Olive Performance under the Soil Application of Humic Acid and the Spraying of Titanium and Zinc Nanoparticles under Soil Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf Total Chlorophyll (SPAD)
2.2. Flower Number, Fruit Set and Fruit Drop Percentages
2.3. Fruit Yield
2.4. Fruit Quality Attributes
2.4.1. Fruit Physical Characteristics
2.4.2. Fruit Chemical Characteristics
2.5. Leaf Minerals Status
2.6. Statistical Analysis
3. Results
3.1. Leaf Total Chlorophyll, Flower Number and Fruit Set Percentage
3.2. Fruit Drop Percentage, and Fruit Yield in kg or in Ton
3.3. Fruit Quality
3.4. Leaf Mineral Content from Macronutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Alsahli, A.A.; Jan, S.; Ahmad, P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ. Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Ali, A.Y.A.; Ibrahim, M.E.H.; Zhou, G.; Nimir, N.E.A.; Elsiddig, A.M.I.; Jiao, X.; Zhu, G.; Salih, E.G.I.; Suliman, M.S.E.S.; Elradi, S.B.M. Gibberellic acid and nitrogen efficiently protect early seedlings growth stage from salt stress damage in Sorghum. Sci. Rep. 2021, 11, 6672. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Tester, M.; Fiene, G.; Mousa, M.A.A. Early growth stage characterization and the biochemical responses for salinity stress in tomato. Plants 2021, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Azzam, C.R.; Zaki, S.-n.S.; Bamagoos, A.A.; Rady, M.M.; Alharby, H.F. Soaking maize seeds in zeatin-type cytokinin biostimulators improves salt tolerance by enhancing the antioxidant system and photosynthetic efficiency. Plants 2022, 11, 1004. [Google Scholar] [CrossRef] [PubMed]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf. 2018, 147, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.; Shahid, R.; Ren, M.; Naz, S.; Altaf, M.; Qadir, A.; Anwar, M.; Shakoor, A.; Hayat, F. Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biol. Plant. 2020, 64, 604–615. [Google Scholar] [CrossRef]
- Abou-Sreea, A.I.; Azzam, C.R.; Al-Taweel, S.K.; Abdel-Aziz, R.M.; Belal, H.E.; Rady, M.M.; Abdel-Kader, A.A.; Majrashi, A.; Khaled, K.A. Natural biostimulant attenuates salinity stress effects in chili pepper by remodeling antioxidant, ion, and phytohormone balances, and augments gene expression. Plants 2021, 10, 2316. [Google Scholar] [CrossRef]
- Sarkar, R.D.; Kalita, M.C. Alleviation of salt stress complications in plants by nanoparticles and the associated mechanisms: An overview. Plant Stress 2023, 7, 100134. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Brestic, M.; Skalicky, M. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Li, S.; Zhang, T.; Zhang, W.; Zhai, P. Application of organic amendments to a coastal saline soil in North China: Effects on soil physical and chemical properties and tree growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef]
- Gulser, F.; Sonmez, F.; Boysan, S. Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. J. Environ. Biol. 2010, 31, 873. [Google Scholar]
- Pizzeghello, D.; Francioso, O.; Ertani, A.; Muscolo, A.; Nardi, S. Isopentenyladenosine and cytokinin-like activity of different humic substances. J. Geochem. Explor. 2013, 129, 70–75. [Google Scholar] [CrossRef]
- Canellas, L.P.; da Silva, S.F.; Olk, D.C.; Olivares, F.L. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields. J. Food Agric. Environ. 2015, 13, 131–138. [Google Scholar]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Radkowski, A.; Radkowska, I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A 2013, 20, 1205–1211. [Google Scholar]
- Gómez-Merino, F.C.; Trejo-Téllez, L.I. The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In Biotic Abiotic Stress Tolerance Plants; Springer: Berlin/Heidelberg, Germany, 2018; pp. 137–172. [Google Scholar]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef]
- Bacilieri, F.S.; Pereira de Vasconcelos, A.C.; Quintao Lana, R.M.; Mageste, J.G.; Torres, J.L.R. Titanium (Ti) in plant nutrition-A review. Aust. J. Crop Sci. 2017, 11, 382–386. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Hussain, S.; Maqsood, M.; Ishfaq, M.; Ali, N. Zinc nutrition to enhance rice productivity, zinc use efficiency, and grain biofortification under different production systems. Crop Sci. 2021, 61, 739–749. [Google Scholar] [CrossRef]
- Faizan, M.; Faraz, A.; Yusuf, M.; Khan, S.; Hayat, S. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 2018, 56, 678–686. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, H.; Lv, Z.; Cui, L.; Mao, H.; Kopittke, P.M. Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. J. Agric. Food Chem. 2017, 66, 2572–2579. [Google Scholar] [CrossRef]
- Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019, 135, 160–166. [Google Scholar] [CrossRef]
- Esper Neto, M.; Britt, D.W.; Lara, L.M.; Cartwright, A.; dos Santos, R.F.; Inoue, T.T.; Batista, M.A. Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy 2020, 10, 307. [Google Scholar] [CrossRef]
- Salim, N.; Raza, A. Nutrient use efficiency (NUE) for sustainable wheat production: A review. J. Plant Nutr. 2020, 43, 297–315. [Google Scholar] [CrossRef]
- Elsheery, N.I.; Helaly, M.N.; El-Hoseiny, H.M.; Alam-Eldein, S.M. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 2020, 10, 558. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14. [Google Scholar]
- Kumar, S.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Asch, J.; Johnson, K.; Mondal, S.; Asch, F. Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis. J. Plant Nutr. Soil Sci. 2022, 185, 308–316. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 6th ed.; Iowa State University Press: Ames, IA, USA, 1990; p. 507. [Google Scholar]
- Khaleda, L.; Park, H.J.; Yun, D.-J.; Jeon, J.-R.; Kim, M.G.; Cha, J.-Y.; Kim, W.-Y. Humic acid confers high-affinity K+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Mol. Cells 2017, 40, 966. [Google Scholar]
- Hatami, E.; Shokouhian, A.A.; Ghanbari, A.R.; Naseri, L.A. Alleviating salt stress in almond rootstocks using of humic acid. Sci. Hortic. 2018, 237, 296–302. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Mol. 2021, 26, 2256. [Google Scholar] [CrossRef] [PubMed]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Hortic. Environ. Biotechnol. 2014, 55, 455–461. [Google Scholar] [CrossRef]
- Fahramand, M.; Moradi, H.; Noori, M.; Sobhkhizi, A.; Adibian, M.; Abdollahi, S.; Rigi, K. Influence of humic acid on increase yield of plants and soil properties. Int. J. Farm. Alli. Sci. 2014, 3, 339–341. [Google Scholar]
- Ahmed, A.H.; Darwish, E.; Hamoda, S.; Alobaidy, M. Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. Am.-Eurasian J. Agric. Environ. Sci. 2013, 13, 479–497. [Google Scholar]
- Elmongy, M.S.; Zhou, H.; Cao, Y.; Liu, B.; Xia, Y. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Sci. Hortic. 2018, 227, 234–243. [Google Scholar] [CrossRef]
- Khan, A.; Ahmed, N.; Shah, S.A. Effect of humic acid on fruit yield attributes, yield and leaf nutrient accumulation of apple trees under calcareous soil. Indian J. Sci. Technol. 2018, 15, 1–8. [Google Scholar] [CrossRef]
- AL-Barwari, B.J.T.; AL-A’araji, J.M.A. Effect of nitrogen and humic acid on fruit yield and qualitative characteristics of olive trees (Olea europaea L.) CV. Kistawy. Plant Arch. 2020, 20, 8716–8720. [Google Scholar]
- Ennab, H.A.; Mohamed, A.H.; El-Hoseiny, H.M.; Omar, A.A.; Hassan, I.F.; Gaballah, M.S.; Khalil, S.E.; Mira, A.M.; Abd El-Khalek, A.F.; Alam-Eldein, S.M. Humic acid improves the resilience to salinity stress of drip-irrigated mexican lime trees in saline clay soils. Agronomy 2023, 13, 1680. [Google Scholar] [CrossRef]
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Meybodi, N.D.H.; da Silva, J.A.T. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- Yuan, S.-J.; Chen, J.-J.; Lin, Z.-Q.; Li, W.-W.; Sheng, G.-P.; Yu, H.-Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latef, A.A.H.; Srivastava, A.K.; El-sadek, M.S.A.; Kordrostami, M.; Tran, L.S.P. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev. 2018, 29, 1065–1073. [Google Scholar] [CrossRef]
- Khan, M.N. Nano-titanium dioxide (nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). J. Plant Sci. 2016, 11, 1–11. [Google Scholar] [CrossRef]
- Kleiber, T.; Markiewicz, B. Application of “Tytanit” in greenhouse tomato growing. Acta Sci. Pol. Hortorum Cultus 2013, 12, 117–126. [Google Scholar]
- Almutairi, K.F.; Górnik, K.; Awad, R.M.; Ayoub, A.; Abada, H.S.; Mosa, W.F. Influence of Selenium, Titanium, and Silicon Nanoparticles on the Growth, Yield, and Fruit Quality of Mango under Drought Conditions. Horticulturae 2023, 9, 1231. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N.á.; Afzal, S.; Singh, T.; Hussain, I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 2018, 53, 185–201. [Google Scholar] [CrossRef]
- Narendhran, S.; Rajiv, P.; Sivaraj, R. Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bull. Mater. Sci. 2016, 39, 415–421. [Google Scholar] [CrossRef]
- García-López, J.I.; Niño-Medina, G.; Olivares-Sáenz, E.; Lira-Saldivar, R.H.; Barriga-Castro, E.D.; Vázquez-Alvarado, R.; Rodríguez-Salinas, P.A.; Zavala-García, F. Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 2019, 8, 254. [Google Scholar] [CrossRef]
- Alabdallah, N.M.; Alzahrani, H.S. The potential mitigation effect of ZnO nanoparticles on (Abelmoschus esculentus L. Moench) metabolism under salt stress conditions. Saudi J. Biol. Sci. 2020, 27, 3132–3137. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Abdelaziz, S.M.; El-Mogy, M.M.; Abdeldaym, E.A. Effect of foliar zno and feo nanoparticles application on growth and nutritional quality of red radish and assessment of their accumulation on human health. Agriculture 2019, 65, 16–29. [Google Scholar] [CrossRef]
- De Smedt, C.; Steppe, K.; Spanoghe, P. Beneficial effects of zeolites on plant photosynthesis. Adv. Mater. Sci. 2017, 2, 1–11. [Google Scholar]
- Jahangir, H.S.; Kumar, T.T.; Concelia, M.M.; Alamelu, R. Green synthesis, characterization and antibacterial studies of silver (Ag) and zinc oxide (ZnO) nanoparticles. J. Pure Appl. Microbiol. 2020, 14, 1999–2008. [Google Scholar] [CrossRef]
- Khanm, H.; Vaishnavi, B.; Shankar, A. Raise of Nano-fertilizer ERA: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1861–1871. [Google Scholar] [CrossRef]
- Mosa, W.F.; El-Shehawi, A.M.; Mackled, M.I.; Salem, M.Z.; Ghareeb, R.Y.; Hafez, E.E.; Behiry, S.I.; Abdelsalam, N.R. Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Sci. Rep. 2021, 11, 10205. [Google Scholar] [CrossRef]
- Abd El-wahed, N.; Khalifa, S.M.; Alqahtani, M.D.; Abd–Alrazik, A.M.; Abdel-Aziz, H.; Mancy, A.; Elnaggar, I.A.; Alharbi, B.M.; Hamdy, A.; Elkelish, A. Nano-enhanced growth and resilience strategies for pomegranate cv. Wonderful: Unveiling the impact of zinc and boron nanoparticles on fruit quality and abiotic stress management. J. Agric. Food Res. 2024, 15, 100908. [Google Scholar]
Parameter | Sample | ||||
---|---|---|---|---|---|
Mechanical Analysis | Macronutrients | ||||
Before | After | Before | After | ||
Soil depth | 0–60 cm | 0–60 cm | N | 83 ppm | 105 ppm |
Sand | 95.7% | 95.7% | P | 8.6 ppm | 10.6 ppm |
Silt | 2% | 2% | K | 104 ppm | 223 ppm |
Clay | 2.3% | 2.3% | Micronutrients | ||
Textural class | Sand | Sand | Fe | 1.63 ppm | 1.88 ppm |
pH | 8.52 | 7.95 | Zn | 1.58 ppm | 1.83 ppm |
EC | 4.12 ds/m | 3.4 ds/m | Mn | 3.54 ppm | 3.64 ppm |
Cu | 0.37 ppm | 0.67 ppm | |||
Soluble Cations | Soluble anions | ||||
Na+ | 16.75 Meq/L | 11.43 Meq/L | Cl− | 20.5 Meq/L | 14.5 Meq/L |
K+ | 9.14 Meq/L | 10.44 Meq/L | HCO3− | 12.4 Meq/L | 10.4 Meq/L |
Ca+ | 8.0 Meq/L | 6.8 Meq/L | CO32− | 0.0 Meq/L | 0.0 Meq/L |
Mg+ | 7.2 Meq/L | 4.5 Meq/L | SO42− | 8.19 Meq/L | 9.19 Meq/L |
Treatments | Leaf Chlorophyll (SPAD) | Flower Number | Fruit Set % | ||||
---|---|---|---|---|---|---|---|
HA | Fertilizers | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
0 (Control) | 0 mg ZnO2 + 0 mg TiO2 (Control) | 54.75 d ± 2.99 | 55.00 f ± 1.82 | 785.00 c ± 55.07 | 832.50 b ± 69.94 | 3.31 d ± 0.25 | 3.50 d ± 0.14 |
200 mg ZnO2 + 60 mg TiO2 | 61.00 c ± 4.08 | 61.75 e ± 4.64 | 795.00 c ± 45.09 | 846.50 b ± 46.71 | 3.45 cd ± 0.13 | 3.62 d ± 0.2 | |
300 mg ZnO2 + 80 mg TiO2 | 63.75 bc ± 3.30 | 65.00 de ± 2.16 | 822.50 c ± 33.04 | 875.00 b ± 55.68 | 3.59 cd ± 0.16 | 3.57 d ± 0.1 | |
0.5 kg | 0 mg ZnO2 + 0 mg TiO2 | 65.50 b ± 1.73 | 68.00 d ± 2.16 | 845.00 c ± 73.26 | 892.50 b ± 42.72 | 3.60 cd ± 0.1 | 3.69 d ± 0.14 |
200 mg ZnO2+ 60 mg TiO2 | 65.50 b ± 1.00 | 69.00 cd ± 2.94 | 903.75 bc ± 18.87 | 927.50 b ± 17.08 | 3.55 cd ± 0.1 | 3.78 d ± 0.4 | |
300 mg ZnO2 + 80 mg TiO2 | 66.25 b ± 2.63 | 74.00 bc ± 2.71 | 997.50 ab ± 59.09 | 1112.50 a ± 85.39 | 3.60 cd ± 0.16 | 4.09 d ± 0.2 | |
1 kg | 0 mg ZnO2 + 0 mg TiO2 | 71.75 a ± 2.06 | 74.25 bc ± 2.87 | 1052.50 a ± 61.85 | 1137.50 a ± 62.91 | 3.62 cd ± 0.12 | 4.00 d ± 0.14 |
200 mg ZnO2 + 60 mgTiO2 | 73.75 a ± 2.22 | 73.50 bc ± 1.29 | 1087.50 a ± 85.39 | 1165.00 a ± 44.35 | 3.91 cd ± 0.28 | 4.81 c ± 0.5 | |
300 mg ZnO2 + 80 mg TiO2 | 73.50 a ± 1.29 | 76.75 ab ± 0.96 | 1112.50 a ± 103.08 | 1207.50 a ± 57.37 | 4.72 b ± 0.22 | 5.48 b ± 0.2 | |
2 kg | 0 mg ZnO2 + 0 mg TiO2 | 73.00 a ± 2.16 | 74.75 b ± 0.22 | 1060.00 a ± 77.89 | 1167.50 a ± 106.89 | 3.95 c ± 0.21 | 3.80 d ± 0.3 |
200 mg ZnO2 + 60 mg TiO2 | 75.00 a ± 0.82 | 78.50 ab ± 2.65 | 1117.50 a ± 103.72 | 1170.00 a ± 67.82 | 4.82 b ± 0.32 | 4.83 c ± 0.4 | |
300 mg ZnO2 + 80 mg TiO2 | 75.25 a ± 2.22 | 81.00 a ± 1.15 | 1145.00 a ± 42.03 | 1237.50 a ± 75 | 5.39 a ± 0.60 | 6.07 a ± 0.3 | |
LSD0.05 | 3.08 | 3.97 | 109.08 | 98.96 | 0.38 | 0.42 |
Treatments | Fruit Drop % | Fruit Yield (kg/Tree) | Yield (Ton/H) | ||||
---|---|---|---|---|---|---|---|
HA | Fertilizers | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
0 (Control) | 0 mg ZnO2 + 0 mg TiO2 (Control) | 97.64 a ± 0.28 | 95.90 a ± 0.69 | 39.00 e ± 2.58 | 41.25 d ± 1.5 | 23.40 e ± 1.55 | 24.75 d ± 0.90 |
200 mg ZnO2 + 60 mg TiO2 | 97.41 ab ± 0.59 | 95.16 b ± 0.58 | 40.00 de ± 1.63 | 42.50 d ± 2.08 | 24.00 de ± 0.98 | 25.50 d ± 1.25 | |
300 mg ZnO2 + 80 mg TiO2 | 96.33 bc ± 0.43 | 94.44 b–d ± 0.34 | 41.25 c–e ± 1.50 | 43.00 cd ± 2.58 | 24.75 c–e ± 0.90 | 25.80 cd ± 1.55 | |
0.5 kg | 0 mg ZnO2 + 0 mg TiO2 | 96.60 a–c ± 0.67 | 94.92 bc ± 0.62 | 43.00 b–e ± 0.42 | 44.25 cd ± 1.70 | 25.65 b–e ± 0.75 | 26.55 cd ± 1.02 |
200 mg ZnO2+ 60 mg TiO2 | 96.59 a–c ± 0.32 | 94.89 bc ± 0.41 | 43.50 b–e ± 1.29 | 45.75 cd ± 1.71 | 26.10 b–e ± 0.77 | 27.45 cd ± 1.02 | |
300 mg ZnO2 + 80 mg TiO2 | 95.51 cd ± 0.31 | 93.38 e ± 0.41 | 44.00 b–e ± 0.82 | 51.00 b ± 2.94 | 26.40 b–e ± 0.49 | 30.60 b ± 1.77 | |
1 kg | 0 mg ZnO2 + 0 mg TiO2 | 95.50 cd ± 0.50 | 94.40 b–d ± 0.17 | 42.75 b–e ± 1.26 | 47.50 bc ± 2.08 | 25.80 b–e ± 0.49 | 28.50 bc ± 1.70 |
200 mg ZnO2 + 60 mgTiO2 | 94.58 de ± 0.48 | 93.67 de ± 0.1 | 45.00 b–d ± 1.15 | 50.75 b 1.71 | 27.00 b–d ± 0.69 | 30.45 b ± 1.02 | |
300 mg ZnO2 + 80 mg TiO2 | 94.34 e ± 0.53 | 92.98 e ± 0.33 | 45.75 bc ± 1.71 | 52.00 b ± 2.83 | 27.45 bc ± 1.02 | 31.20 b ± 1.70 | |
2 kg | 0 mg ZnO2 + 0 mg TiO2 | 95.74 c ± 0.75 | 94.17 cd ± 0.37 | 43.00 bc–e ± 1.41 | 50.00 b ± 2.45 | 25.80 b–e ± 0.85 | 30.00 b ± 1.47 |
200 mg ZnO2 + 60 mg TiO2 | 93.99 e ± 0.89 | 93.34 e ± 0.59 | 47.75 b ± 1.71 | 52.50 b ± 2.08 | 28.65 b ± 0.57 | 31.50 b ± 1.35 | |
300 mg ZnO2 + 80 mg TiO2 | 92.58 f ± 0.67 | 91.87 f ± 0.82 | 54.25 a ± 6.24 | 58.75 a ± 5.19 | 32.55 a ± 3.74 | 35.25 a ± 3.11 | |
LSD0.05 | 0.84 | 0.60 | 3.45 | 3.44 | 2.02 | 2.06 |
Treatments | Fruit Weight (g) | Flesh Weight (g) | Seed Weight (g) | ||||
---|---|---|---|---|---|---|---|
HA | Fertilizers | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
0 (Control) | 0 mg ZnO2 + 0 mg TiO2 (Control) | 2.47 b ± 0.1 | 2.45 d ± 0.06 | 1.55 cd ± 0.13 | 1.52 f ± 0.09 | 0.92 a ± 0.1 | 0.92 a ± 0.1 |
200 mg ZnO2 + 60 mg TiO2 | 2.47 b ± 0.05 | 2.60 cd ± 0.08 | 1.50 d ± 0.08 | 1.67 ef ± 0.12 | 0.97 a ± 0.1 | 0.92 a ± 0.12 | |
300 mg ZnO2 + 80 mg TiO2 | 2.65 b ± 0.13 | 2.95 b 0.25 | 1.55 cd ± 0.13 | 1.77 de ± 0.17 | 1.10 a ± 0.16 | 1.17 a ± 0.21 | |
0.5 kg | 0 mg ZnO2 + 0 mg TiO2 | 2.62 b ± 0.1 | 2.85 bc ± 0.19 | 1.72 b–d ± 0.19 | 1.87 c–e ± 0.15 | 0.90 a ± 0.27 | 0.97 a ± 0.17 |
200 mg ZnO2+ 60 mg TiO2 | 2.77 ab ± 0.26 | 3.10 ab ± 0.08 | 1.62 cd ± 0.12 | 1.92 cd ± 0.09 | 1.15 a ± 0.35 | 1.17 a ± 0.05 | |
300 mg ZnO2 + 80 mg TiO2 | 2.97 ab ± 0.24 | 3.00 ab ± 0.29 | 1.85 a–c ± 0.21 | 2.10 a–c ± 0.18 | 1.12 a ± 0.34 | 0.90 a ± 0.14 | |
1 kg | 0 mg ZnO2 + 0 mg TiO2 | 2.70 ab ± 0.24 | 3.12 ab ± 0.09 | 1.70 b–d ± 0.16 | 2.02 a–d ± 0.17 | 1.00 a ± 0.42 | 1.10 a ± 0.11 |
200 mg ZnO2 + 60 mg TiO2 | 2.90 ab ± 0.11 | 3.07 ab ± 0.30 | 1.87 a–c ± 0.15 | 2.02 a–d ± 0.12 | 1.02 a ± 0.12 | 1.05 a ± 0.24 | |
300 mg ZnO2 + 80 mg TiO2 | 2.97 ab ± 0.39 | 3.17 ab ± 0.22 | 1.97 ab ± 0.09 | 1.97 b–d ± 0.22 | 1.00 a ± 0.39 | 1.20 a ± 0.22 | |
2 kg | 0 mg ZnO2 + 0 mg TiO2 | 2.82 ab ± 0.27 | 3.12 ab ± 0.19 | 1.70 bcd ± 0.16 | 2.05 a–d ± 0.06 | 1.12 a ± 0.30 | 1.07 a ± 0.12 |
200 mg ZnO2 + 60 mg TiO2 | 3.22 a ± 0.17 | 3.40 a ± 0.27 | 2.10 a ± 0.08 | 2.22 ab ± 0.09 | 1.12 a ± 0.15 | 1.17 a ± 0.19 | |
300 mg ZnO2 + 80 mg TiO2 | 3.20 a ± 0.28 | 3.40 a ± 0.22 | 2.07 a ± 0.15 | 2.27 a ± 0.12 | 1.12 a ± 0.15 | 1.12 a ± 0.15 | |
LSD0.05 | 0.34 | 0.26 | 0.22 | 0.18 | 0.41 | 0.22 |
Treatments | Flesh/Fruit Weight (g) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Firmness (Ib/inch2) | |||||
---|---|---|---|---|---|---|---|---|---|
HA | Fertilizers | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
0 (Control) | 0 mg ZnO2 + 0 mg TiO2 (Control) | 0.62 a ± 0.04 | 0.62 ab ± 0.04 | 2.03 d ± 0.03 | 2.11 e ± 0.03 | 1.26 b ± 0.12 | 1.40 e ± 0.08 | 11.82 f ± 0.4 | 12.42 f ± 0.3 |
200 mg ZnO2 + 60 mg TiO2 | 0.60 a ± 0.03 | 0.64 ab ± 0.05 | 2.06 d ± 0.01 | 2.11 e 0.03 | 1.42 ab ± 0.09 | 1.44 de ± 0.05 | 11.95 f ± 0.5 | 12.65 ef ± 0.4 | |
300 mg ZnO2 + 80 mg TiO2 | 0.58 a ± 0.05 | 0.60 b ± 0.03 | 2.11 cd ± 0.06 | 2.22 de ± 0.06 | 1.50 a ± 0.08 | 1.58 bcd ± 0.10 | 13.30 d ± 0.2 | 13.80 d ± 0.4 | |
0.5 kg | 0 mg ZnO2 + 0 mg TiO2 | 0.66 a ± 0.09 | 0.66 ab ± 0.09 | 2.03 d ± 0.05 | 2.21 de ± 0.06 | 1.42 ab ± 0.09 | 1.52 cde ± 0.09 | 12.42 e ± 0.2 | 13.40 de ± 0.3 |
200 mg ZnO2+ 60 mg TiO2 | 0.59 a ± 0.09 | 0.62 ab ± 0.08 | 2.17 cd ± 0.17 | 2.23 de ± 0.05 | 1.50 a ± 0.08 | 1.57 bcd ± 0.09 | 12.72 e ± 0.5 | 13.30 de ± 0.2 | |
300 mg ZnO2 + 80 mg TiO2 | 0.62 a ± 0.08 | 0.70 a ± 0.02 | 2.19 bcd ± 0.08 | 2.28 cd ± 0.03 | 1.62 a ± 0.09 | 1.57 bcd ± 0.05 | 13.72 d ± 0.3 | 14.00 cd ± 0.3 | |
1 kg | 0 mg ZnO2 + 0 mg TiO2 | 0.64 a ± 0.11 | 0.65 ab ± 0.03 | 2.20 bcd ± 0.18 | 2.31 cd ± 0.08 | 1.52 a ± 0.09 | 1.52 cde ± 0.09 | 12.75 e ± 0.3 | 13.50 de ± 0.4 |
200 mg ZnO2 + 60 mg TiO2 | 0.65 a ± 0.04 | 0.66 ab ± 0.09 | 2.14 cd ± 0.05 | 2.37 bc ± 0.09 | 1.62 a ± 0.17 | 1.72 ab ± 0.05 | 14.42 c ± 0.1 | 14.67 bc ± 0.4 | |
300 mg ZnO2 + 80 mg TiO2 | 0.67 a ± 0.09 | 0.62 ab ± 0.01 | 2.24 bc ± 0.06 | 2.40 bc ± 0.08 | 1.52 a ± 0.12 | 1.70 ab ± 0.08 | 14.77 c ± 0.5 | 15.00 b ± 0.6 | |
2 kg | 0 mg ZnO2 + 0 mg TiO2 | 0.61 a ± 0.08 | 0.66 ab ± 0.03 | 2.25 bc ± 0.19 | 2.21 de ± 0.06 | 1.52 a ± 0.09 | 1.60 bcd ± 0.03 | 14.40 c ± 0.2 | 14.10 cd ± 0.4 |
200 mg ZnO2 + 60 mg TiO2 | 0.65 a ± 0.03 | 0.66 ab ± 0.05 | 2.35 b ± 0.13 | 2.47 b ± 0.09 | 1.67 a ± 0.09 | 1.67 abc ± 0.09 | 15.47 b ± 0.1 | 15.32 b ± 0.5 | |
300 mg ZnO2 + 80 mg TiO2 | 0.65 a ± 0.02 | 0.67 ab ± 0.03 | 2.60 a ± 0.14 | 2.60 a ± 0.08 | 1.67 a ± 0.15 | 1.80 a ± 0.08 | 16.70 a ± 0.4 | 16.65 a ± 0.5 | |
LSD0.05 | 0.11 | 0.05 | 0.11 | 0.10 | 0.15 | 0.10 | 0.44 | 0.65 |
Treatments | TSS% | Oil% | Moisture Content% | ||||
---|---|---|---|---|---|---|---|
HA | Fertilizers | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
0 (Control) | 0 mg ZnO2 + 0 mg TiO2 (Control) | 14.07 f ± 0.22 | 14.42 e ± 0.22 | 16.12 e ± 0.38 | 16.37 f ± 0.33 | 74.05 a ± 1.45 | 71.27 a ± 2.33 |
200 mg ZnO2 + 60 mg TiO2 | 14.55 e ± 0.17 | 14.35 e ± 0.26 | 16.40 e ± 0.41 | 16.47 f ± 0.36 | 70.95 b ± 2.07 | 66.32 b ± 1.48 | |
300 mg ZnO2 + 80 mg TiO2 | 14.97 d ± 0.29 | 15.17 d ± 0.40 | 16.90 de ± 0.26 | 17.42 de ± 0.29 | 70.32 b ± 1.44 | 66.90 b ± 1.15 | |
0.5 kg | 0 mg ZnO2 + 0 mg TiO2 | 15.20 d ± 0.32 | 15.15 d ± 0.51 | 17.00 de ± 0.29 | 16.90 ef ± 0.26 | 69.43 bc ± 2.04 | 63.55 c ± 1.30 |
200 mg ZnO2+ 60 mg TiO2 | 15.40 d ± 0.32 | 15.80 c ± 0.45 | 17.10 de ± 0.42 | 17.22 de ± 0.45 | 69.02 bc ± 2.34 | 63.27 c ± 0.07 | |
300 mg ZnO2 + 80 mg TiO2 | 16.22 bc ± 0.31 | 16.47 b ± 0.17 | 17.40 cd ± 0.42 | 17.67 cde ± 0.17 | 65.50 cd ± 1.18 | 61.60 cd ± 1.22 | |
1 kg | 0 mg ZnO2 + 0 mg TiO2 | 15.47 d ± 0.22 | 15.75 c ± 0.33 | 17.60 cd ± 0.35 | 17.72 cde ± 0.24 | 68.11 bc ± 2.41 | 62.80 cd 0.28 |
200 mg ZnO2 + 60 mg TiO2 | 16.55 b ± 0.13 | 16.45 b ± 0.10 | 18.27 bc ± 0.39 | 18.42 c ± 0.42 | 62.97 de ± 2.03 | 60.68 d ± 0.16 | |
300 mg ZnO2 + 80 mg TiO2 | 16.42 b ± 0.17 | 16.60 b ± 0.22 | 18.60 b ± 0.63 | 19.27 b ± 0.19 | 60.62 ef ± 2.94 | 58.44 e ± 2.21 | |
2 kg | 0 mg ZnO2 + 0 mg TiO2 | 15.92 c ± 0.30 | 16.17 bc ± 0.21 | 17.70 cd ± 0.39 | 17.85 cd ± 0.21 | 66.26 cd ± 3.11 | 63.02 cd ± 1.31 |
200 mg ZnO2 + 60 mg TiO2 | 16.72 b ± 0.1 | 16.70 b ± 0.24 | 18.92 b ± 0.50 | 19.27 b ± 0.19 | 59.02 fg ± 3.07 | 56.90 ef ± 0.56 | |
300 mg ZnO2 + 80 mg TiO2 | 17.25 a ± 0.31 | 17.45 a ± 0.13 | 20.25 a ± 0.51 | 20.97 a ± 0.89 | 57.07 g ± 3.60 | 55.11 f ± 2.33 | |
LSD0.05 | 0.38 | 0.44 | 0.69 | 0.59 | 2.78 | 1.81 |
Treatments | N% | P% | K% | ||||
---|---|---|---|---|---|---|---|
HA | Fertilizers | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 |
0 (Control) | 0 mg ZnO2 + 0 mg TiO2 (Control) | 1.45 e ± 0.02 | 1.47 e ± 0.02 | 0.39 d ± 0.03 | 0.48 f ± 0.03 | 0.97 d ± 0.05 | 1.07 e ± 0.02 |
200 mg ZnO2 + 60 mg TiO2 | 1.46 e ± 0.02 | 1.48 e ± 0.02 | 0.40 d ± 0.02 | 0.48 f ± 0.02 | 1.00 d ± 0.04 | 1.10 de ± 0.03 | |
300 mg ZnO2 + 80 mg TiO2 | 1.49 e ± 0.03 | 1.50 e ± 0.01 | 0.42 d ± 0.02 | 0.49 ef ± 0.03 | 1.07 c ± 0.01 | 1.13 d ± 0.02 | |
0.5 kg | 0 mg ZnO2 + 0 mg TiO2 | 1.54 d ± 0.01 | 1.56 d ± 0.04 | 0.47 c ± 0.04 | 0.51 def ± 0.02 | 1.07 c ± 0.03 | 1.13 d ± 0.03 |
200 mg ZnO2+ 60 mg TiO2 | 1.59 d ± 0.02 | 1.60 cd ± 0.03 | 0.47 c ± 0.03 | 0.54 cde ± 0.03 | 1.07 c ± 0.03 | 1.14 d ± 0.01 | |
300 mg ZnO2 + 80 mg TiO2 | 1.62 c ± 0.04 | 1.63 c ± 0.02 | 0.51 c ± 0.02 | 0.60 b ± 0.02 | 1.13 c ± 0.02 | 1.18 c ± 0.02 | |
1 kg | 0 mg ZnO2 + 0 mg TiO2 | 1.56 d ± 0.02 | 1.59 cd ± 0.05 | 0.47 c ± 0.04 | 0.55 cd ± 0.02 | 1.09 c ± 0.03 | 1.13 d ± 0.03 |
200 mg ZnO2 + 60 mg TiO2 | 1.65 c ± 0.01 | 1.65 c ± 0.01 | 0.55 b ± 0.02 | 0.62 b ± 0.03 | 1.14 c ± 0.02 | 1.19 c ± 0.03 | |
300 mg ZnO2 + 80 mg TiO2 | 1.66 c ± 0.02 | 1.69 b ± 0.03 | 0.56 b ± 0.02 | 0.65 b ± 0.03 | 1.21 b ± 0.04 | 1.23 b ± 0.02 | |
2 kg | 0 mg ZnO2 + 0 mg TiO2 | 1.58 d ± 0.02 | 1.60 cd ± 0.04 | 0.48 c ± 0.01 | 0.56 c ± 0.01 | 1.10 c 0.03 | 1.14 d ± 0.03 |
200 mg ZnO2 + 60 mg TiO2 | 1.71 b ± 0.03 | 1.73 b ± 0.02 | 0.61 a ± 0.03 | 0.63 b ± 0.03 | 1.24 ab 0.03 | 1.25 b ± 0.03 | |
300 mg ZnO2 + 80 mg TiO2 | 1.76 a ± 0.03 | 1.79 a ± 0.04 | 0.64 a ± 0.03 | 0.70 a ± 0.04 | 1.27 a ± 0.03 | 1.30 a ± 0.04 | |
LSD0.05 | 0.03 | 0.04 | 0.04 | 0.03 | 0.05 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saif, A.M.; Sas-Paszt, L.; Mosa, W.F.A. Olive Performance under the Soil Application of Humic Acid and the Spraying of Titanium and Zinc Nanoparticles under Soil Salinity Stress. Horticulturae 2024, 10, 295. https://doi.org/10.3390/horticulturae10030295
Al-Saif AM, Sas-Paszt L, Mosa WFA. Olive Performance under the Soil Application of Humic Acid and the Spraying of Titanium and Zinc Nanoparticles under Soil Salinity Stress. Horticulturae. 2024; 10(3):295. https://doi.org/10.3390/horticulturae10030295
Chicago/Turabian StyleAl-Saif, Adel M., Lidia Sas-Paszt, and Walid F. A. Mosa. 2024. "Olive Performance under the Soil Application of Humic Acid and the Spraying of Titanium and Zinc Nanoparticles under Soil Salinity Stress" Horticulturae 10, no. 3: 295. https://doi.org/10.3390/horticulturae10030295
APA StyleAl-Saif, A. M., Sas-Paszt, L., & Mosa, W. F. A. (2024). Olive Performance under the Soil Application of Humic Acid and the Spraying of Titanium and Zinc Nanoparticles under Soil Salinity Stress. Horticulturae, 10(3), 295. https://doi.org/10.3390/horticulturae10030295