Biological Control of Pseudomonas syringae in Tomato Using Filtrates and Extracts Produced by Alternaria leptinellae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal and Plant Material
2.2. Filtrate and Extract Obtention
2.3. Effect of the Fungal Filtrate on the Bacterial Growth In Vitro (Disc Diffusion Assay)
2.4. Effect of the Extract on the Quorum Sensing Activity
2.5. In Vitro Minimum Inhibitory Concentration of the Extract
2.6. In Planta Assays
2.7. Evaluation of Other Protective Traits in Alternaria leptinellae E138
2.7.1. Estimation of Phytohormone-like Substances Production
2.7.2. Determination of the Antioxidant Activity
2.7.3. Determination of Total Polyphenol Content (TPC)
2.7.4. Determination of Nutrient Mobilization
2.8. Mass Spectometry Analysis of the Fungal Extract
2.9. Statistical Analysis
3. Results
3.1. Effect of the Filtrate and the Extract of Alternaria leptinellae E138 on the Bacterial Growth and Quorum Sensing Activity In Vitro
3.2. Effect of Mycopriming with A. leptinellae E138 Extract on the Control of Pseudomonas syringae NCPPB 1464 in Tomato Plants under Greenhouse Conditions
3.3. Effect of the Post-Emergence Application of A. leptinellae E138 Extract on the Control of Pseudomonas syringae NCPPB 1464 in Tomato Plants under Greenhouse Conditions
3.4. Traits of A. leptinellae E138 Directly or Indirectly Related to Its Biocontrol Activity
3.5. Tentative Identification of Metabolites by Mass Spectometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, S.; Al- Assie, A.; Mahmood, R. Determination of Some Morphological Traits and Genetic Factor of Two Species of Liriomyza Spp. (Diptera: Agromyzidae) on the Climbing Beans and Tomato Crops. Tikrit J. Agric. Sci. 2022, 19, 57–68. [Google Scholar] [CrossRef]
- Thompson, N.M.; Waterton, N.; Armaou, A.; Polston, J.E.; Curtis, W.R. Establishing an Inexpensive, Space Efficient Colony of Bemisia Tabaci MEAM1 Utilizing Modelling and Feedback Control Principles. J. Appl. Entomol. 2022, 146, 648–658. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Database [Online]. 2023. Available online: https://www.fao.org/statistics/en/ (accessed on 3 February 2024).
- Pascual, L.; Blanca, J.M.; Cañizares, J.; Nuez, F. Transcriptomic Analysis of Tomato Carpel Development Reveals Alterations in Ethylene and Gibberellin Synthesis during Pat3/Pat4 Parthenocarpic Fruit Set. BMC Plant Biol. 2009, 9, 67. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Gong, X.; Li, S.; Pang, J.; Chen, Z.; Sun, J. Optimizing Irrigation and Nitrogen Management Strategy to Trade off Yield, Crop Water Productivity, Nitrogen Use Efficiency and Fruit Quality of Greenhouse Grown Tomato. Agric. Water Manag. 2021, 245, 106570. [Google Scholar] [CrossRef]
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases that Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Silva, G.A.; Picanço, M.C.; Bacci, L.; Crespo, A.L.B.; Rosado, J.F.; Guedes, R.N.C. Control Failure Likelihood and Spatial Dependence of Insecticide Resistance in the Tomato Pinworm, Tuta Absoluta. Pest Manag. Sci. 2011, 67, 913–920. [Google Scholar] [CrossRef]
- Schiavi, D.; Balbi, R.; Giovagnoli, S.; Camaioni, E.; Botticella, E.; Sestili, F.; Balestra, G.M. A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. Nanomaterials 2021, 11, 1852. [Google Scholar] [CrossRef] [PubMed]
- Preston, G.M. Pseudomonas syringae Pv. Tomato: The Right Pathogen, of the Right Plant, at the Right Time. Mol. Plant Pathol. 2000, 1, 263–275. [Google Scholar] [CrossRef]
- Quaglia, M.; Bocchini, M.; Orfei, B.; D’Amato, R.; Famiani, F.; Moretti, C.; Buonaurio, R. Zinc Phosphate Protects Tomato Plants against Pseudomonas syringae Pv. Tomato. J. Plant Dis. Prot. 2021, 128, 989–998. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal Endophytes: Diversity and Functional Roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Maciá-Vicente, J.G.; Jansson, H.-B.; Lopez-Llorca, L. V Assessing Fungal Root Colonization for Plant Improvement. Plant Signal. Behav. 2009, 4, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sahib, M.R.; Amna, A.; Opiyo, S.O.; Zhao, Z.; Gao, Y.G. Culturable Endophytic Fungal Communities Associated with Plants in Organic and Conventional Farming Systems and Their Effects on Plant Growth. Sci. Rep. 2019, 9, 1669. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.; Cleckler, B.; Armuelles-Millican, H. Fungal Endophytes Promote Tomato Growth and Enhance Drought and Salt Tolerance. Plants 2020, 9, 877. [Google Scholar] [CrossRef] [PubMed]
- Amruthesh, K.N.; Murali, M.; Sujatha, H.S. Fungal Endophytes as Growth Promoters and Inducers of Resistance in Tomato (Lycopersicon esculentum Mill.) against Alternaria Solani: Life Sciences-Botany for Medicinal Science. Int. J. Life Sci. Pharma Res. 2021, 11, L227–L235. [Google Scholar] [CrossRef]
- Constantin, M.E.; de Lamo, F.J.; Vlieger, B.V.; Rep, M.; Takken, F.L.W. Endophyte-Mediated Resistance in Tomato to Fusarium Oxysporum Is Independent of ET, JA, and SA. Front. Plant Sci. 2019, 10, 979. [Google Scholar] [CrossRef]
- Mohammad Golam Dastogeer, K.; Oshita, Y.; Yasuda, M.; Kanasugi, M.; Matsuura, E.; Xu, Q.; Okazaki, S. Host Specificity of Endophytic Fungi from Stem Tissue of Nature Farming Tomato (Solanum lycopersicum Mill.) in Japan. Agronomy 2020, 10, 1019. [Google Scholar] [CrossRef]
- Abo Nouh, F.; Abu-Elsaoud, A.; Abdel-Azeem, A. The Role of Endophytic Fungi in Combating Abiotic Stress on Tomato. Microb. Biosyst. 2021, 6, 35–48. [Google Scholar] [CrossRef]
- Halo, B.A.; Al-Yahyai, R.; Al-Sadi, A.; Al-Sibani, A. Desert Endophytic Fungi Improve Reproductive, Morphological, Biochemical, Yield and Fruit Quality Characteristics of Tomato under Drought Stress. Arab Gulf J. Sci. Res. 2023, 41, 638–655. [Google Scholar] [CrossRef]
- Coninck, E.; Scauflaire, J.; Gollier, M.; Liénard, C.; Foucart, G.; Manssens, G.; Munaut, F.; Legrève, A. Trichoderma Atroviride as a Promising Biocontrol Agent in Seed Coating for Reducing Fusarium Damping-off on Maize. J. Appl. Microbiol. 2020, 129, 637–651. [Google Scholar] [CrossRef]
- Rodrigo, S.; Santamaria, O.; Halecker, S.; Lledó, S.; Stadler, M. Antagonism between Byssochlamys Spectabilis (Anamorph Paecilomyces variotii) and Plant Pathogens: Involvement of the Bioactive Compounds Produced by the Endophyte. Ann. Appl. Biol. 2017, 171, 464–476. [Google Scholar] [CrossRef]
- James, D.; Gleena Mary, C.F.; Mathew, S.K. Evaluation of Culture Filtrates of Endophytic Microorganisms from Tomato against Ralstonia solanacearum. Int. J. Environ. Clim. Chang. 2022, 12, 1476–1481. [Google Scholar] [CrossRef]
- García-Latorre, C.; Rodrigo, S.; Santamaría, O. Potential of Fungal Endophytes Isolated from Pasture Species in Spanish Dehesas to Produce Enzymes under Salt Conditions. Microorganisms 2023, 11, 908. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Abo-Elyousr, K.A.M.; Mousa, M.A.A.; Saad, M.M. Use of Trichoderma Culture Filtrates as a Sustainable Approach to Mitigate Early Blight Disease of Tomato and Their Influence on Plant Biomarkers and Antioxidants Production. Front. Plant Sci. 2023, 14, 1192818. [Google Scholar] [CrossRef] [PubMed]
- García-Latorre, C.; Rodrigo, S.; Santamaria, O. Protective Effects of Filtrates and Extracts from Fungal Endophytes on Phytophthora cinnamomi in Lupinus luteus. Plants 2022, 11, 1455. [Google Scholar] [CrossRef]
- Zachow, C.; Jahanshah, G.; de Bruijn, I.; Song, C.; Ianni, F.; Pataj, Z.; Gerhardt, H.; Pianet, I.; Lämmerhofer, M.; Berg, G.; et al. The Novel Lipopeptide Poaeamide of the Endophyte Pseudomonas poae RE*1-1-14 Is Involved in Pathogen Suppression and Root Colonization. Mol. Plant-Microbe Interact. 2015, 28, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Pastoshchuk, A.; Yumyna, Y.; Zelena, P.; Nudha, V.; Yanovska, V.; Kovalenko, M.; Taran, N.; Patyka, V.; Skivka, L. Beneficial Traits of Grain-Residing Endophytic Communities in Wheat with Different Sensitivity to Pseudomonas syringae. Regul. Mech. Biosyst. 2021, 12, 498–505. [Google Scholar] [CrossRef]
- Elsharkawy, M.M.; Khedr, A.A.; Mehiar, F.; El-Kady, E.M.; Baazeem, A.; Shimizu, M. Suppression of Pseudomonas syringae Pv. Tomato Infection by Rhizosphere Fungi. Pest Manag. Sci. 2021, 77, 4350–4356. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner, F.O.; Tedersoo, L.; et al. The UNITE Database for Molecular Identification of Fungi: Handling Dark Taxa and Parallel Taxonomic Classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef]
- Santamaría, O.; Rodrigo, S.; Lledó, S.; Poblaciones, M.J. Fungal Endophytes Associated with Ornithopus compressus Growing under Semiarid Conditions. Plant Ecol. Divers. 2018, 11, 581–595. [Google Scholar] [CrossRef]
- Lledó, S.; Rodrigo, S.; Poblaciones, M.J.; Santamaria, O. Biomass Yield, Mineral Content, and Nutritive Value of Poa Pratensis as Affected by Non-Clavicipitaceous Fungal Endophytes. Mycol. Prog. 2015, 14, 67. [Google Scholar] [CrossRef]
- García-Latorre, C.; Rodrigo, S.; Marin-Felix, Y.; Stadler, M.; Santamaria, O. Plant-Growth Promoting Activity of Three Fungal Endophytes Isolated from Plants Living in Dehesas and Their Effect on Lolium multiflorum. Sci. Rep. 2023, 13, 7354. [Google Scholar] [CrossRef] [PubMed]
- Stadler, M.; Wollweber, H.; Mühlbauer, A.; Henkel, T.; Asakawa, Y.; Hashimoto, T.; Ju, Y.M.; Rogers, J.D.; Wetzstein, H.G.; Tichy, H.V. Secondary Metabolite Profiles, Genetic Fingerprints and Taxonomy of Daldinia and Allies. Mycotaxon 2001, 77, 379–429. [Google Scholar]
- Halecker, S.; Surup, F.; Kuhnert, E.; Mohr, K.I.; Brock, N.L.; Dickschat, J.S.; Junker, C.; Schulz, B.; Stadler, M. Hymenosetin, a 3-Decalinoyltetramic Acid Antibiotic from Cultures of the Ash Dieback Pathogen, Hymenoscyphus pseudoalbidus. Phytochemistry 2014, 100, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute Clinical and Laboratory Standards Institute. M100-S24 Performance Standards for Antimicrobial Susceptibipity Testing; 24th Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, NJ, USA, 2014; ISBN 1562388657. [Google Scholar]
- de Sousa Oliveira, K.; de Lima, L.A.; Cobacho, N.B.; Dias, S.C.; Franco, O.L. Mechanisms of Antibacterial Resistance: Shedding Some Light on These Obscure Processes? Shedding Some Light on These Obscure Processes? In Antibiotic Resistance; Kon, K., Rai, M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128036686. [Google Scholar]
- Bodede, O.; Shaik, S.; Chenia, H.; Singh, P.; Moodley, R. Quorum Sensing Inhibitory Potential and in Silico Molecular Docking of Flavonoids and Novel Terpenoids from Senegalia nigrescens. J. Ethnopharmacol. 2018, 216, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.-K. Quorum Sensing Inhibitors as Antipathogens: Biotechnological Applications. Biotechnol. Adv. 2019, 37, 68–90. [Google Scholar] [CrossRef] [PubMed]
- Zabalgogeazcoa, Í.; Ciudad, A.G.; Vázquez de Aldana, B.R.; Criado, B.G. Effects of the Infection by the Fungal Endophyte Epichloë festucae in the Growth and Nutrient Content of Festuca Rubra. Eur. J. Agron. 2006, 24, 374–384. [Google Scholar] [CrossRef]
- Wilson, M.; Campbell, H.L.; Ji, P.; Cuppels, D.A. Biological Control of Bacterial Spot of Tomato under Field Conditions at Several Locations in North America. Phytopathology 2002, 92, 1284–1292. [Google Scholar] [CrossRef]
- Devi, K.A.; Pandey, P.; Sharma, G.D. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI J. Biosci. 2016, 23, 173–180. [Google Scholar] [CrossRef]
- Gordon, S.A.; Weber, R.P. Colorimetric Estimation of Indoleacetic Acid. Plant Physiol. 1951, 26, 192–195. [Google Scholar] [CrossRef]
- Holbrook, A.A.; Edge, W.J.W.; Bailey, F. Spectrophotometric Method for Determination of Gibberellic Acid. Adv. Chem. 1961, 28, 159–167. [Google Scholar] [CrossRef]
- Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Yan, G. Antioxidant Activity and Phenolics of an Endophytic Xylaria Sp. from Ginkgo Biloba. Food Chem. 2007, 105, 548–554. [Google Scholar] [CrossRef]
- Yadav, M.; Yadav, A.; Yadav, J.P. In Vitro Antioxidant Activity and Total Phenolic Content of Endophytic Fungi Isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014, 7, S256–S261. [Google Scholar] [CrossRef] [PubMed]
- Nautiyal, C.S. An Efficient Microbiological Growth Medium for Screening Phosphate Solubilizing Microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Nieva, A.S.; Vilas, J.M.; Gárriz, A.; Maiale, S.J.; Menéndez, A.B.; Erban, A.; Kopka, J.; Ruiz, O.A. The Fungal Endophyte Fusarium solani Provokes Differential Effects on the Fitness of Two Lotus Species. Plant Physiol. Biochem. 2019, 144, 100–109. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate. Open J. Soil Sci. 1954, 43. [Google Scholar]
- Pérez-Miranda, S.; Cabirol, N.; George-Téllez, R.; Zamudio-Rivera, L.S.; Fernández, F.J. O-CAS, a Fast and Universal Method for Siderophore Detection. J. Microbiol. Methods 2007, 70, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumar, V.; Agrawal, S. Evaluation of Phytase Producing Bacteria for Their Plant Growth Promoting Activities. Int. J. Microbiol. 2014, 2014, 426483. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Mizuno, T.; Nakajima, H.; Hamasaki, T. Altechromones A and B, New Plant Growth Regulators Produced by the Fungus, Alternaria sp. Biosci. Biotechnol. Biochem. 1992, 56, 1664–1665. [Google Scholar] [CrossRef]
- Qader, M.M.; Hamed, A.A.; Soldatou, S.; Abdelraof, M.; Elawady, M.E.; Hassane, A.S.I.; Belbahri, L.; Ebel, R.; Rateb, M.E. Antimicrobial and Antibiofilm Activities of the Fungal Metabolites Isolated from the Marine Endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Mar. Drugs 2021, 19, 232. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Luo, Z.; Gao, L.; Li, R.; Zhang, Y.; Kalaji, H.M.; Qiang, S.; Chen, S. Recent Advances in Alternaria Phytotoxins: A Review of Their Occurrence, Structure, Bioactivity and Biosynthesis. J. Fungi 2022, 8, 168. [Google Scholar] [CrossRef]
- Capon, R.J.; Stewart, M.; Ratnayake, R.; Lacey, E.; Gill, J.H. Citromycetins and Bilains A-C: New Aromatic Polyketides and Diketopiperazines from Australian Marine-Derived and Terrestrial Penicillium spp. J. Nat. Prod. 2007, 70, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Elbandy, M.; Shinde, P.B.; Hong, J.; Bae, K.S.; Kim, M.A.; Lee, S.M.; Jung, J.H. A-Pyrones and Y Low Pigments from the Sponge-Derived Fungus Paecilomyces lilacinus. Bull. Korean Chem. Soc. 2009, 30, 188–192. [Google Scholar]
- Hussain, H.; Krohn, K.; Ahmed, I.; Draeger, S.; Schulz, B.; Di Pietro, S.; Pescitelli, G. Phomopsinones A-D: Four New Pyrenocines from Endophytic Fungus Phomopsis sp. European J. Org. Chem. 2012, 2012, 1783–1789. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Ali, G.S. Aspergillus flavipes Is a Novel Efficient Biocontrol Agent of Phytophthora parasitica. Biol. Control 2020, 140, 104072. [Google Scholar] [CrossRef]
- Pinheiro, E.A.A.; Pina, J.R.S.; Feitosa, A.O.; Carvalho, J.M.; Borges, F.C.; Marinho, P.S.B.; Marinho, A.M.R. Bioprospecting of Antimicrobial Activity of Extracts of Endophytic Fungi from Bauhinia guianensis. Rev. Argent. Microbiol. 2017, 49, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; He, C.C.; Chu, Q.H. Inhibition of Quorum Sensing in Chromobacterium violaceum by Pigments Extracted from Auricularia auricular. Lett. Appl. Microbiol. 2011, 52, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Adonizio, A.; Kong, K.-F.; Mathee, K. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa by South Florida Plant Extracts. Antimicrob. Agents Chemother. 2008, 52, 198–203. [Google Scholar] [CrossRef]
- Singh, V.K.; Mishra, A.; Jha, B. 3-Benzyl-Hexahydro-Pyrrolo [1,2-a]Pyrazine-1,4-Dione Extracted From Exiguobacterium indicum Showed Anti-Biofilm Activity Against Pseudomonas Aeruginosa By Attenuating Quorum Sensing. Front. Microbiol. 2019, 10, 435900. [Google Scholar] [CrossRef]
- Harba, M.; Jawhar, M.; Arabi, M.I.E. In Vitro Antagonistic Activity of Diverse Bacillus Species Against Fusarium culmorum and F. solani Pathogens. Open Agric. J. 2020, 14, 157–163. [Google Scholar] [CrossRef]
- Kadam, H.K.; Salkar, K.; Naik, A.P.; Naik, M.M.; Salgaonkar, L.N.; Charya, L.; Pinto, K.C.; Mandrekar, V.K.; Vaz, T. Silica Supported Synthesis and Quorum Quenching Ability of Isoxazolones Against Both Gram Positive and Gram Negative Bacterial Pathogens. ChemistrySelect 2021, 6, 11718–11728. [Google Scholar] [CrossRef]
- Rekha, P.D.; Vasavi, H.S.; Vipin, C.; Saptami, K.; Arun, A.B. A Medicinal Herb Cassia Alata Attenuates Quorum Sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Lett. Appl. Microbiol. 2017, 64, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.A.M.; Soliman, W.E.E.; Shaldam, M.A. Perturbation of Quorum Sensing in Pseudomonas aeruginosa by Febuxostat. Adv. Microbiol. 2018, 08, 650–664. [Google Scholar] [CrossRef]
- Abdessemed, N.; Staropoli, A.; Zermane, N.; Vinale, F. Metabolic Profile and Mycoherbicidal Activity of Three Alternaria alternata Isolates for the Control of Convolvulus arvensis, Sonchus oleraceus, and Xanthium strumarium. Pathogens 2021, 10, 1448. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wang, Y.; Yang, J.; Xiao, Y.; Cai, Y.; Wan, Y.; Chen, H.; Yao, H.; Shan, Z.; Li, C.; et al. Isolation and Identification of Flavonoid-Producing Endophytic Fungi from Medicinal Plant Conyza blinii H.Lév That Exhibit Higher Antioxidant and Antibacterial Activities. PeerJ 2020, 8, e8978. [Google Scholar] [CrossRef]
- Daley, S.K.; Cordell, G.A. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. J. Nat. Prod. 2021, 84, 871–897. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021, 9, 197. [Google Scholar] [CrossRef]
- Hashem, A.H.; Attia, M.S.; Kandil, E.K.; Fawzi, M.M.; Abdelrahman, A.S.; Khader, M.S.; Khodaira, M.A.; Emam, A.E.; Goma, M.A.; Abdelaziz, A.M. Bioactive Compounds and Biomedical Applications of Endophytic Fungi: A Recent Review. Microb. Cell Fact. 2023, 22, 107. [Google Scholar] [CrossRef]
- Omomowo, I.O.; Amao, J.A.; Abubakar, A.; Ogundola, A.F.; Ezediuno, L.O.; Bamigboye, C.O. A Review on the Trends of Endophytic Fungi Bioactivities. Sci. African 2023, 20, e01594. [Google Scholar] [CrossRef]
- Baron, N.C.; Rigobelo, E.C. Endophytic Fungi: A Tool for Plant Growth Promotion and Sustainable Agriculture. Mycology 2022, 13, 39–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Liang, S.; Zheng, W.; Chen, X.; Liu, J.; Wang, A. Study on the Preparation and Effect of Tomato Seedling Disease Biocontrol Compound Seed-Coating Agent. Life 2022, 12, 849. [Google Scholar] [CrossRef]
- Ismail, M.A.; Amin, M.A.; Eid, A.M.; Hassan, S.E.D.; Mahgoub, H.A.M.; Lashin, I.; Abdelwahab, A.T.; Azab, E.; Gobouri, A.A.; Elkelish, A.; et al. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.L.; Hamayun, M.; Kang, S.-M.; Kim, Y.-H.; Jung, H.-Y.; Lee, J.-H.; Lee, I.-J. Endophytic Fungal Association via Gibberellins and Indole Acetic Acid Can Improve Plant Growth under Abiotic Stress: An Example of Paecilomyces formosus LHL10. BMC Microbiol. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Khalmuratova, I.; Choi, D.; Yoon, H.; Yoon, T.; Kim, J. Diversity and Plant Growth Promotion of Fungal Endophytes in Five Halophytes from the Buan Salt Marsh. J. Microbiol. Biotechnol. 2021, 31, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Ojha, A.; Thakur, P.; Mishra, S.K. Functional Importance of Endophytic Microorganisms in Plant Growth Promotion Bioactive Compound Production for Sustainable Agriculture. Def. Life Sci. J. 2023, 8, 93–108. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Liu, F.; Ma, H.; Ma, B.; Zhang, W.; Peng, L. Growth Improvement of Lolium multiflorum Lam. Induced by Seed Inoculation with Fungus Suspension of Xerocomus badius and Serendipita indica. AMB Express 2019, 9, 145. [Google Scholar] [CrossRef]
- Batool, R.; Umer, M.J.; Shabbir, M.Z.; Wang, Y.; Ahmed, M.A.; Guo, J.; He, K.; Zhang, T.; Bai, S.; Chen, J.; et al. Seed Myco-Priming Improves Crop Yield and Herbivory Induced Defenses in Maize by Coordinating Antioxidants and Jasmonic Acid Pathway. BMC Plant Biol. 2022, 22, 554. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, Y.; Yang, S.; Li, Y.; Zhu, Z. Biocontrol Potential of Trichoderma asperellum Strain 576 against Exserohilum turcicum in Zea mays. J. Fungi 2023, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Kalleli, F.; Aissa, E.; M’Hamdi, M. Seed Biopriming with Endophytic Fungi Enhances Germination, Growth, Yield and Fruit Quality of Fennel under Salinity Stress. Quest J. J. Res. Environ. Earth Sci. 2022, 8, 1–10. [Google Scholar]
- Liu, B.; Liu, X.; Liu, F.; Ma, H.; Ma, B.; Peng, L. Stress Tolerance of Xerocomus badius and Its Promotion Effect on Seed Germination and Seedling Growth of Annual Ryegrass under Salt and Drought Stresses. AMB Express 2021, 11, 15. [Google Scholar] [CrossRef]
- Puigvert, M.; Solé, M.; López-Garcia, B.; Coll, N.S.; Beattie, K.D.; Davis, R.A.; Elofsson, M.; Valls, M. Type III Secretion Inhibitors for the Management of Bacterial Plant Diseases. Mol. Plant Pathol. 2019, 20, 20–32. [Google Scholar] [CrossRef]
- Vishwakarma, K.; Kumar, N.; Shandilya, C.; Mohapatra, S.; Bhayana, S.; Varma, A. Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front. Microbiol. 2020, 11, 560406. [Google Scholar] [CrossRef] [PubMed]
- Rashad, Y.M.; Abdalla, S.A.; Sleem, M.M. Endophytic Bacillus subtilis SR22 Triggers Defense Responses in Tomato against Rhizoctonia Root Rot. Plants 2022, 11, 2051. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, I.; Abbas, H.A.; Ashour, M.L.; Yasri, A.; El-Shazly, A.M.; Wink, M.; Sobeh, M. Polyphenols from Salix Tetrasperma Impair Virulence and Inhibit Quorum Sensing of Pseudomonas aeruginosa. Molecules 2020, 25, 1341. [Google Scholar] [CrossRef]
- Yoo, S.J.; Shin, D.J.; Won, H.Y.; Song, J.; Sang, M.K. Aspergillus Terreus JF27 Promotes the Growth of Tomato Plants and Induces Resistance against Pseudomonas Syringae Pv. Tomato. Mycobiology 2018, 46, 147–153. [Google Scholar] [CrossRef]
Disc Diffusion Assay (mm) | QSA Inhibition (mm) | MIC (µg Extract mL−1) | |||
---|---|---|---|---|---|
Bacillus subtilis | Pseudomonas syringae | Bacillus subtilis | Pseudomonas syringae | ||
E138 | 0.95 ± 0.03 b | 0.39 ± 0.04 b | 1.38 ± 0.13 b | 125.00 ± 25.00 | 300.00 ± 0.00 |
Blank 1 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 | 0.00 ± 0.00 |
Control 2 | 1.90 ± 0.06 a | 0.68 ± 0.04 a | 5.00 ± 0.38 a | 1.24 ± 0.00 | 1.24 ± 0.00 |
df | 2 | 2 | 2 | - | - |
Endophyte | 689.18 *** | 117.72 *** | 127.25 *** | - | - |
Day 4 | Day 5 | Day 6 | Day 7 | Day 8 | Day 9 | |
---|---|---|---|---|---|---|
df | 1 | 1 | 1 | 1 | 1 | 1 |
Endophyte (E) | 8.00 * | 25.48 ** | 180.44 *** | 112.45 *** | 98.01 *** | 484.99 *** |
Pathogen (P) | 11.99 | 21.07 * | 3.57 | 12 | 2.28 | 4.92 |
E × P | 16.00 * | 48.02 * | 3.00 | 3.00 | 15.93* | 99.91 ** |
Day 10 | Day 11 | Day 12 | Day 13 | Day 14 | Day 15 | |
df | 1 | 1 | 1 | 1 | 1 | 1 |
Endophyte (E) | 264.66 *** | 220.67 *** | 242.20 *** | 72.09 ** | 72.09 ** | 72.09 ** |
Pathogen (P) | 7 | 6.26 | 12.01 | 12.01 | 12.01 | 12.01 |
E × P | 121.45 ** | 360.00 ** | 64.07 * | 100.36 ** | 100.36 ** | 100.36 ** |
Endophyte | Pathogen | Shoot Length (cm) | Root Length (cm) | Number of Roots | Vigor Index |
---|---|---|---|---|---|
Control | No | 9.30 ± 0.18 | 1.85 ± 0.05 c | 1.00 ± 0.00 b | 661.32 ± 12.65 b |
Yes | 8.75 ± 0.25 | 1.43 ± 0.08 d | 1.00 ± 0.00 b | 466.64 ± 13.33 c | |
E138 | No | 10.98 ± 0.24 | 3.48 ± 0.05 a | 2.25 ± 0.25 a | 951.17 ± 20.74 a |
Yes | 10.15 ± 0.15 | 2.58 ± 0.05 b | 1.00 ± 0.00 b | 924.77 ± 13.67 a | |
df | 1 | 1 | 1 | 1 | |
Endophyte (E) | 46.55 *** | 443.53 *** | 25.00 ** | 613.66 *** | |
Pathoten (P) | 10.56 * | 238.47 *** | 25.00 * | 42.34 ** | |
E × P | 0.68 | 21.24 * | 25.00 * | 33.64 * |
Endophyte | Pathogen Presence | Shoot Length (cm) | Root Length (cm) | Number of Roots | AUDPC |
---|---|---|---|---|---|
Control | No | 26.64 ± 1.71 b | 16.40 ± 0.63 b | 20.20 ± 0.56 b | 0.00 ± 0.00 c |
Yes | 4.88 ± 2.99 c | 4.64 ± 2.85 c | 8.40 ± 5.15 c | 66.50 ± 1.29 a | |
E138 | No | 36.14 ± 2.10 a | 21.54 ± 0.64 a | 38.00 ± 0.71 a | 0.00 ± 0.00 c |
Yes | 38.00 ± 1.24 a | 16.16 ± 0.11 b | 42.60 ± 0.93 a | 39.20 ± 3.06 b | |
Shoot dry matter weight (g) | Root dry matter weight (g) | Total dry matter weight (g) | |||
Control | No | 173.05 ± 7.47 b | 74.35 ± 3.60 b | 247.4 ± 9.16 b | |
Yes | 37.72 ± 23.85 c | 9.638 ± 5.91 c | 47.358 ± 29.66 c | ||
E138 | No | 578.35 ± 32.17 a | 180.65 ± 14.47 a | 759.00 ± 39.37 a | |
Yes | 581.05 ± 26.52 a | 163.375 ± 7.38 a | 744.425 ± 19.92 a | ||
df | Shoot Length (cm) | Root Length (cm) | Number of roots | AUDPC | |
Endophyte (E) | 1 | 229.50 *** | 43.47 *** | 93.5 *** | 67.36 *** |
Pathogen (P) | 1 | 11.60 * | 21.06 * | 1.59 | 2205.82 *** |
E × P | 1 | 25.91 ** | 4.54 * | 11.87 * | 43.67 * |
Source | df | Shoot dry matter weight (g) | Root dry matter weight (g) | Total dry matter weight (g) | |
Endophyte (E) | 1 | 276.01 *** | 273.98 *** | 412.61 *** | |
Pathogen (P) | 1 | 12.44 * | 11.92 * | 17.98 * | |
E × P | 1 | 12.58 * | 11.89 * | 17.2 * |
Trait | ||
---|---|---|
Group | Activity | Mean ± SE |
Phytohormone | IAA (µg mL−1) | 6.10 ± 0.05 |
IAA+ (µg mL−1) | 19.22 ± 0.20 | |
GA3 (µg mL−1) | 442.88 ± 0.36 | |
Antioxidant activity | DPPH (%) | 1.47 ± 0.61 |
TPC (mg GAE g−1) | 68.02 ± 4.46 | |
Nutrient mobilization | Siderophore | − |
P solubilization | + | |
Ammonia production | ++ |
P Solubilization Day 5 (%) | P Solubilization Day 10 (%) | P Solubilization Day 15 (%) | |
---|---|---|---|
E138 | 67.60 ± 0.34 a | 68.34 ± 0.64 a | 69.67 ± 0.41 a |
Control | 0.47 ± 0.03 b | 0.08 ± 0.10 b | 0.10 ± 0.13 b |
df | 1 | 1 | 1 |
Endophyte | 8502.89 *** | 16,798.50 *** | 37,195.30 *** |
pH day 5 | pH day 10 | pH day 15 | |
E138 | 6.51 ± 0.08 | 6.70 ± 0.05 a | 6.68 ± 0.02 a |
Control | 6.21 ± 0.05 | 6.12 ± 0.04 b | 5.80 ± 0.00 b |
df | 1 | 1 | 1 |
Endophyte | 5.11 | 24.14 ** | 91.58 *** |
Nº | Proposed Formula | Rt (min) | Obs. m/z | Proposed Compound | Activity | Reference |
---|---|---|---|---|---|---|
Cpd01 | C11H10O3 | 5.344 | 190.0623 | Altechromone A | Plant growth promotion, antimicrobial activity (biofilm inhibition) | [51,52] |
Cpd02 | C14H16N2O3 | 8.836 | 260.1155 | Maculosin | Antibacterial and antioxidant activity | [53] |
Cpd03 | C14H16N2O2 | 12.979 | 244.1205 | Ciclo(L-Phe-L-Pro) | Influence on QSA | [54] |
Cpd04 | C12H16O4 | 15.242 | 224.1042 | Phomopsinone A | Antifungal activity | [55,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Latorre, C.; Rodrigo, S.; Santamaria, O. Biological Control of Pseudomonas syringae in Tomato Using Filtrates and Extracts Produced by Alternaria leptinellae. Horticulturae 2024, 10, 334. https://doi.org/10.3390/horticulturae10040334
García-Latorre C, Rodrigo S, Santamaria O. Biological Control of Pseudomonas syringae in Tomato Using Filtrates and Extracts Produced by Alternaria leptinellae. Horticulturae. 2024; 10(4):334. https://doi.org/10.3390/horticulturae10040334
Chicago/Turabian StyleGarcía-Latorre, Carlos, Sara Rodrigo, and Oscar Santamaria. 2024. "Biological Control of Pseudomonas syringae in Tomato Using Filtrates and Extracts Produced by Alternaria leptinellae" Horticulturae 10, no. 4: 334. https://doi.org/10.3390/horticulturae10040334
APA StyleGarcía-Latorre, C., Rodrigo, S., & Santamaria, O. (2024). Biological Control of Pseudomonas syringae in Tomato Using Filtrates and Extracts Produced by Alternaria leptinellae. Horticulturae, 10(4), 334. https://doi.org/10.3390/horticulturae10040334