Jasmonate Promotes Ester Aroma Biosynthesis during Nanguo Pears Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatment
2.2. Determination of Weight Loss, SSC, Firmness, and Ethylene Production
2.3. Extraction and Determination of Volatile Esters
2.4. RNA Extraction and Gene Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Effects of JAs on Morphology, Weight Loss, and Soluble Solids Content in Postharvest Pear Fruit
3.2. Effects of JAs Treatment on Firmness and Ethylene Production
3.3. Effect of JAs on the Composition and Content of VOCs during Fruit Storage
3.4. Effect of JAs on the Accumulation of Volatile Esters during Fruit Storage
3.5. The Effect of JAs on the Expression of Volatile Esters Accumulation-Related Genes during Fruit Storage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klee, H.J.; Tieman, D.M. Genetic challenges of flavor improvement in tomato. Trends Genet. 2013, 29, 257–262. [Google Scholar] [CrossRef]
- Tieman, D.; Zhu, G.; Resende, M.F., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhou, X.; Zhou, Q.; Tan, Z.; Yao, M.-m.; Wei, B.-d.; Ji, S.-j. Transcriptome analyses provide new possible mechanisms of aroma ester weakening of ‘Nanguo’ pear after cold storage. Sci. Hortic. 2018, 237, 247–256. [Google Scholar] [CrossRef]
- Li, X.; Qi, L.; Zang, N.; Zhao, L.; Sun, Y.; Huang, X.; Wang, H.; Yin, Z.; Wang, A. Integrated metabolome and transcriptome analysis of the regulatory network of volatile ester formation during fruit ripening in pear. Plant Physiol. Biochem. 2022, 185, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, Y.; Wang, X.; Qi, K.; Qiao, X.; Li, Q.; Xie, Z.; Cao, P.; Zhang, S.; Yin, H. New insights into aroma regulation in pear peel and flesh under methyl jasmonate treatment obtained by metabolite and whole-transcriptome RNA sequencing analyses. Postharvest Biol. Technol. 2023, 201, 112347. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, X.; Sun, H.; Zhou, Q.; Ge, W.; Sun, Y.; Yao, M.; Ji, S. Insights into profiling of volatile ester and LOX-pathway related gene families accompanying post-harvest ripening of ‘Nanguo’ pears. Food Chem. 2021, 335, 127665. [Google Scholar] [CrossRef]
- Schiller, D.; Contreras, C.; Vogt, J.; Dunemann, F.; Defilippi, B.G.; Beaudry, R.; Schwab, W. A dual positional specific lipoxygenase functions in the generation of flavor compounds during climacteric ripening of apple. Hortic. Res. 2015, 2, 15003. [Google Scholar] [CrossRef]
- Song, J.; Bangerth, F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol. Technol. 2003, 30, 113–121. [Google Scholar] [CrossRef]
- Li, X.; Gao, S.; Yang, L.; Yin, M.; Li, J.; Zhang, H.; Ji, S. Ethylene promotes ester biosynthesis through PuERF13/PuDof2.5 synergically activated PuAAT1 during ripening of cold-stored ‘Nanguo’ pear. Postharvest Biol. Technol. 2023, 195, 112108. [Google Scholar] [CrossRef]
- Morales-Quintana, L.; Moya-León, M.A.; Herrera, R. Computational study enlightens the structural role of the alcohol acyltransferase DFGWG motif. J. Mol. Model. 2015, 21, 216. [Google Scholar] [CrossRef]
- Gershater, M.C.; Cummins, I.; Edwards, R. Role of a Carboxylesterase in Herbicide Bioactivation in Arabidopsis thaliana. J. Biol. Chem. 2007, 282, 21460–21466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, K.; Wang, M.; Li, R.; Dai, X.; Liu, Y.; Jiang, X.; Xia, T.; Gao, L. The Functional Characterization of Carboxylesterases Involved in the Degradation of Volatile Esters Produced in Strawberry Fruits. Int. J. Mol. Sci. 2023, 24, 383. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rivas, F.J.; Blanco-Portales, R.; Moyano, E.; Alseekh, S.; Caballero, J.L.; Schwab, W.; Fernie, A.R.; Muñoz-Blanco, J.; Molina-Hidalgo, F.J. Strawberry fruit FanCXE1 carboxylesterase is involved in the catabolism of volatile esters during the ripening process. Hortic. Res. 2022, 9, uhac095. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.M.; Wei, C.Y.; Duan, W.Y.; Gao, Y.; Kuang, J.F.; Liu, M.C.; Chen, K.S.; Klee, H.; Zhang, B. Transcriptional and epigenetic analysis reveals that NAC transcription factors regulate fruit flavor ester biosynthesis. Plant J. 2021, 106, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Li, X.; Zang, N.; Zhang, Z.; Yang, Y.; Du, Y.; Sun, J.; Mostafa, I.; Yin, Z.; Wang, A. Genome-wide identification of CXE and PuCXE15 functions in the catabolism of volatile ester in ‘Nanguo’ pear fruit. Plant Physiol. Biochem. 2023, 203, 107996. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [PubMed]
- Demole, E.; Lederer, E.; Mercier, D. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helv. Chim. Acta 1962, 45, 675–685. [Google Scholar] [CrossRef]
- Wang, M.; Fan, X.; Ding, F. Jasmonate: A Hormone of Primary Importance for Temperature Stress Response in Plants. Plants 2023, 12, 4080. [Google Scholar] [CrossRef] [PubMed]
- Min, D.; Li, F.; Ali, M.; Zhang, X.; Liu, Y. Application of methyl jasmonate to control disease of postharvest fruit and vegetables: A Meta-analysis. Postharvest Biol. Technol. 2024, 208, 112667. [Google Scholar] [CrossRef]
- Min, D.; Li, F.; Ali, M.; Zhang, X.; Liu, Y. Application of methyl jasmonate to control chilling tolerance of postharvest fruit and vegetables: A meta-analysis and eliciting metabolism review. Crit. Rev. Food Sci. Nutr. 2023, 13, 1–14. [Google Scholar] [CrossRef]
- Hickman, R.; Van Verk, M.C.; Van Dijken, A.J.H.; Mendes, M.P.; Vroegop-Vos, I.A.; Caarls, L.; Steenbergen, M.; Van der Nagel, I.; Wesselink, G.J.; Jironkin, A.; et al. Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network. Plant Cell 2017, 29, 2086–2105. [Google Scholar] [CrossRef]
- Scognamiglio, J.; Jones, L.; Letizia, C.S.; Api, A.M. Fragrance material review on methyl jasmonate. Food Chem. Toxicol. 2012, 50, S572–S576. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.; Saeed, M.S.; Fan, X.; Salam, A.; Munir, R.; Yasin, M.U.; Khan, A.R.; Muhammad, S.; Ali, B.; Ali, I.; et al. The Multifaceted Role of Jasmonic Acid in Plant Stress Mitigation: An Overview. Plants 2023, 12, 3982. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Song, S.; Ren, Q.; Wu, D.; Huang, H.; Chen, Y.; Fan, M.; Peng, W.; Ren, C.; Xie, D. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana. Plant Cell 2011, 23, 1795–1814. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Luo, F.; Li, P.; Zhou, Q.; Zhou, X.; Wei, B.; Cheng, S.; Zhou, H.; Ji, S. Potential of jasmonic acid (JA) in accelerating postharvest yellowing of broccoli by promoting its chlorophyll degradation. Food Chem. 2020, 309, 125737. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, L.; Zhang, Q.; Zhuansun, X.; Li, H.; Chen, X.; Krugman, T.; Sun, Q.; Xie, C. Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. Plant Direct 2020, 4, e00212. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, H.; Chen, G.; Luo, G.; Shen, X.; Ouyang, B.; Bie, Z. Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. Plant Physiol. 2024, 194, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wei, X.; Guan, W.; Nong, W.; Chen, R.; Tao, X.; Mao, L. ABA-responsive transcription factor ABF1-1 promotes JA biosynthesis to accelerate suberin polyphenolic formation in wounded kiwifruit (Actinidia chinensis). Postharvest Biol. Technol. 2022, 187, 111850. [Google Scholar] [CrossRef]
- Farmer, E.E.; Caldelari, D.; Pearce, G.; Walker-Simmons, M.K.; Ryan, C.A. Diethyldithiocarbamic Acid Inhibits the Octadecanoid Signaling Pathway for the Wound Induction of Proteinase Inhibitors in Tomato Leaves. Plant Physiol. 1994, 106, 337–342. [Google Scholar] [CrossRef]
- Li, T.; Xu, Y.; Zhang, L.; Ji, Y.; Tan, D.; Yuan, H.; Wang, A. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening. Plant Cell 2017, 29, 1316–1334. [Google Scholar] [CrossRef]
- Song, S.; Qi, T.; Wasternack, C.; Xie, D. Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr. Opin. Plant Biol. 2014, 21, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Jiang, Z.; Sun, Q.; Wei, R.; Yin, Y.; Xie, Z.; Larkin, R.M.; Ye, J.; Chai, L.; Deng, X. Jasmonate Activates a CsMPK6-CsMYC2 module that regulates the expression of β-citraurin biosynthetic genes and fruit coloration in orange (Citrus sinensis). Plant Cell 2023, 35, 1167–1185. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.; Ren, Y.; Yu, W.; Zhang, P.; Dong, T.; Jia, H.; Fang, J. The roles of brassinosteroids and methyl jasmonate on postharvest grape by regulating the interaction between VvDWF4 and VvTIFY 5A. Plant Sci. 2023, 336, 111830. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, C.; Yan, Z.; Li, J.; Wang, Y. The methyl jasmonate accelerates the strawberry fruit ripening process. Sci. Hortic. 2019, 249, 250–256. [Google Scholar] [CrossRef]
- Li, L.-X.; Fang, Y.; Li, D.; Zhu, Z.-H.; Zhang, Y.; Tang, Z.-Y.; Li, T.; Chen, X.-S.; Feng, S.-Q. Transcription factors MdMYC2 and MdMYB85 interact with the ester aroma synthesis gene MdAAT1 in apples. Plant Physiol. 2023, 193, 2442–2458. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Feng, Y.; Li, S.; Li, D.; Yu, J.; Zhao, Z. Jasmonate-induced MdMYC2 improves fruit aroma during storage of ‘Ruixue’ apple based on transcriptomic, metabolic and functional analyses. LWT 2023, 185, 115168. [Google Scholar] [CrossRef]
- Zhou, Q.; Ma, C.; Cheng, S.; Wei, B.; Liu, X.; Ji, S. Changes in antioxidative metabolism accompanying pitting development in stored blueberry fruit. Postharvest Biol. Technol. 2014, 88, 88–95. [Google Scholar] [CrossRef]
- Zang, N.; Li, X.; Qi, L.; Zhang, Z.; Yang, Y.; Yin, Z.; Wang, A. H2O2-activated transcription factor MdERF4 negatively regulates ethylene biosynthetic during fruit ripening by suppressing MdACS1 transcription. Postharvest Biol. Technol. 2023, 204, 112461. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Zhang, C.; Xiao, X.; Chen, C.; Song, F. Aroma of peach fruit: A review on aroma volatile compounds and underlying regulatory mechanisms. Int. J. Food Sci. Technol. 2023, 58, 4965–4979. [Google Scholar] [CrossRef]
- Li, H.; Liu, G.; Fu, D. Transcriptional regulation of tomato fruit quality. Postharvest Biol. Technol. 2023, 202, 112393. [Google Scholar] [CrossRef]
- Li, H.; Ma, C.; Li, S.; Wang, H.; Fang, L.; Feng, J.; Wang, Y.; Li, Z.; Cai, Q.; Geng, X.; et al. Eight Typical Aroma Compounds of ‘Panguxiang’ Pear during Development and Storage Identified via Metabolomic Profiling. Life 2023, 13, 1504. [Google Scholar] [CrossRef] [PubMed]
- Souleyre, E.J.F.; Chagné, D.; Chen, X.; Tomes, S.; Turner, R.M.; Wang, M.Y.; Maddumage, R.; Hunt, M.B.; Winz, R.A.; Wiedow, C.; et al. The AAT1 locus is critical for the biosynthesis of esters contributing to ‘ripe apple’ flavour in ‘Royal Gala’ and ‘Granny Smith’ apples. Plant J. 2014, 78, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhou, X.; Hao, Y.; Sun, H.; Zhou, Q.; Sun, Y.; Ji, S.-j. Methyl jasmonate pretreatment improves aroma quality of cold-stored ‘Nanguo’ pears by promoting ester biosynthesis. Food Chem. 2021, 338, 127846. [Google Scholar] [CrossRef] [PubMed]
No. | CAS No. | Compounds | Retention Times (min) | CK (ng/g) | 100 µM MeJA (ng/g) | 100 mM DIECA (ng/g) |
---|---|---|---|---|---|---|
1 | 000141-78-6 | ethyl acetate | 2.547 | 649.71 ± 62.33 | 782.43 ± 68.75 | - |
2 | 000539-82-2 | ethyl valerate | 3.474 | - | 172.06 ± 3.43 | - |
3 | 000105-54-4 | ethyl butanoate | 5.211 | 1569.65 ± 67.6 | 3287.3 ± 206.56 | 422.89 ± 8.67 |
4 | 000123-86-4 | butyl acetate | 5.872 | 32.36 ± 0.47 | - | - |
5 | 000106-70-7 | methyl hexanoate | 6.260 | - | 172.96 ± 1.24 | - |
6 | 000123-66-0 | ethyl hexanoate | 13.279 | 2808.22 ± 75.89 | 2693.77 ± 33.47 | 1417.61 ± 13.68 |
7 | 000142-92-7 | hexyl acetate | 15.602 | 259.84 ± 5.15 | 1723.94 ± 25.5 | - |
8 | 000106-30-9 | ethyl heptanoate | 16.147 | - | 36.99 ± 0.48 | - |
9 | 001552-67-6 | ethyl hex-2-enoate | 16.468 | 39.49 ± 1 | 61.08 ± 1.78 | - |
10 | 000112-06-1 | heptylacetat | 18.648 | 19.28 ± 0.4 | 28.6 ± 1.11 | - |
11 | 000106-32-1 | ethyl caprylate | 23.192 | - | 150.15 ± 3.04 | - |
12 | 007367-82-0 | ethyl (E)-2-octenoate | 27.552 | - | 85.98 ± 1.14 | - |
13 | 013327-56-5 | ethyl 3-methylthiopropionate | 28.014 | 94.27 ± 1.37 | 249.62 ± 6.53 | - |
14 | 006378-65-0 | hexyl hexanoate | 28.689 | 10.56 ± 0.66 | 43.25 ± 2.01 | - |
15 | 000110-38-3 | ethyl caprate | 29.286 | 25.3 ± 0.85 | - | - |
16 | 002305-25-1 | ethyl 3-hydroxyhexanoate | 30.333 | 26.9 ± 0.51 | - | - |
17 | 003025-30-7 | ethyl(2E,4Z)-deca-2,4-dienoate | 33.978 | 192.46 ± 2.83 | 189.55 ± 0.8 | - |
18 | 100140-77-5 | pentanoic acid, 2,2,4-trimethyl-3-carboxyisopropyl, isobutyl ester | 34.874 | - | 702.36 ± 10.69 | - |
19 | 000626-11-9 | diethyl 1-malate | 36.793 | 192.5 ± 3.95 | 107.36 ± 0.45 | - |
20 | 000628-97-7 | ethyl palmitate | 44.729 | 39.5 ± 1.07 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Li, C.; Sun, J.; Liu, W.; Yang, Y.; Li, X.; Li, H.; Du, Y.; Mostafa, I.; Yin, Z. Jasmonate Promotes Ester Aroma Biosynthesis during Nanguo Pears Storage. Horticulturae 2024, 10, 329. https://doi.org/10.3390/horticulturae10040329
Qi L, Li C, Sun J, Liu W, Yang Y, Li X, Li H, Du Y, Mostafa I, Yin Z. Jasmonate Promotes Ester Aroma Biosynthesis during Nanguo Pears Storage. Horticulturae. 2024; 10(4):329. https://doi.org/10.3390/horticulturae10040329
Chicago/Turabian StyleQi, Liyong, Chuhan Li, Jianan Sun, Weiting Liu, Yueming Yang, Xiaojing Li, Hongjian Li, Yuqi Du, Islam Mostafa, and Zepeng Yin. 2024. "Jasmonate Promotes Ester Aroma Biosynthesis during Nanguo Pears Storage" Horticulturae 10, no. 4: 329. https://doi.org/10.3390/horticulturae10040329
APA StyleQi, L., Li, C., Sun, J., Liu, W., Yang, Y., Li, X., Li, H., Du, Y., Mostafa, I., & Yin, Z. (2024). Jasmonate Promotes Ester Aroma Biosynthesis during Nanguo Pears Storage. Horticulturae, 10(4), 329. https://doi.org/10.3390/horticulturae10040329