Vegetation and Dormancy States Identification in Coniferous Plants Based on Hyperspectral Imaging Data
Abstract
:1. Introduction
2. Conditions, Objects, and Methods
2.1. Study Region
2.2. Meteorological Characteristics
- —
- Winter dormancy for 2021–2022 ended on 29 March 2022.
- —
- Vegetation started on 15 April 2022 and ended on 1 November 2022.
- —
- The plants entered dormancy on 30 November 2022 and left it on 24 March 2023.
- —
- Vegetation started again on 17 April 2023.
2.3. Objects of Study
2.4. Hyperspectral Imaging Technique
2.5. Hyperspectral Imagery Data Preprocessing
2.6. Calculation of Vegetation Indices
2.7. Hyperspectral Imagery Data Processing
3. Results
3.1. Correlation Analysis between Spectral and Climate Data
3.2. Linear Discriminant Analysis of States “Dormancy” and “Vegetation”
3.3. Random Forest Pixel-Based Testing of States “Dormancy” and “Vegetation”
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vyse, K.; Pagter, M.; Zuther, E.; Hincha, D.K. Deacclimation after cold acclimation—A crucial, but widely neglected part of plant winter survival. J. Exp. Bot. 2019, 70, 4595–4604. [Google Scholar] [CrossRef]
- North, M.; Workmaster, B.A.; Atucha, A. Effects of chill unit accumulation and temperature on woody plant deacclimation kinetics. Physiol. Plant. 2022, 174, e13717. [Google Scholar] [CrossRef]
- Hu, X.-G.; Mao, J.-F.; El-Kassaby, Y.A.; Jia, K.-H.; Jiao, S.-Q.; Zhou, S.-S.; Li, Y.; Coops, N.C.; Wang, T. Local Adaptation and Response of Platycladus orientalis (L.) Franco Populations to Climate Change. Forests 2019, 10, 622. [Google Scholar] [CrossRef]
- Wisniewski, M.; Bassett, C.; Gusta, L.V. An Overview of Cold Hardiness in Woody Plants: Seeing the Forest through the Trees. HortScience 2003, 38, 952–959. [Google Scholar] [CrossRef]
- Strimbeck, G.R.; Schaberg, P.G.; Fossdal, C.G.; Schröder, W.P.; Kjellsen, T.D. Extreme low temperature tolerance in woody plants. Front. Plant Sci. 2015, 6, 884. [Google Scholar] [CrossRef]
- Li, C.; Junttila, O.; Palva, E.T. Environmental regulation and physiological basis of freezing tolerance in woody plants. Acta Physiol. Plant 2004, 26, 213–222. [Google Scholar] [CrossRef]
- Beck, E.H.; Heim, R.; Hansen, J. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 2004, 29, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Ensminger, I.; Sveshnikov, D.; Campbell, D.A.; Funk, C.; Jansson, S.; Lloyd, J.; Shibistova, O.; Öquist, G. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob. Chang. Biol. 2004, 10, 995–1008. [Google Scholar] [CrossRef]
- Adams, W.W., III; Demmig-Adams, B. Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol. Plant. 1994, 92, 451–458. [Google Scholar] [CrossRef]
- Chang, C.Y.Y.; Bräutigam, K.; Hüner, N.P.A.; Ensminger, I. Champions of Winter Survival: Cold acclimation and Molecular Regulation of Cold Hardiness in Evergreen Conifers. New Phytol. 2020, 229, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Weiser, C.J. Cold Resistance and Injury in Woody Plants. Science 1970, 169, 1269–1278. [Google Scholar] [CrossRef]
- Ferguson, J.; Moyer, M.M.; Mills, L.J.; Hoogenboom, G.; Keller, M. Modeling Dormant Bud Cold Hardiness and Budbreak in Twenty-Three Vitis Genotypes Reveals Variation by Region of Origin. Am. J. Enol. Vitic. 2013, 65, 59–71. [Google Scholar] [CrossRef]
- Kovaleski, A.l.; Londo, J. Tempo of gene regulation in wild and cultivated Vitis species shows coordination between cold deacclimation and budbreak. Plant Sci. 2019, 287, 0168–9452. [Google Scholar] [CrossRef]
- Salazar-Gutierrez, M.R.; Chaves, B.; Anothai, J.; Whiting, M.; Hoogenboom, G. Variation in cold hardiness of sweet cherry flower buds through different phenological stages. Sci. Hortic. 2014, 172, 161–167. [Google Scholar] [CrossRef]
- Burr, K.; Hawkins, C.D.B.; L’Hirondelle, S.J.; Binder, W.D.; George, M.F.; Repo, T. Methods for Measuring Cold Hardiness of Conifers. Tree Physiol. 2001, 1, 369–401. [Google Scholar] [CrossRef]
- Atucha Zamkova, A.A.; Steele, K.A.; Smith, A.R. Methods for Measuring Frost Tolerance of Conifers: A Systematic Map. Forests 2021, 12, 1094. [Google Scholar] [CrossRef]
- Hawkins, C.; Lister, G. Invivo chlorophyll fluorescence as a possible indicator of the dormancy stage in Douglas-fir seedlings. Can. J. For. Res. 2011, 15, 607–612. [Google Scholar] [CrossRef]
- Linkosalo, T.; Heikkinen, J.; Pulkkinen, P.; Mäkipää, R. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn. Front. Plant Sci. 2014, 5, 264. [Google Scholar] [CrossRef]
- Zhang, C.; Atherton, J.; Peñuelas, J.; Filella, I.; Kolari, P.; Aalto, J.; Ruhanen, H.; Bäck, J.; Porcar-Castell, A. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ. 2019, 42, 3264–3279. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Liu, L.; Liu, X.; Zhang, X.; Gao, X.; Wang, W. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects. Sensors 2020, 20, 815. [Google Scholar] [CrossRef]
- Lang, Q.; Zhiyong, Z.; Longsheng, C.; Hong, S.; Minzan, L.; Li, L.; Junyong, M. Detection of Chlorophyll Content in Maize Canopy from UAV Imagery. IFAC-PapersOnLine 2019, 52, 330–335. [Google Scholar] [CrossRef]
- Noguera, M.; Aquino, A.; Ponce, J.M.; Cordeiro, A.; Silvestre, J.; Arias-Calderón, R.; Marcelo, M.; Jordão, P.; Andújar, J.M. Nutritional status assessment of olive crops by means of the analysis and modelling of multispectral images taken with UAVs. Biosyst. Eng. 2021, 211, 1–18. [Google Scholar] [CrossRef]
- Perry, E.M.; Goodwin, I.; Cornwall, D. Remote Sensing Using Canopy and Leaf Reflectance for Estimating Nitrogen Status in Red-blush Pears. HortScience 2018, 53, 78–83. [Google Scholar] [CrossRef]
- He, C.; Sun, J.; Chen, Y.; Wang, L.; Shi, S.; Qiu, F.; Wang, S.; Tagesson, T. A new vegetation index combination for leaf carotenoid-to-chlorophyll ratio: Minimizing the effect of their correlation. Int. J. Digit. Earth 2023, 16, 272–288. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Antoniuk, V.; Zhang, X.; Andersen, M.N.; Kørup, K.; Manevski, K. Spatiotemporal Winter Wheat Water Status Assessment Improvement Using a Water Deficit Index Derived from an Unmanned Aerial System in the North China Plain. Sensors 2023, 23, 1903. [Google Scholar] [CrossRef]
- Pôças, I.; Rodrigues, A.; Gonçalves, S.; Costa, P.M.; Gonçalves, I.; Pereira, L.S.; Cunha, M. Predicting Grapevine Water Status Based on Hyperspectral Reflectance Vegetation Indices. Remote Sens. 2015, 7, 16460–16479. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Lapaz Olveira, A.; Saínz Rozas, H.; Castro-Franco, M.; Carciochi, W.; Nieto, L.; Balzarini, M.; Ciampitti, I.; Reussi Calvo, N. Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion. Remote Sens. 2023, 15, 824. [Google Scholar] [CrossRef]
- Ma, H.; Cui, T.; Cao, L. Monitoring of Drought Stress in Chinese Forests Based on Satellite Solar-Induced Chlorophyll Fluorescence and Multi-Source Remote Sensing Indices. Remote Sens. 2023, 15, 879. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Park, E.; Kim, T.; Kim, M.S.; Baek, I.; Joshi, R.; Kim, J.; Cho, B.-K. Fluorescence Hyperspectral Imaging for Early Diagnosis of Heat-Stressed Ginseng Plants. Appl. Sci. 2023, 13, 31. [Google Scholar] [CrossRef]
- Burnett, A.C.; Serbin, S.P.; Davidson, K.J.; Ely, K.S.; Rogers, A. Detection of the metabolic response to drought stress using hyperspectral reflectance. J. Exp. Bot. 2021, 72, 6474–6489. [Google Scholar] [CrossRef] [PubMed]
- Bahe, M.M.; Murphy, R.L.; Russell, M.B.; Knight, J.F.; Johnson, G.R. Suitability of a single imager multispectral sensor for tree health analysis. Urban For. Urban Green. 2021, 63, 127187. [Google Scholar] [CrossRef]
- Buitrago, M.F.; Groen, T.A.; Hecker, C.A.; Skidmore, A.K. Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS J. Photogramm. Remote Sens. 2016, 111, 22–31. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C.; Moghimi, A. Detection of cold stressed maize seedlings for high throughput phenotyping using hyperspectral imagery. In Proceedings of the Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2017, Anaheim, CA, USA, 28 April 2017; Volume 10213, p. 1021305. [Google Scholar] [CrossRef]
- Qiao, K.; Zhu, W.; Xie, Z.; Li, P. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sens. 2019, 11, 689. [Google Scholar] [CrossRef]
- D’Odorico, P.; Besik, A.; Wong, C.Y.S.; Isabel, N.; Ensminger, I. High-throughput drone-based remote sensing reliably tracks phenology in thousands of conifer seedlings. New Phytol. 2020, 226, 1667–1681. [Google Scholar] [CrossRef]
- Kowalski, K.; Senf, C.; Hostert, P.; Pflugmacher, D. Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102172. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Wen, R.; Zhou, C.; Xu, L.; Xi, X. Mapping Spatiotemporal Changes in Vegetation Growth Peak and the Response to Climate and Spring Phenology over Northeast China. Remote Sens. 2020, 12, 3977. [Google Scholar] [CrossRef]
- Venkatappa, M.; Anantsuksomsri, S.; Castillo, J.A.; Smith, B.; Sasaki, N. Mapping the Natural Distribution of Bamboo and Related Carbon Stocks in the Tropics Using Google Earth Engine, Phenological Behavior, Landsat 8, and Sentinel-2. Remote Sens. 2020, 12, 3109. [Google Scholar] [CrossRef]
- Thapa, S.; Garcia Millan, V.E.; Eklundh, L. Assessing Forest Phenology: A Multi-Scale Comparison of Near-Surface (UAV, Spectral Reflectance Sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) Remote Sensing. Remote Sens. 2021, 13, 1597. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, G.; Qi, Y. Estimate of Leaf Area Index in an Old-Growth Mixed Broadleaved-Korean Pine Forest in Northeastern China. PLoS ONE 2012, 7, e32155. [Google Scholar] [CrossRef]
- D’Odorico, P.; Schönbeck, L.; Vitali, V.; Meusburger, K.; Schaub, M.; Ginzler, C.; Zweifel, R.; Velasco, V.M.E.; Gisler, J.; Gessler, A.; et al. Drone-based physiological index reveals long-term acclimation and drought stress responses in trees. Plant Cell Environ. 2021, 44, 3552–3570. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; D’Odorico, P.; Bhathena, Y.; Arain, M.A.; Ensminger, I. Carotenoid based vegetation indices for accurate monitoring of the phenology of photosynthesis at the leaf-scale in deciduous and evergreen trees. Remote Sens. Environ. 2019, 233, e111407. [Google Scholar] [CrossRef]
- Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Peñuelas, J. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092. [Google Scholar] [CrossRef]
- Springer, K.R.; Wang, R.; Gamon, J.A. Parallel Seasonal Patterns of Photosynthesis, Fluorescence, and Reflectance Indices in Boreal Trees. Remote Sens. 2017, 9, 691. [Google Scholar] [CrossRef]
- Kincaid, J.A. Structure and dendroecology of Thuja occidentalis in disjunct stands south of its contiguous range in the central Appalachian Mountains. USA For. Ecosyst. 2016, 3, 25. [Google Scholar] [CrossRef]
- Kozlovsky, B.L.; Ogorodnikova, T.K.; Kuropyatnikov, M.V.; Fedorinova, O.I. Assortment of Woody Plants for Green Building in the Rostov Region; Southern Federal University: Rostov-on-Don, Russia, 2009; p. 416. ISBN 978-5-9275-0674-3. [Google Scholar]
- Li, G.; Du, S.; Wen, Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci. Rep. 2016, 6, 30009. [Google Scholar] [CrossRef] [PubMed]
- Bareth, G.; Aasen, H.; Bendig, J.; Gnyp, M.L.; Bolten, A.; Jung, A.; Michels, R.; Soukkamäki, J. Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: Spectral comparison with portable spectroradiometer measurements. Photogramm. Fernerkund. Geoinf. 2015, 103, 69–79. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. JPRS 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Kozlovsky, B.L.; Dmitrieva, A.A.; Varduni, T.V. Classification of invasive tree species based on the seasonal dynamics of the spectral characteristics of their leaves. Earth Sci. Inform. 2023, 16, 3729–3743. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gamon, J.A.; Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Dmitriev, P.A.; Kozlovsky, B.L.; Kupriushkin, D.P.; Dmitrieva, A.A.; Rajput, V.D.; Chokheli, V.A.; Tarik, E.P.; Kapralova, O.A.; Tokhtar, V.K.; Minkina, T.M.; et al. Assessment of Invasive and Weed Species by Hyperspectral Imagery in Agrocenoses Ecosystem. Remote Sens. 2022, 14, 2442. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef]
- Wong, C.Y.S. Tracking the phenology of photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest. New Phytol. 2020, 226, 1682–1695. [Google Scholar] [CrossRef] [PubMed]
- Lebrini, Y.; Boudhar, A.; Laamrani, A.; Htitiou, A.; Lionboui, H.; Salhi, A.; Chehbouni, A.; Benabdelouahab, T. Mapping and Characterization of Phenological Changes over Various Farming Systems in an Arid and Semi-Arid Region Using Multitemporal Moderate Spatial Resolution Data. Remote Sens. 2021, 13, 578. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; Gamon, J.A. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers. New Phytol. 2015, 206, 196–208. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.W.L.M.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sens. 2022, 14, 1140. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Tian, Q.; Zhou, C. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages. Plant Methods 2020, 16, 104. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Garrity, S.R.; Porcar-Castell, A.; Munné-Bosch, S.; Bäck, J.; Garbulsky, M.F.; Peñuelas, J. Disentangling the relationships between plant pigments and the Photochemical Reflectance Index reveals a new approach for remote estimation of carotenoid content. Remote Sens. Environ. 2011, 115, 628–635. [Google Scholar] [CrossRef]
- Gamon, J.A.; Berry, J.A. Facultative and constitutive pigment effects on the Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Isr. J. Plant Sci. 2012, 60, 85–95. [Google Scholar] [CrossRef]
- Filella, I.; Porcar-Castell, A.; Munné-Bosch, S.; Bäck, J.; Garbulsky, M.F.; Peñuelas, J. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 2009, 30, 4443–4455. [Google Scholar] [CrossRef]
- Asner, G.P.; Nepstad, D.; Cardinot, G.; Ray, D. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc. Natl. Acad. Sci. USA 2004, 101, 6039–6044. [Google Scholar] [CrossRef]
- Peguero-Pina, J.J.; Morales, F.; Flexas, J.; Gil-Pelegrín, E.; Moya, I. Photochemistry, remotely sensed physiological Reflectance index and deepoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia 2008, 156, 1–11. [Google Scholar] [CrossRef]
- Suarez, L.; Zarco-Tejada, P.J.; Sepulcre-Cantó, G.; Pérez-Priego, O.; Miller, J.R.; Jiménez-Muñoz, J.C.; Sobrino, J. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens. Environ. 2008, 112, 560–575. [Google Scholar] [CrossRef]
- Damm, A.; Cogliati, S.; Colombo, R.; Fritsche, L.; Genangeli, A.; Genesio, L.; Hanus, J.; Peressotti, A.; Rademske, P.; Rascher, U.; et al. Response times of remote sensing measured sun-induced chlorophyll fluorescence, surface temperature and vegetation indices to evolving soil water limitation in a crop canopy. Remote Sens. Environ. 2022, 273, 112957. [Google Scholar] [CrossRef]
- Kohzuma, K.; Tamaki, M.; Hikosaka, K. Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions. J. Plant Res. 2021, 134, 683–694. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Biriukova, K.; Pacheco-Labrador, J.; Migliavacca, M.; Mahecha, M.D.; Gonzalez-Cascon, R.; Martin, M.P.; Rossini, M. Performance of singular spectrum analysis in separating seasonal and fast physiological dynamics of solar-induced chlorophyll fluorescence and PRI optical signals. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006158. [Google Scholar] [CrossRef]
- Wong, C.Y.S.; Gamon, J.A. Three causes of variation in the Photochemical Reflectance Index (PRI) in evergreen conifers. New Phytol. 2015, 206, 187–195. [Google Scholar] [CrossRef]
- Pramsohler, M.; Neuner, G. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds. Tree Physiol. 2013, 33, 807–816. [Google Scholar] [CrossRef]
- Gamon, J.; Wang, R.; Russo, S.E. Contrasting photoprotective responses of forest trees revealed using PRI light responses sampled with airborne imaging spectrometry. New Phytol. 2023, 238, 1318–1332. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.; Merzlyak, M. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2013, 171–172, 281–294. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Fawcett, D.; Bennie, J.; Anderson, K. Monitoring spring phenology of individual tree crowns using drone-acquired NDVI data. Remote Sens. Ecol. Conserv. 2020, 7, 227–244. [Google Scholar] [CrossRef]
- Gabbrielli, M.; Corti, M.; Perfetto, M.; Fassa, V.; Bechini, L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy 2022, 12, 2025. [Google Scholar] [CrossRef]
- Shammi, S.; Sohel, F.; Diepeveen, D.; Zander, S.; Jones, M.G.K. A survey of image-based computational learning techniques for frost detection in plants. Inf. Process. Agric. 2023, 10, 164–191. [Google Scholar] [CrossRef]
P. orientalis | T. occidentalis | T. plicata | ||||||
---|---|---|---|---|---|---|---|---|
VI | r | p-Value | VI | r | p-Value | VI | r | p-Value |
Average daily temperature, °C | ||||||||
PRI_norm | −0.8 | 0.001 | PRI/CI2 | 0.85 | 0.001 | PRI/CI2 | 0.83 | 0.001 |
PRI | 0.84 | 0.001 | PRI | 0.84 | 0.001 | PRI | 0.81 | 0.001 |
PRI/CI2 | 0.82 | 0.001 | PRI_norm | −0.8 | 0.001 | PRI_norm | −0.8 | 0.001 |
CCI | 0.8 | 0.001 | CCI | 0.77 | 0.001 | CCI | 0.72 | 0.001 |
DPI | 0.79 | 0.001 | DPI | 0.72 | 0.001 | DPI | 0.65 | 0.001 |
Vogelmann3 | 0.76 | 0.001 | RARS | −0.6 | 0.001 | RARS | −0.6 | 0.001 |
D2 | −0.8 | 0.001 | CRI2 | −0.6 | 0.001 | CRI2 | −0.6 | 0.001 |
MTCI | 0.72 | 0.001 | CRI1 | −0.6 | 0.001 | CRI1 | −0.6 | 0.001 |
D1 | 0.72 | 0.001 | Gitelson2 | 0.56 | 0.001 | Gitelson2 | 0.51 | 0.001 |
NDVI | 0.28 | 0.03 | NDVI | 0.09 | 0.50 | NDVI | 0.07 | 0.58 |
Day length, day | ||||||||
CCI | 0.78 | 0.001 | PRI | 0.75 | 0.001 | PRI_norm | −0.7 | 0.001 |
PRI_norm | −0.7 | 0.001 | PRI/CI2 | 0.73 | 0.001 | PRI/CI2 | 0.65 | 0.001 |
PRI | 0.72 | 0.001 | PRI_norm | −0.7 | 0.001 | CCI | 0.65 | 0.001 |
PRI/CI2 | 0.71 | 0.001 | CCI | 0.69 | 0.001 | PRI | 0.65 | 0.001 |
DWSI4 | 0.7 | 0.001 | DPI | 0.64 | 0.001 | RARS | −0.6 | 0.001 |
NDVI3 | −0.7 | 0.001 | D1 | 0.56 | 0.001 | CRI2 | −0.5 | 0.001 |
GI | 0.69 | 0.001 | Vogelmann2 | −0.5 | 0.001 | DPI | 0.52 | 0.001 |
Datt5 | −0.7 | 0.001 | Vogelmann4 | −0.5 | 0.001 | Gitelson2 | 0.47 | 0.001 |
GMI1 | −0.6 | 0.001 | D2 | −0.5 | 0.001 | CRI1 | −0.5 | 0.001 |
NDVI | 0.31 | 0.02 | NDVI | 0.24 | 0.08 | NDVI | 0.2 | 0.14 |
P. orientalis | T. occidentalis | T. plicata | ||||||
---|---|---|---|---|---|---|---|---|
SB | r | p-Value | SB | r | p-Value | SB | r | p-Value |
Average daily temperature, °C | ||||||||
518 | 0.46 | 0.001 | 526 | 0.57 | 0.001 | 526 | 0.46 | 0.001 |
522 | 0.45 | 0.001 | 530 | 0.57 | 0.001 | 522 | 0.45 | 0.001 |
526 | 0.45 | 0.001 | 522 | 0.56 | 0.001 | 530 | 0.44 | 0.001 |
514 | 0.44 | 0.001 | 534 | 0.55 | 0.001 | 518 | 0.43 | 0.001 |
530 | 0.43 | 0.001 | 518 | 0.54 | 0.001 | 534 | 0.42 | 0.001 |
698 | −0.43 | 0.001 | 538 | 0.53 | 0.001 | 514 | 0.39 | 0.001 |
694 | −0.43 | 0.001 | 514 | 0.51 | 0.001 | 538 | 0.38 | 0.001 |
690 | −0.42 | 0.001 | 542 | 0.51 | 0.001 | 510 | 0.36 | 0.010 |
534 | 0.42 | 0.001 | 510 | 0.47 | 0.001 | 542 | 0.36 | 0.010 |
702 | −0.42 | 0.001 | 546 | 0.47 | 0.001 | 546 | 0.32 | 0.020 |
Day length, day | ||||||||
526 | 0.44 | 0.001 | 526 | 0.44 | 0.001 | 526 | 0.45 | 0.001 |
530 | 0.44 | 0.001 | 522 | 0.44 | 0.001 | 522 | 0.45 | 0.001 |
534 | 0.44 | 0.001 | 530 | 0.44 | 0.001 | 530 | 0.45 | 0.001 |
538 | 0.43 | 0.001 | 518 | 0.43 | 0.001 | 534 | 0.44 | 0.001 |
522 | 0.43 | 0.001 | 534 | 0.41 | 0.001 | 518 | 0.43 | 0.001 |
518 | 0.43 | 0.001 | 514 | 0.41 | 0.001 | 514 | 0.40 | 0.001 |
542 | 0.42 | 0.001 | 538 | 0.39 | 0.001 | 538 | 0.40 | 0.001 |
546 | 0.41 | 0.001 | 510 | 0.38 | 0.001 | 926 | 0.38 | 0.001 |
514 | 0.41 | 0.001 | 918 | 0.38 | 0.001 | 542 | 0.38 | 0.001 |
550 | 0.40 | 0.001 | 922 | 0.37 | 0.010 | 922 | 0.38 | 0.001 |
Species | Final Model | Model Correctness Rate, % | Testing Accuracy, % |
---|---|---|---|
VIs | |||
P. orientalis | LD1 = 0.82 PRI − 0.73 PRI_norm − 0.82 D2 | 97.20 | 97.01 |
T. occidentalis | LD1 = 0.77 PRI − 0.72 PRI_norm + 0.57 PRI/CI2 | 94.45 | 93.97 |
T. plicata | LD1 = 0.68 PRI − 0.53 PRI_norm + 0.43 PRI/CI2 + 0.39 D1 | 92.31 | 92.10 |
All species | LD1 = 0.75 PRI − 0.69 PRI_norm + 4.44 PRI/CI2 − 0.44 D2 | 96.09 | 96.03 |
SB | |||
P. orientalis | LD1 = −0.65 R450 + 0.37 R522 + 0.37 R526 + 0.38 R530 + 0.37 R534 − 0.39 R686 | 88.63 | 88.14 |
T. occidentalis | LD1 = −0.52 R450 + 0.38 R518 + 0.41 R522 + 0.40 R526 + 0.37 R530 | 87.40 | 87.67 |
T. plicata | LD1 = −0.63 R450 + 0.31 R522 + 0.32 R526 + 0.31 R530 + 0.36 R906 + 0.34 R910 | 83.72 | 83.79 |
All species | LD1 = R450 + R518 + R522 + R526 + R530 | 86.56 | 87.56 |
State | Dormancy | Vegetation | Error, % |
---|---|---|---|
Training set | |||
Dormancy | 11,966 | 34 | 0.28 |
Vegetation | 27 | 22,973 | 0.12 |
Test set | |||
Dormancy | 6000 | 0 | 0 |
Vegetation | 274 | 3726 | 6.85 |
State | Dormancy | Vegetation | Error, % |
---|---|---|---|
Training set | |||
Dormancy | 11,637 | 363 | 3.03 |
Vegetation | 368 | 22,632 | 1.60 |
Test set | |||
Dormancy | 5873 | 127 | 2.12 |
Vegetation | 212 | 3788 | 5.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitriev, P.A.; Kozlovsky, B.L.; Dmitrieva, A.A. Vegetation and Dormancy States Identification in Coniferous Plants Based on Hyperspectral Imaging Data. Horticulturae 2024, 10, 241. https://doi.org/10.3390/horticulturae10030241
Dmitriev PA, Kozlovsky BL, Dmitrieva AA. Vegetation and Dormancy States Identification in Coniferous Plants Based on Hyperspectral Imaging Data. Horticulturae. 2024; 10(3):241. https://doi.org/10.3390/horticulturae10030241
Chicago/Turabian StyleDmitriev, Pavel A., Boris L. Kozlovsky, and Anastasiya A. Dmitrieva. 2024. "Vegetation and Dormancy States Identification in Coniferous Plants Based on Hyperspectral Imaging Data" Horticulturae 10, no. 3: 241. https://doi.org/10.3390/horticulturae10030241
APA StyleDmitriev, P. A., Kozlovsky, B. L., & Dmitrieva, A. A. (2024). Vegetation and Dormancy States Identification in Coniferous Plants Based on Hyperspectral Imaging Data. Horticulturae, 10(3), 241. https://doi.org/10.3390/horticulturae10030241