the Physical and Chemical Indexes of Fruits
3.2. Effects of Non-Bagging Film Agent Treatment on the Contents of Mineral Elements of Fruits
3.3. Effects of Non-Bagging Film Agent Treatment on the Contents of Flavonoid Metabolites in Apples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zeng, X. Sonication Enhances Polyphenolic Compounds, Sugars, Carotenoids and Mineral Elements of Apple Juice. Ultrason. Sonochem. 2014, 21, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Preti, R.; Tarola, A.M. Study of Polyphenols, Antioxidant Capacity and Minerals for the Valorisation of Ancient Apple Cultivars from Northeast Italy. Eur. Food Res. Technol. 2021, 247, 273–283. [Google Scholar] [CrossRef]
- Karaaslan, S.; Ekinci, K. Effect of Pretreatments on Solar Dehydration of Different Varieties of Apple (Malus domestica). Czech J. Food Sci. 2022, 40, 93–101. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Mu, J.; Zhang, J.; Zhang, A. Determination of Geographical Origin of Concentrated Apple Juice through Analysis of Stable Isotopic and Mineral Elemental Fingerprints: Preliminary Results. J. Sci. Food Agric. 2021, 101, 3795–3803. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Zhang, W.; Zhang, J.; Zhang, J.; Zhang, J. Study on Quality Characteristics and Feasibility Analysis of Hail-Proof Plastic Bagging of 5000 Mu in Gansu. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 022048. [Google Scholar] [CrossRef]
- Zhi, C.; Ali, M.M.; Zhang, J.; Shi, M.; Ma, S.; Chen, F. Effect of Paper and Aluminum Bagging on Fruit Quality of Loquat (Eriobotrya japonica Lindl.). Plants 2021, 10, 2704. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, Y.; Li, H.; Gao, Q.; Cheng, Y.; Ogunyemi, S.O.; Guan, J. Fruit Bagging Reduces the Postharvest Decay and Alters the Diversity of Fruit Surface Fungal Community in ‘Yali’ Pear. BMC Microbiol. 2022, 22, 239. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Wang, J.; Zhai, H.; Xue, X. Inhibitory Effect and Underlying Mechanism of Cinnamon and Clove Essential Oils on Botryosphaeria Dothidea and Colletotrichum Gloeosporioides Causing Rots in Postharvest Bagging-Free Apple Fruits. Front. Microbiol. 2023, 14, 1109028. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.; Ren, A.; Chen, G.; Ye, W.; Wu, Y.; Ma, P.; Yu, W.; He, T. A Comparison of the Mineral Element Content of 70 Different Varieties of Pear Fruit (Pyrus ussuriensis) in China. PeerJ 2023, 11, e15328. [Google Scholar] [CrossRef]
- Mészáros, M.; Hnátková, H.; Čonka, P.; Náměstek, J. Linking Mineral Nutrition and Fruit Quality to Growth Intensity and Crop Load in Apple. Agronomy 2021, 11, 506. [Google Scholar] [CrossRef]
- Maity, A.; Marathe, R.A.; Sarkar, A.; Basak, B.B. Phosphorus and Potassium Supplementing Bio-Mineral Fertilizer Augments Soil Fertility and Improves Fruit Yield and Quality of Pomegranate. Sci. Hortic. 2022, 303, 111234. [Google Scholar] [CrossRef]
- Gorący, I.; Rębacz-Maron, E.; Korbecki, J.; Gorący, J. Concentrations of Mg, Ca, Fe, Cu, Zn, P and Anthropometric and Biochemical Parameters in Adults with Chronic Heart Failure. PeerJ 2021, 9, e12207. [Google Scholar] [CrossRef] [PubMed]
- GB 2762-2022; Limits of Contaminants in Food. National Food Safety Standards. National Health Commission: Beijing, China, 2022.
- Chen, C.-S.; Zhang, D.; Wang, Y.-Q.; Li, P.-M.; Ma, F.-W. Effects of Fruit Bagging on the Contents of Phenolic Compounds in the Peel and Flesh of ‘Golden Delicious’, ‘Red Delicious’, and ‘Royal Gala’ Apples. Sci. Hortic. 2012, 142, 68–73. [Google Scholar] [CrossRef]
- Cheng, S.; Lu, Y.; Sun, L.; Wang, C.; Li, Y.; Gao, H. Effect of different biological protective films on fruit quality of Ruixue apple. J. Gansu Agric. Univ. 2022, 57, 96–102. [Google Scholar] [CrossRef]
- Bai, Q.; Shen, Y.; Huang, Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. Front. Plant Sci. 2021, 12, 620018. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, T.; Zhou, P.; Huang, X.; Liu, D.; Jin, W.; Zhang, H.; Zhou, J.; Wang, Z.; Gao, Z. Prediction and Optimization of Fruit Quality of Peach Based on Artificial Neural Network. J. Food Compos. Anal. 2022, 111, 104604. [Google Scholar] [CrossRef]
- Ban, Q.; Liu, T.; Ning, K.; Fan, J.; Cui, Q.; Guo, Y.; Zai, X. Effect of Calcium Treatment on the Browning of Harvested Eggplant Fruits and Its Relation to the Metabolisms of Reactive Oxygen Species (ROS) and Phenolics. Food Sci. Nutr. 2021, 9, 5567–5574. [Google Scholar] [CrossRef]
- He, X.; Zhang, H.; Li, J.; Yang, F.; Dai, W.; Xiang, C.; Zhang, M. The Positive Effects of Humic/Fulvic Acid Fertilizers on the Quality of Lemon Fruits. Agronomy 2022, 12, 1919. [Google Scholar] [CrossRef]
- Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel Quercetin Derivatives: From Redox Properties to Promising Treatment of Oxidative Stress Related Diseases. Chem.-Biol. Interact. 2017, 265, 36–46. [Google Scholar] [CrossRef]
- Gouveia, H.J.C.B.; Urquiza-Martínez, M.V.; Manhães-de-Castro, R.; Costa-de-Santana, B.J.R.; Villarreal, J.P.; Mercado-Camargo, R.; Torner, L.; De Souza Aquino, J.; Toscano, A.E.; Guzmán-Quevedo, O. Effects of the Treatment with Flavonoids on Metabolic Syndrome Components in Humans: A Systematic Review Focusing on Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 8344. [Google Scholar] [CrossRef]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, Z.; Ma, F. The Effects of Fruit Bagging on Levels of Phenolic Compounds and Expression by Anthocyanin Biosynthetic and Regulatory Genes in Red-Fleshed Apples. Process Biochem. 2015, 50, 1774–1782. [Google Scholar] [CrossRef]
- Yuri, J.A.; Neira, A.; Fuentes, M.; Razmilic, I.; Lepe, V.; González, M.F. Bagging Cv. Fuji, Raku Raku Apple Fruit Affects Their Phenolic Profile and Antioxidant Capacity. Erwerbs-Obstbau 2020, 62, 221–229. [Google Scholar] [CrossRef]
- Feng, F.; Li, M.; Ma, F.; Cheng, L. The Effects of Bagging and Debagging on External Fruit Quality, Metabolites, and the Expression of Anthocyanin Biosynthetic Genes in ‘Jonagold’ Apple (Malus domestica Borkh.). Sci. Hortic. 2014, 165, 123–131. [Google Scholar] [CrossRef]
Treatment | Single Fruit Weight (g) | Hardness (kg·cm−2) | Soluble Solid Content (%) | Titratable Acid Content (%) |
---|---|---|---|---|
CK | 231 ± 43.8 b | 8.48 ± 0.82 a | 19.4 ± 1.80 a | 0.35 ± 0.10 b |
TCK | 247 ± 44.2 b | 9.17 ± 0.87 a | 13.7 ± 1.96 a | 0.35 ± 0.13 b |
ABM | 250 ± 30.7 a | 9.25 ± 1.16 a | 16.6 ± 1.34 a | 0.46 ± 0.19 a |
CAM | 208 ± 18.7 b | 8.86 ± 1.03 a | 17.3 ± 1.38 a | 0.41 ± 0.05 ab |
Element | CK | TCK | ABM | CAM |
---|---|---|---|---|
Al | 38.4 ± 5.7 b | 29.7 ± 7.5 b | 154 ± 51 a | 43.4 ± 9.7 b |
As | 2.36 ± 0.15 a | 2.35 ± 0.14 a | 2.1 ± 0.20 ab | 1.97 ± 0.23 b |
B | 69.6 ± 8.01 a | 73.4 ± 9.08 a | 77.2 ± 4.15 a | 80.8 ± 5.86 a |
Ba | 0.91 ± 0.0884 c | 2.48 ± 0.5922 b | 1.24 ± 0.2521 c | 4.86 ± 0.9407 a |
Be | 0.0015 ± 0.001 b | 0.0065 ± 0.003 ab | 0.0105 ± 0.007 a | 0.0052 ± 0.001 ab |
Bi | 0.000652 ± 0.0002 b | 0.000564 ± 0.0002 b | 0.0013 ± 0.0004 a | 0.000482 ± 0.0004 b |
Cd | 0.00116 ± 0.0001 b | 0.00161 ± 0.0007 b | 0.00151 ± 0.0006 b | 0.00251 ± 0.0007 a |
Ce | 0.0166 ± 0.0038 b | 0.021 ± 0.0074 ab | 0.0274 ± 0.0047 a | 0.014 ± 0.0073 b |
Co | 0.0228 ± 0.0067 b | 0.0265 ± 0.0047 ab | 0.0362 ± 0.0096 a | 0.0344 ± 0.0047 a |
Cr | 1.86 ± 0.24 b | 2.17 ± 0.37 b | 2.61 ± 0.28 a | 1.91 ± 0.28 b |
Cs | 0.0085 ± 0.0015 b | 0.0180 ± 0.0042 a | 0.0122 ± 0.0035 b | 0.0085 ± 0.0014 b |
Cu | 1.69 ± 0.08 a | 2.17 ± 0.31 a | 2.15 ± 0.57 a | 1.78 ± 0.28 a |
Gd | 0.000993 ± 0.0002 b | 0.00125 ± 0.0003 b | 0.00217 ± 0.0006 a | 0.00142 ± 0.0003 b |
Hg | 0.0039 ± 0.0008 b | 0.0024 ± 0.0003 b | 0.0055 ± 0.0001 b | 0.0708 ± 0.0138 a |
Li | 0.831 ± 0.065 a | 0.5213 ± 0.077 b | 0.6255 ± 0.17 b | 0.3773 ± 0.11 c |
Mg | 363 ± 24.7 a | 361 ± 39.3 a | 417 ± 47 a | 405 ± 37.9 a |
Mn | 1.66 ± 0.19 d | 2.25 ± 0.31 c | 3.44 ± 0.53 a | 2.69 ± 0.23 b |
Mo | 0.177 ± 0.033 a | 0.1562 ± 0.023 a | 0.1197 ± 0.016 a | 0.1772 ± 0.055 a |
Na | 109 ± 5.18 b | 126 ± 16.7 b | 257 ± 12.1 a | 130 ± 18 b |
Nb | 0.0116 ± 0.0057 a | 0.0058 ± 0.0026 b | 0.0117 ± 0.0035 a | 0.0047 ± 0.0011 b |
Nd | 0.0069 ± 0.001 b | 0.0059 ± 0.0005 bc | 0.0086 ± 0.0011 a | 0.0053 ± 0.0014 c |
Ni | 0.3374 ± 0.028 b | 0.3277 ± 0.107 b | 0.3831 ± 0.035 b | 0.5525 ± 0.131 a |
Pr | 0.0024 ± 0.0009 a | 0.0025 ± 0.0009 a | 0.0034 ± 0.0005 a | 0.0033 ± 0.0014 a |
Rb | 2.81 ± 0.53 b | 4.98 ± 0.87 a | 4.4 ± 0.97 a | 4.18 ± 0.24 a |
Sb | 0.0136 ± 0.0027 a | 0.0087 ± 0.0026 a | 0.0114 ± 0.0018 a | 0.015 ± 0.0076 a |
Sc | 0.0927 ± 0.013 a | 0.059 ± 0.0029 b | 0.0815 ± 0.035 ab | 0.0527 ± 0.014 b |
Sm | 0.0013 ± 0.0007 a | 0.0016 ± 0.0006 a | 0.0014 ± 0.0002 a | 0.0016 ± 0.0006 a |
Sn | 0.0618 ± 0.012 a | 0.0524 ± 0.0077 a | 0.0542 ± 0.0065 a | 0.0591 ± 0.014 a |
Sr | 1.74 ± 0.23 c | 6.06 ± 1.36 a | 4.27 ± 0.83 b | 1.4 ± 0.25 c |
Ti | 1.2 ± 0.26 a | 1.33 ± 0.38 a | 0.76 ± 0.09 a | 0.93 ± 0.54 a |
Th | 0.0022 ± 0.0013 a | 0.0024 ± 0.0026 a | 0.0049 ± 0.0018 a | 0.0022 ± 0.0008 a |
U | 0.0061 ± 0.0006 a | 0.0044 ± 0.0008 ab | 0.0049 ± 0.0006 b | 0.0036 ± 0.0007 c |
V | 15.6 ± 1.79 a | 16.6 ± 1.88 a | 16.8 ± 2.74 a | 11.5 ± 0.66 b |
Fe | 38.4 ± 8.2 ab | 32.1 ± 4.9 b | 45.7 ± 7.8 a | 40.7 ± 7.6 ab |
Zn | 4.38 ± 0.41 ab | 3.65 ± 0.45 b | 4.39 ± 0.62 ab | 5.07 ± 1.11 a |
P | 1185 ± 134 c | 1395 ± 215 bc | 1567 ± 175 ab | 1789 ± 219 a |
Ru | 0.038 ± 0.0089 a | 0.0352 ± 0.013 a | 0.0427 ± 0.023 a | 0.0288 ± 0.0077 a |
Au | 0.0333 ± 0.0068 a | 0.0165 ± 0.0023 b | 0.0138 ± 0.0018 b | 0.0171 ± 0.0008 b |
Ga | 2.02 ± 0.44 a | 2.3 ± 0.68 a | 2.38 ± 0.78 a | 2.87 ± 0.78 a |
Zr | 0.0219 ± 0.0039 a | 0.0251 ± 0.013 a | 0.0276 ± 0.0017 a | 0.0227 ± 0.0049 a |
Ca | 242 ± 47 a | 250 ± 28 a | 262 ± 7.3 a | 272 ± 32.9 a |
Pb | 0.027 ± 0.0054 ab | 0.0167 ± 0.0055 b | 0.0298 ± 0.0047 ab | 0.0386 ± 0.018 a |
Compounds | CK | TCK | ABM | CAM |
---|---|---|---|---|
Astilbin | 0.165 ± 0.05 a | 0.088 ± 0.01 a | 0.128 ± 0.03 a | 0.183 ± 0.04 a |
Pinocembrin | 0.302 ± 0.28 a | 0.219 ± 0.18 a | 0.260 ± 0.25 a | 0.276 ± 0.22 a |
Quercitrin | 54.7 ± 4.9 a | 44.9 ± 35.9 a | 41.3 ± 12.8 a | 50.1 ± 7.02 a |
Narcissin | 0.025 ± 0.008 a | 0.022 ± 0.008 a | 0.015 ± 0.004 a | 0.015 ± 0.004 a |
Astragalin | 2.28 ± 0.73 a | 0.372 ± 0.20 b | 0.899 ± 0.05 b | 1.48 ± 0.76 ab |
Tiliroside | 0.046 ± 0.006 c | 0.062 ± 0.02 bc | 0.084 ± 0.02 ab | 0.108 ± 0.01 a |
(-)-Epicatechin | 358 ± 60 a | 466 ± 59 a | 461 ± 118 a | 450 ± 46.4 a |
(-)-Catechin gallate | 0.107 ± 0.03 a | 0.119 ± 0.02 a | 0.146 ± 0.01 a | 0.090 ± 0.02 a |
Isosakuranetin | 0.009 ± 0.005 a | 0.005 ± 0.005 a | 0.009 ± 0.008 a | 0.012 ± 0.006 a |
Apigenin 7-glucoside | 0.033 ± 0.017 a | 0.008 ± 0.002 a | 0.008 ± 0.005 a | 0.025 ± 0.01 a |
Tectochrysin | 0.013 ± 0.008 a | 0.015 ± 0.01 a | 0.021 ± 0.02 a | 0.012 ± 0.008 a |
Homoplantaginin | 0.078 ± 0.01 a | 0.045 ± 0.005 b | 0.056 ± 0.008 b | 0.051 ± 0.009 b |
6-Hydroxyflavone | 0.020 ± 0.003 a | 0.016 ± 0.003 a | 0.020 ± 0.003 a | 0.018 ± 0.001 a |
Naringenin-7-glucoside | 0.526 ± 0.01 a | 0.635 ± 0.15 a | 0.950 ± 0.24 a | 0.939 ± 0.15 a |
Phloretin | 0.058 ± 0.009 a | 0.065 ± 0.004 a | 0.070 ± 0.02 a | 0.077 ± 0.017 a |
Spiraeoside | 0.039 ± 0.009 a | 0.022 ± 0.019 a | 0.024 ± 0.015 a | 0.030 ± 0.008 a |
Quercimeritrin | 0.562 ± 0.16 a | 0.525 ± 0.59 a | 0.423 ± 0.11 a | 0.404 ± 0.11 a |
Isorhamnetin 3-O-glucoside | 0.149 ± 0.02 a | 0.085 ± 0.04 a | 0.120 ± 0.02 a | 0.111 ± 0.02 a |
Neohesperidin dihydrochalcone | 0.010 ± 0.001 a | 0.010 ± 0.002 a | 0.011 ± 0.002 a | 0.011 ± 0.001 a |
Quercetin | 0.065 ± 0.009 a | 0.045 ± 0.05 a | 0.012 ± 0.01 a | 0.035 ± 0.03 a |
(-)-Catechin | 105 ± 10.6 a | 173 ± 21.4 a | 164 ± 67.6 a | 152 ± 37.8 a |
Rutin | 1.38 ± 0.67 a | 1.19 ± 1.31 a | 0.597 ± 0.12 a | 0.640 ± 0.16 a |
Chrysin | 0.089 ± 0.06 a | 0.083 ± 0.06 a | 0.100 ± 0.02 a | 0.139 ± 0.09 a |
Phlorizin | 139 ± 14.2 ab | 111 ± 9.13 b | 157 ± 30.2 ab | 182 ± 29.2 a |
Galangin | 0.085 ± 0.06 a | 0.071 ± 0.05 a | 0.105 ± 0.02 a | 0.127 ± 0.09 a |
Apigenin | 0.019 ± 0.003 a | 0.008 ± 0.004 b | 0.006 ± 0.001 b | 0.014 ± 0.005 ab |
Avicularin | 14.9 ± 1.02 a | 15.5 ± 15.4 a | 9.63 ± 2.52 a | 13.2 ± 1.02 a |
Cynaroside | 0.928 ± 0.19 a | 0.561 ± 0.14 a | 0.721 ± 1.45 a | 0.905 ± 0.32 a |
Calycosin-7-O-β-d-glucoside | 12.8 ± 6.21 a | 6.88 ± 4.07 a | 8.22 ± 4.06 a | 7.088 ± 0.13 a |
Naringin Dihydrochalcone | 0.025 ± 0.002 a | 0.025 ± 0.002 a | 0.023 ± 0.003 a | 0.027 ± 0.006 a |
Afzelechin | 0.085 ± 0.034 a | 0.085 ± 0.034 a | 0.014 ± 0.001 a | 0.031 ± 0.009 a |
Hesperidin | 0.024 ± 0.002 a | 0.024 ± 0.002 c | 0.002 ± 0.002 b | 0.013 ± 0.004 c |
Taxifolin | 0.077 ± 0.007 a | 0.077 ± 0.007 a | 0.063 ± 0.012 a | 0.057 ± 0.015 a |
Engeletin | 0.013 ± 0.003 a | 0.013 ± 0.003 a | 0.006 ± 0.001 a | 0.012 ± 0.009 a |
Oroxin A | 0.04 ± 0.006 a | 0.04 ± 0.006 c | 0.009 ± 0.001 bc | 0.019 ± 0.001 ab |
Baicalin | 0.012 ± 0.005 a | 0.012 ± 0.005 a | 0.012 ± 0.004 a | 0.009 ± 0.004 a |
Kaempferol | 0.05 ± 0.015 a | 0.05 ± 0.015 b | 0.021 ± 0.001 b | 0.023 ± 0.008 ab |
Hyperoside | 9.14 ± 1.42 a | 9.14 ± 1.42 a | 9.09 ± 0.01 a | 6.49 ± 2.47 a |
Isorhamnetin | 0.014 ± 0.001 a | 0.014 ± 0.001 a | 0.014 ± 0.001 a | 0.013 ± 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wu, X.; Ding, Y.; Liu, X.; Wang, X.; Gao, Y.; Tian, J.; Li, X. Study of the Effects of Spraying Non-Bagging Film Agent on the Contents of Mineral Elements and Flavonoid Metabolites in Apples. Horticulturae 2024, 10, 198. https://doi.org/10.3390/horticulturae10030198
Wang F, Wu X, Ding Y, Liu X, Wang X, Gao Y, Tian J, Li X. Study of the Effects of Spraying Non-Bagging Film Agent on the Contents of Mineral Elements and Flavonoid Metabolites in Apples. Horticulturae. 2024; 10(3):198. https://doi.org/10.3390/horticulturae10030198
Chicago/Turabian StyleWang, Fang, Xiaomin Wu, Yuduan Ding, Xuan Liu, Xiaojing Wang, Yingyin Gao, Jianwen Tian, and Xiaolong Li. 2024. "Study of the Effects of Spraying Non-Bagging Film Agent on the Contents of Mineral Elements and Flavonoid Metabolites in Apples" Horticulturae 10, no. 3: 198. https://doi.org/10.3390/horticulturae10030198
APA StyleWang, F., Wu, X., Ding, Y., Liu, X., Wang, X., Gao, Y., Tian, J., & Li, X. (2024). Study of the Effects of Spraying Non-Bagging Film Agent on the Contents of Mineral Elements and Flavonoid Metabolites in Apples. Horticulturae, 10(3), 198. https://doi.org/10.3390/horticulturae10030198