Differential Tolerance of Primary Metabolism of Annona emarginata (Schltdl.) H. Rainer to Water Stress Modulates Alkaloid Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Gas Exchange
2.4. Chlorophyll a Fluorescence
2.5. Qualitative and Quantitative Analysis of Leaf Sugars
2.6. Extraction of Total Alkaloids
2.7. Qualitative and Quantitative Analyses of Total Alkaloids and Liriodenine
2.8. Statistical Analysis
3. Results
3.1. Effect of Water Stress on Alkaloid Metabolism
3.2. Effect of Water Stress on Primary Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatrou, L.W.; Erkens, R.H.J.; Richardson, J.E.; Saunders, R.M.K.; Fay, M.F. The Natural History of Annonaceae. Bot. J. Linn. Soc. 2012, 169, 1–4. [Google Scholar] [CrossRef]
- Couvreur, T.L.P.; Helmstetter, A.J.; Koenen, E.J.M.; Bethune, K.; Brandão, R.D.; Little, S.A.; Sauquet, H.; Erkens, R.H.J. Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes. Front. Plant Sci. 2019, 9, 1941. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Silva, I.; Lopes, J.C.; Silva, L.V.; Bazante, M.L. Annona in Flora Do Brasil 2020. Available online: https://floradobrasil2020.jbrj.gov.br/reflora/floradobrasil/FB110243 (accessed on 20 July 2023).
- Maas, P.J.M.; de Kamer, H.M.; Junikka, L.; de Mello-Silva, R.; Rainer, H. Annonnaceae from Central-Eastern Brazil. Rodriguésia 2001, 52, 65–98. [Google Scholar] [CrossRef]
- Chatrou, L.W.; Turner, I.M.; Klitgaard, B.B.; Maas, P.J.M.; Utteridge, T.M.A. A Linear Sequence to Facilitate Curation of Herbarium Specimens of Annonaceae. Kew Bull. 2018, 73, 39. [Google Scholar] [CrossRef] [PubMed]
- Ovile Mimi, C.; De-la-Cruz-Chacón, I.; Caixeta Sousa, M.; Aparecida Ribeiro Vieira, M.; Ortiz Mayo Marques, M.; Ferreira, G.; Silvia Fernandes Boaro, C. Chemophenetics as a Tool for Distinguishing Morphotypes of Annona emarginata (Schltdl.) H. Rainer. Chem. Biodivers. 2021, 18, e2100544. [Google Scholar] [CrossRef] [PubMed]
- De Lemos, E.E.P. A Produção de Anonáceas No Brasil. Rev. Bras. Frutic. 2014, 36, 77–85. [Google Scholar] [CrossRef]
- Bettiol Neto, J.E.; Pio, R.; Bueno, S.C.S.; Bastos, D.C.; Scarpare Filho, J.A. Enraizamento de Estacas Dos Porta-Enxertos Araticum-de-Terra-Fria (Rollinia Sp.) e Araticum-Mirim (Rollinia emarginata Schltdl.) Para Anonáceas. Ciência Agrotecnologia 2006, 30, 1077–1082. [Google Scholar] [CrossRef]
- Junqueira, N.T.V.; Junqueira, K.P. Principais Doenças de Anonáceas No Brasil: Descrição e Controle. Rev. Bras. Frutic. 2014, 36, 55–64. [Google Scholar] [CrossRef]
- São José, A.R.; Pires, M.D.M.; de Freitas, A.L.G.E.; Ribeiro, D.P.; Perez, L.A.A. Atualidades e Perspectivas Das Anonáceas No Mundo. Rev. Bras. Frutic. 2014, 36, 86–93. [Google Scholar] [CrossRef]
- Mantoan, L.P.B.; Rolim de Almeida, L.F.; Macedo, A.C.; Ferreira, G.; Boaro, C.S.F. Photosynthetic Adjustment after Rehydration in Annona emarginata. Acta Physiol. Plant 2016, 38, 157. [Google Scholar] [CrossRef]
- de Lima, J.P.S.; Pinheiro, M.L.B.; Santos, A.M.G.; Pereira, J.L.d.S.; Santos, D.M.F.; Barison, A.; Silva-Jardim, I.; Costa, E.V. In Vitro Atileishmanial and Cytotoxic Activities of Annona mucosa (Annonaceae). Rev. Virtual Química 2012, 4, 692–702. [Google Scholar] [CrossRef]
- Quílez, A.M.; Fernández-Arche, M.A.; García-Giménez, M.D.; De la Puerta, R. Potential Therapeutic Applications of the Genus Annona: Local and Traditional Uses and Pharmacology. J. Ethnopharmacol. 2018, 225, 244–270. [Google Scholar] [CrossRef]
- Makabe, H.; Konno, H.; Miyoshi, H. Current Topics of Organic and Biological Chemistry of Annonaceous Acetogenins and Their Synthetic Mimics. Curr. Drug Discov. Technol. 2008, 5, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.S.; Tareq, A.M.; Tareq, S.M.; Farhad, S.; Sayeed, M.A. Screening of Antidiabetic and Antioxidant Potential along with Phytochemicals of Annona Genus: A Review. Futur. J. Pharm. Sci. 2021, 7, 144. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of Plant Alkaloids on Human Health: A Review of Biological Activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Costa, E.V.; da Cruz, P.E.O.; de Lourenço, C.C.; de Souza Moraes, V.R.; de Lima Nogueira, P.C.; Salvador, M.J. Antioxidant and Antimicrobial Activities of Aporphinoids and Other Alkaloids from the Bark of Annona salzmannii A. DC. (Annonaceae). Nat. Prod. Res. 2013, 27, 1002–1006. [Google Scholar] [CrossRef]
- De La Cruz Chacón, I.; González-Esquinca, A.R. Liriodenine Alkaloid in Annona diversifolia during Early Development. Nat. Prod. Res. 2012, 26, 42–49. [Google Scholar] [CrossRef]
- Sousa, M.C.; De-la-Cruz-Chacón, I.; Campos, F.G.; Vieira, M.A.R.; Corrêa, P.L.C.; Marques, M.O.M.; Boaro, C.S.F.; Ferreira, G. Plant Growth Regulators Induce Differential Responses on Primary and Specialized Metabolism of Annona emarginata (Annonaceae). Ind. Crops Prod. 2022, 189, 115789. [Google Scholar] [CrossRef]
- Leboeuf, M.; Cavé, A.; Bhaumik, P.K.; Mukherjee, B.; Mukherjee, R. The Phytochemistry of the Annonaceae. Phytochemistry 1982, 21, 2783–2813. [Google Scholar] [CrossRef]
- Costa, E.V.; Pinheiro, M.L.B.; Xavier, C.M.; Silva, J.R.A.; Amaral, A.C.F.; Souza, A.D.L.; Barison, A.; Campos, F.R.; Ferreira, A.G.; Machado, G.M.C.; et al. A Pyrimidine-β-Carboline and Other Alkaloids from Annona foetida with Antileishmanial Activity. J. Nat. Prod. 2006, 69, 292–294. [Google Scholar] [CrossRef]
- Cota, L.G.; Vieira, F.A.; Melo Júnior, A.F.; Brandão, M.M.; Santana, K.N.O.; Guedes, M.L.; Oliveira, D.A. Genetic Diversity of Annona crassiflora (Annonaceae) in Northern Minas Gerais State. Genet. Mol. Res. 2011, 10, 2172–2180. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.-M.; Gul, N.S.; Lu, X.; Wei, J.-H.; Liu, Y.-C.; Sun, H.; Liang, H.; Orvig, C.; Chen, Z.-F. In vitro and in vivo Anti-Tumor Activity of Two Gold(III) Complexes with Isoquinoline Derivatives as Ligands. Eur. J. Med. Chem. 2019, 163, 333–343. [Google Scholar] [CrossRef] [PubMed]
- De-la-Cruz-Chacón, I.; López-Fernández, N.Y.; Riley-Saldaña, C.A.; Castro Moreno, M.; González-Esquinca, A.R. Antifungal Activity in Vitro of Sapranthus microcarpus (Annonaceae) against Phytopathogens. Acta Bot. Mex. 2018, 126, e1420. [Google Scholar] [CrossRef]
- Chen, C.-Y. Review on Pharmacological Activities of Liriodenine. Afr. J. Pharm. Pharmacol. 2013, 7, 1067–1070. [Google Scholar] [CrossRef]
- Lúcio, A.S.S.C.; da Silva Almeida, J.R.G.; Da-Cunha, E.V.L.; Tavares, J.F.; Barbosa Filho, J.M. Alkaloids of the Annonaceae: Occurrence and a Compilation of Their Biological Activities. Alkaloids Chem. Biol. 2015, 74, 233–409. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Selmar, D.; Kleinwächter, M. Stress Enhances the Synthesis of Secondary Plant Products: The Impact of Stress-Related over-Reduction on the Accumulation of Natural Products. Plant Cell Physiol. 2013, 54, 817–826. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Jia, X.; Wang, W.K.; Liu, T.; Huang, S.P.; Yang, M.Y. Growth under Elevated Air Temperature Alters Secondary Metabolites in Robinia pseudoacacia L. Seedlings in Cd- and Pb-Contaminated Soils. Sci. Total Environ. 2016, 565, 586–594. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Shao, H.-B.; Chu, L.-Y.; Jaleel, C.A.; Zhao, C.-X. Water-Deficit Stress-Induced Anatomical Changes in Higher Plants. Comptes Rendus Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef]
- Sengupta, D.; Guha, A.; Reddy, A.R. Interdependence of Plant Water Status with Photosynthetic Performance and Root Defense Responses in Vigna radiata (L.) Wilczek under Progressive Drought Stress and Recovery. J. Photochem. Photobiol. B 2013, 127, 170–181. [Google Scholar] [CrossRef]
- Martinazzo, E.G.; Perboni, A.T.; de Oliveira, P.V.; Bianchi, V.J.; Bacarin, M.A. Atividade Fotossintética Em Plantas de Ameixeira Submetidas Ao Déficit Hídrico e Ao Alagamento. Ciência Rural. 2012, 43, 35–41. [Google Scholar] [CrossRef]
- de Oliveira, J.D.S.; de Lemos, E.E.P.; Filho, R.V.d.C.; dos Santos, E.F.; Gallo, R.B.S.C.M. Alterações Fisiológicas No Crescimento Inicial de Pinheira (Annona squamosa L.) Submetida Ao Stresse Hídrico Physiological Changes in the Initial Growth of Sugar Apple (Annona squamosa L.) Submitted to Water Stress. Rev. Ciências Agrárias 2020, 43, 53–63. [Google Scholar] [CrossRef]
- Moreira, R.C.L.; Brito, M.E.B.; Fernandes, P.D.; da Silva Sá, F.V.; Silva, L.D.A.; Oliveira, C.J.A.; Veloso, L.L.d.S.A.; de Queiroga, T.B. Growth and Physiology of Annona squamosa L. Under Different Irrigation Depths and Phosphate Fertilization. Biosci. J. 2019, 35, 389–397. [Google Scholar] [CrossRef]
- Castro-Moreno, M.; Tinoco-Ojangurén, C.L.; Cruz-Ortega, M.D.R.; González-Esquinca, A.R. Influence of Seasonal Variation on the Phenology and Liriodenine Content of Annona lutescens (Annonaceae). J. Plant Res. 2013, 126, 529–537. [Google Scholar] [CrossRef]
- Da Cunha, A.R.; Martins, D. Classificação Climática Para os Municípios de Botucatu e São Manuel, SP. Irriga 2009, 14, 1–11. [Google Scholar] [CrossRef]
- Baron, D.; Amaro, A.C.E.; Campos, F.G.; Ferreira, G. Leaf Gas Exchanges Responses of Atemoya Scion Grafted onto Annona Rootstocks. Theor. Exp. Plant Physiol. 2018, 30, 203–213. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll Fluorescence Analysis: A Guide to Good Practice and Understanding Some New Applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Butler, W.L. Quenching of Chlorophyll Fluorescence and Primary Photochemistry in Chloroplasts by Dibromothymoquinone. Biochim. Biophys. Acta (BBA) Bioenerg. 1975, 376, 105–115. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochim. Biophys. Acta (BBA) General. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous Recording of Photochemical and Non-Photochemical Chlorophyll Fluorescence Quenching with a New Type of Modulation Fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef]
- Bilger, W.; Björkman, O. Role of the Xanthophyll Cycle in Photoprotection Elucidated by Measurements of Light-Induced Absorbance Changes, Fluorescence and Photosynthesis in Leaves of Hedera Canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W., III; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using Chlorophyll Fluorescence to Assess the Fraction of Absorbed Light Allocated to Thermal Dissipation of Excess Excitation. Physiol. Plant 2008, 98, 253–264. [Google Scholar] [CrossRef]
- Garcia, I.S.; Souza, A.; Barbedo, C.J.; Dietrich, S.M.C.; Figueiredo-Ribeiro, R.C.L. Changes in Soluble Carbohydrates during Storage of Caesalpinia echinata LAM. (Brazilwood) Seeds, an Endangered Leguminous Tree from the Brazilian Atlantic Forest. Braz. J. Biol. 2006, 66, 739–745. [Google Scholar] [CrossRef]
- Clegg, K.M. The Application of the Anthrone Reagent to the Estimation of Starch in Cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Morris, D.L. Quantitative Determination of Carbohydrates with Dreywood’s Anthrone Reagent. Science 1948, 107, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Blenkinsopp, A. A Good Year. Int. J. Pharm. Pract. 2011, 7, 197. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Passos, L.P. Métodos Analíticos e Labora Toriais em Fisiologia Vegetal; EMBRAPA-CNPGL: Coronel Pacheco, MG, Brazil, 1996; ISBN 8585748087. [Google Scholar]
- Wan, J.; Griffiths, R.; Ying, J.; McCourt, P.; Huang, Y. Development of Drought-Tolerant Canola (Brassica napus L.) through Genetic Modulation of ABA-Mediated Stomatal Responses. Crop Sci. 2009, 49, 1539–1554. [Google Scholar] [CrossRef]
- Liu, H.; Song, S.; Zhang, H.; Li, Y.; Niu, L.; Zhang, J.; Wang, W. Signaling Transduction of ABA, ROS, and Ca2+ in Plant Stomatal Closure in Response to Drought. Int. J. Mol. Sci. 2022, 23, 14824. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.K.M.; Gualtieri, S.C.J. Trocas Gasosas E Grau De Tolerância Ao Estresse Hídrico Induzido Em Plantas Jovens De Tabebuia aurea; (PARATUDO) Submetidas A Alagamento. Ciência Florest. 2017, 27, 181–191. [Google Scholar] [CrossRef]
- Chen, S.; ten Tusscher, K.H.W.J.; Sasidharan, R.; Dekker, S.C.; de Boer, H.J. Parallels between Drought and Flooding: An Integrated Framework for Plant Eco-physiological Responses to Water Stress. Plant-Environ. Interact. 2023, 4, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Honório, A.B.M.; De-la-Cruz-Chacón, I.; Martínez-Vázquez, M.; da Silva, M.R.; Campos, F.G.; Martin, B.C.; da Silva, G.C.; Fernandes Boaro, C.S.; Ferreira, G. Impact of Drought and Flooding on Alkaloid Production in Annona crassiflora Mart. Horticulturae 2021, 7, 414. [Google Scholar] [CrossRef]
- Kleinwächter, M.; Selmar, D. New Insights Explain That Drought Stress Enhances the Quality of Spice and Medicinal Plants: Potential Applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Q.; Duan, X.; Zhang, Z.; Li, D. Effects of PEG-Induced Drought Stress on Regulation of Indole Alkaloid Biosynthesis in Catharanthus roseus. J. Plant Interact. 2017, 12, 87–91. [Google Scholar] [CrossRef]
- Ghorbanpour, M. Role of Plant Growth Promoting Rhizobacteria on Antioxidant Enzyme Activities and Tropane Alkaloids Production of Hyoscyamus Niger under Water Deficit Stress. Turk. J. Biol. 2013, 37, 350–360. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. N. Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions. Acta Physiol. Plant 2016, 38, 102. [Google Scholar] [CrossRef]
- Wilhelm, C.; Selmar, D. Energy Dissipation Is an Essential Mechanism to Sustain the Viability of Plants: The Physiological Limits of Improved Photosynthesis. J. Plant Physiol. 2011, 168, 79–87. [Google Scholar] [CrossRef]
- De Azevedo Neto, A.D.; Pereira, P.P.A.; Costa, D.P.; Santos, A.C.C. dos Fluorescência Da Clorofila Como Uma Ferramenta Possível Para Seleção de Tolerância à Salinidade Em Girassol. Rev. Ciência Agronômica 2011, 42, 893–897. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Ungerer, P.; Zhang, H.; Ruban, A.V. Direct Impact of the Sustained Decline in the Photosystem II Efficiency upon Plant Productivity at Different Developmental Stages. J. Plant Physiol. 2017, 212, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Nilkens, M.; Kress, E.; Lambrev, P.; Miloslavina, Y.; Müller, M.; Holzwarth, A.R.; Jahns, P. Identification of a Slowly Inducible Zeaxanthin-Dependent Component of Non-Photochemical Quenching of Chlorophyll Fluorescence Generated under Steady-State Conditions in Arabidopsis. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, P.L.C.; De-la-Cruz-Chacón, I.; Sousa, M.C.; Vieira, M.A.R.; Campos, F.G.; Marques, M.O.M.; Boaro, C.S.F.; Ferreira, G. Effect of Nitrogen Sources on Photosynthesis and Biosynthesis of Alkaloids and Leaf Volatile Compounds in Annona sylvatica A. St.-Hil. J. Soil. Sci. Plant Nutr. 2022, 22, 956–970. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Sankar, B.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Alterations in Osmoregulation, Antioxidant Enzymes and Indole Alkaloid Levels in Catharanthus roseus Exposed to Water Deficit. Colloids Surf. B Biointerfaces 2007, 59, 150–157. [Google Scholar] [CrossRef]
- Kirk, H.; Vrieling, K.; Van Der Meijden, E.; Klinkhamer, P.G.L. Species by Environment Interactions Affect Pyrrolizidine Alkaloid Expression in Senecio jacobaea, Senecio aquaticus, and Their Hybrids. J. Chem. Ecol. 2010, 36, 378–387. [Google Scholar] [CrossRef]
- Çakir, R.; Çebi, U. The Effect of Irrigation Scheduling and Water Stress on the Maturity and Chemical Composition of Virginia tobacco Leaf. Field Crops Res. 2010, 119, 269–276. [Google Scholar] [CrossRef]
- Xia, L.; Yang, W.; Xiufeng, Y. Effects of Water Stress on Berberine, Jatrorrhizine and Palmatine Contents in Amur Corktree Seedlings. Acta Ecol. Sin. 2007, 27, 58–63. [Google Scholar] [CrossRef]
- Arango, O.; Pérez, E.; Granados, H.; Rojano, B.; Sáez, J. Inhibición de la Peroxidación lipídica y capacidad de atrapadora de radicales libres de alcaloides aislados de dos annonaceae, Xylopia amazonica cf. y Duguetia vallicola. Actualidades Biológicas 2017, 26, 105–110. [Google Scholar] [CrossRef]
- Cortina, C.; Culiáñez-Macià, F.A. Tomato Abiotic Stress Enhanced Tolerance by Trehalose Biosynthesis. Plant Sci. 2005, 169, 75–82. [Google Scholar] [CrossRef]
- Paul, M.J.; Primavesi, L.F.; Jhurreea, D.; Zhang, Y. Trehalose Metabolism and Signaling. Annu. Rev. Plant Biol. 2008, 59, 417–441. [Google Scholar] [CrossRef] [PubMed]
- Matos Filho, H.A.; Carvalho, R.D.C.M. Análise de Carboidratos Solúveis em Plantas de Arroz. Científic@ Multidiscip. J. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Thalmann, M.; Santelia, D. Starch as a Determinant of Plant Fitness under Abiotic Stress. New Phytol. 2017, 214, 943–951. [Google Scholar] [CrossRef]
- Liu, K.; Zou, W.; Gao, X.; Wang, X.; Yu, Q.; Ge, L. Young Seedlings Adapt to Stress by Retaining Starch and Retarding Growth through ABA-Dependent and -Independent Pathways in Arabidopsis. Biochem. Biophys. Res. Commun. 2019, 515, 699–705. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, Salt, and Temperature Stress-Induced Metabolic Rearrangements and Regulatory Networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef]
- Henrique, P.D.C.; Alves, J.D.; Goulart, P.d.F.P.; Deuner, S.; Silveira, N.M.; Zanandrea, I.; de Castro, E.M. Características Fisiológicas e Anatômicas de Plantas de Sibipiruna Submetidas à Hipoxia. Ciência Rural. 2009, 40, 70–76. [Google Scholar] [CrossRef]
- Kuai, J.; Chen, Y.; Wang, Y.; Meng, Y.; Chen, B.; Zhao, W.; Zhou, Z. Effect of Waterlogging on Carbohydrate Metabolism and the Quality of Fiber in Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2016, 7, 877. [Google Scholar] [CrossRef]
- Moore, J.P.; Nguema-Ona, E.E.; Vicré-Gibouin, M.; Sørensen, I.; Willats, W.G.T.; Driouich, A.; Farrant, J.M. Arabinose-Rich Polymers as an Evolutionary Strategy to Plasticize Resurrection Plant Cell Walls against Desiccation. Planta 2013, 237, 739–754. [Google Scholar] [CrossRef]
Roots | Leaves | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Stress | Recovery | Stress | Recovery | |||||||||
Alkaloids | Field Capacity | Flooding | Drought | Field Capacity | Flooding | Drought | Field Capacity | Flooding | Drought | Field Capacity | Flooding | Drought |
Reticulin | - | - | - | x | x | - | - | - | - | - | - | - |
Norpredicentine | x | x | x | x | - | - | x | - | x | x | - | - |
N-Methyl-Laurotetanine | x | x | x | x | x | x | x | x | x | x | x | x |
Norglaucin | x | x | x | x | x | x | x | x | x | x | x | x |
Discretin | - | x | - | x | x | - | x | x | x | x | x | x |
Xylopinine | x | x | x | x | x | x | x | - | x | x | - | - |
Xylopine | x | x | x | x | x | x | x | x | x | x | x | x |
Assimilobin | x | x | x | x | x | x | x | - | - | x | - | - |
Laurotetanin | x | x | x | x | x | x | x | x | x | x | x | x |
Liriodenine | x | x | x | x | x | x | x | x | x | x | x | x |
Oxoglaucine | x | x | x | x | x | x | - | - | - | - | - | - |
Lanulinosin | x | x | x | x | x | x | x | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honório, A.B.M.; De-la-Cruz-Chacón, I.; da Silva, G.C.; Mimi, C.O.; Campos, F.G.; da Silva, M.R.; Boaro, C.S.F.; Ferreira, G. Differential Tolerance of Primary Metabolism of Annona emarginata (Schltdl.) H. Rainer to Water Stress Modulates Alkaloid Production. Horticulturae 2024, 10, 220. https://doi.org/10.3390/horticulturae10030220
Honório ABM, De-la-Cruz-Chacón I, da Silva GC, Mimi CO, Campos FG, da Silva MR, Boaro CSF, Ferreira G. Differential Tolerance of Primary Metabolism of Annona emarginata (Schltdl.) H. Rainer to Water Stress Modulates Alkaloid Production. Horticulturae. 2024; 10(3):220. https://doi.org/10.3390/horticulturae10030220
Chicago/Turabian StyleHonório, Ana Beatriz Marques, Ivan De-la-Cruz-Chacón, Gustavo Cabral da Silva, Carolina Ovile Mimi, Felipe Girotto Campos, Magali Ribeiro da Silva, Carmen Silvia Fernandes Boaro, and Gisela Ferreira. 2024. "Differential Tolerance of Primary Metabolism of Annona emarginata (Schltdl.) H. Rainer to Water Stress Modulates Alkaloid Production" Horticulturae 10, no. 3: 220. https://doi.org/10.3390/horticulturae10030220
APA StyleHonório, A. B. M., De-la-Cruz-Chacón, I., da Silva, G. C., Mimi, C. O., Campos, F. G., da Silva, M. R., Boaro, C. S. F., & Ferreira, G. (2024). Differential Tolerance of Primary Metabolism of Annona emarginata (Schltdl.) H. Rainer to Water Stress Modulates Alkaloid Production. Horticulturae, 10(3), 220. https://doi.org/10.3390/horticulturae10030220