Sodium Chloride Tolerance during Germination and Seedling Stages of Tomato (Solanum lycopersicum L.) Lines Native to Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germination Salt Tolerance Test
2.2. Salt Tolerance Test in Seedlings
3. Results
3.1. Germination under Salinity Conditions
3.2. Development of Tomato Seedlings under Saline Conditions
4. Discussion
4.1. Germination Test
4.2. Development of Tomato Seedlings under Salinity Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Genotype | Location | Municipality | State | Program |
---|---|---|---|---|
Catemaco | Mercado | Catemaco | Veracruz | UACh |
Chapopote | Unknown | UACh | ||
CJ102 | Martínez de la Torre | Martínez de la Torre | Veracruz | UACh |
CJ103-1 | Unknown | UACh | ||
CJ103-2 | Unknown | UACh | ||
CJ106 | Huitzuco | Huitzuco | Guerrero | UACh |
CJ81 | Ecatlán | Jonotla | Puebla | UACh |
CJ83 | Totonaca | Totonaca | Veracruz | UACh |
CM10 | Ecatlán | Zozocolco de Hidalgo | Veracruz | UACh |
CM11 | La Esperanza | San Martín Chalchicuautla | San Luis Potosí | UACh |
CM15-1 | Unknown | UACh | ||
CM15-2 | Unknown | UACh | ||
CM19 | San Blas Atempa | San Blas Atempa | Oaxaca | UACh |
CM2 | El Solar San Juan | Chichiquila | Puebla | UACh |
CM22 | San José Monte Verde | Santa María Nativitas | Oaxaca | UACh |
CM29 | Santiago Cuixtla | Santos Reyes Nopala | Oaxaca | UACh |
CM3 | El Solar San Juan | Chichiquila | Puebla | UACh |
CM31 | Ecatlán | Zozocolco de Hidalgo | Veracruz | UACh |
CM32 | Santiago Cuixtla | Santos Reyes Nopala | Oaxaca | UACh |
CM36 | Oventic | Larráizar | Chiapas | UACh |
CM37 | Shuchila | Ocosingo | Chiapas | UACh |
CM39 | Cerano | Cerano | Guanajuato | UACh |
CM40 | Cerano | Cerano | Guanajuato | UACh |
CM42 | Coetzalan | Coetzalan | Veracruz | UACh |
CM43 | Cuerámaro | Cuerámaro | Guanajuato | UACh |
CM44 | Cerano | Cerano | Guanajuato | UACh |
CM45 | Juquila | Juquila | Oaxaca | UACh |
CM46 | Santo Domingo Alboradas | Tlacolula | Oaxaca | UACh |
CM5 | San Francisco Chamizal | Misantla | Veracruz | UACh |
CM53 | Palenque | Palenque | Chiapas | UACh |
CM55 | Huichapan | Huichapan | Hidalgo | UACh |
CM58 | Unknown | Chiapas | UACh | |
CM59 | Unknown | Chiapas | UACh | |
CM63 | Unknown | UACh | ||
S. habrocaites | Unknown | UACh | ||
Huasave | Gusave | Guasave | Sinaloa | UACh |
LOR107 | Altepexi | Altepexi | Puebla | CP |
LOR111 | Zinacantepec | Zinacantepec | Puebla | CP |
LOR115 | Unknown | CP | ||
LOR122 | Huauchinango | Huauchinango | Puebla | CP |
LOR133 | Sta. María Temaxcalapa | Santa María Temaxcalapa | Oaxaca | CP |
LOR134 | Unknown | CP | ||
LOR85 | Altepexi | Altepexi | Puebla | CP |
LOR87 | Altepexi | Altepexi | Puebla | CP |
LOR89 | Chimalhuacán | Chimalhuacán | México | CP |
LOR90 | Altepexi | Altepexi | Puebla | CP |
S. pimpinellifollium | Unknown | UACh | ||
QUIMH1-1 | Quimixtla | Tlanchinol | Hidalgo | UACh |
QUIMH3-1 | Quimixtla | Tlanchinol | Hidalgo | UACh |
QUIMH3-2 | Quimixtla | Tlanchinol | Hidalgo | UACh |
SILVNVO9 | Unknown | UACh | ||
SS3 | Necaxa | Necaxa | Puebla | UACh |
SS4 | Palenque | Palenque | Chiapas | UACh |
SS5 | Unknown | UACh | ||
Tonatico | Tonatico | Tonatico | México | UACh |
GEN | CON | APDM | RDM | LA | RL | PH | β |
---|---|---|---|---|---|---|---|
CHAPOPOTE | 0 | 2.17 ± 0.15 a | 0.28 ± 0.02 a | 490.96 ± 12.63 a | 49.65 ± 3.84 a | 10.91 ± 2.25 a | 0.17 ± 0.015 a |
CHAPOPOTE | 175 | 1.25 ± 0.03 a | 0.43 ± 0.04 a | 255.6 ± 4.67 b | 32.71 ± 4.49 b | 6.12 ± 0.14 b | 0.04 ± 0.005 b |
% | 42.05 | −56.25 | 47.93 | 34.10 | 43.89 | 72.35 | |
CJ106 | 0 | 1.66 ± 0.27 a | 0.28 ± 0.09 a | 386.71 ± 48.27 a | 44.61 ± 3.17 a | 9.83 ± 1 a | 0.17 ± 0.032 a |
CJ106 | 175 | 1.08 ± 0.03 a | 0.3 ± 0.03 a | 210.59 ± 8.61 a | 24.56 ± 2.97 b | 6.79 ± 0.3 a | 0.07 ± 0.006 b |
% | 34.78 | −5.26 | 45.54 | 44.93 | 30.92 | 58.75 | |
CJ83-1 | 0 | 4.97 ± 0.32 a | 0.63 ± 0.03 a | 1048.18 ± 53.62 a | 45.02 ± 5.75 a | 16.75 ± 0.75 a | 0.13 ± 0.003 a |
CJ83-1 | 175 | 3.11 ± 0.13 b | 1.03 ± 0.06 a | 542.95 ± 30.93 b | 33.36 ± 2.81 a | 11.79 ± 0.35 b | 0.05 ± 0.006 b |
% | 37.27 | −62.20 | 48.20 | 25.88 | 29.60 | 62.16 | |
CLAUDIA | 0 | 4.77 ± 0.68 a | 0.63 ± 0.17 a | 1085.98 ± 87.28 a | 45.57 ± 1.78 a | 16.00 ± 0.33 a | 0.14 ± 0.0001 a |
CLAUDIA | 175 | 2.58 ± 0.12 b | 0.71 ± 0.04 a | 469.99 ± 21.91 b | 25.37 ± 2.47 b | 11.00 ± 0.58 b | 0.05 ± 0.001 b |
% | 45.96 | −13.49 | 56.72 | 44.32 | 31.25 | 65.11 | |
CM15-1 | 0 | 6.56 ± 0.11 a | 1.08 ± 0.08 a | 1303.66 ± 45.26 a | 40.91 ± 2.21 a | 19.16 ± 1.33 a | 0.13 ± 0.004 a |
CM15-1 | 175 | 3.08 ± 0.11 b | 0.91 ± 0.06 a | 527.8 ± 17.84 b | 30.08 ± 2.92 a | 13.12 ± 0.77 b | 0.05 ± 0.012 b |
% | 52.93 | 15.66 | 59.51 | 26.46 | 31.52 | 59.31 | |
CM29 | 0 | 4.48 ± 0.06 a | 0.59 ± 0.02 a | 1055.07 ± 5.02 a | 38.76 ± 0.15 a | 16.83 ± 0 a | 0.15 ± 0.011 a |
CM29 | 175 | 2.28 ± 0.09 b | 0.52 ± 0.03 a | 414.65 ± 4.51 b | 19.93 ± 2.66 b | 9.12 ± 0.08 b | 0.04 ± 0.006 b |
% | 49.05 | 11.86 | 60.69 | 48.56 | 45.79 | 73.87 | |
CM3 | 0 | 1.25 ± 0.03 a | 0.21 ± 0.02 a | 311.24 ± 22.86 a | 39.04 ± 0.79 a | 7.66 ± 0.33 a | 0.13 ± 0.006 a |
CM3 | 175 | 1.06 ± 0.16 a | 0.25 ± 0.05 a | 188.81 ± 31.2 a | 19.53 ± 2.37 b | 5.71 ± 0.14 a | 0.04 ± 0.005 b |
% | 15.00 | −22.61 | 39.33 | 49.97 | 25.55 | 65.36 | |
CM46 | 0 | 6.61 ± 0.86 a | 0.77 ± 0.11 a | 1412.89 ± 59.2 a | 45.41 ± 1.54 a | 23.16 ± 1.83 a | 0.17 ± 0.003 a |
CM46 | 175 | 3.02 ± 0.21 b | 0.75 ± 0.08 a | 518.67 ± 37.0 b | 25.18 ± 5.2 b | 12.75 ± 0.32 b | 0.06 ± 0.004 b |
% | 54.31 | 2.27 | 63.29 | 44.54 | 44.94 | 60.07 | |
IMPERIAL | 0 | 6.49 ± 0.45 a | 0.71 ± 0.18 a | 1402.12 ± 18.2 a | 50.23 ± 0.36 a | 19 ± 2 a | 0.11 ± 0.026 a |
IMPERIAL | 175 | 3.29 ± 0.07 b | 0.83 ± 0.02 a | 535.86 ± 8.62 b | 28.24 ± 1.79 b | 12.29 ± 0.25 b | 0.03 ± 0.005 b |
% | 49.23 | −16.78 | 61.78 | 43.76 | 35.31 | 69.51 | |
L3 | 0 | 2.32 ± 0.14 a | 0.26 ± 0.07 a | 881.97 ± 37.12 a | 38.76 ± 1.02 a | 17.25 ± 1.41 a | 0.16 ± 0.009 a |
L3 | 175 | 1.21 ± 0.09 a | 0.22 ± 0.02 a | 202.64 ± 15.08 b | 20.03 ± 1.36 b | 8.29 ± 0.36 b | 0.04 ± 0.005 b |
% | 47.62 | 15.09 | 77.02 | 48.32 | 51.93 | 73.61 | |
L47B1 | 0 | 3.46 ± 0.61 a | 0.35 ± 0.04 a | 988.49 ± 78.84 a | 43.41 ± 1.19 a | 15.33 ± 0.33 a | 0.15 ± 0.017 a |
L47B1 | 175 | 1.88 ± 0.09 b | 0.35 ± 0.04 a | 318.59 ± 22.76 b | 21.81 ± 1.94 b | 8.04 ± 0.28 b | 0.03 ± 0.006 b |
% | 45.74 | 0.00 | 67.77 | 49.75 | 47.55 | 78.93 | |
L47S8 | 0 | 3.04 ± 0.06 a | 0.43 ± 0.03 a | 635.1 ± 40.1 a | 41.16 ± 3.43 a | 15.83 ± 0.5 a | 0.1 ± 0.008 a |
L47S8 | 175 | 1.44 ± 0.21 b | 0.39 ± 0.08 a | 219.81 ± 32.56 b | 23.55 ± 2.52 b | 9.04 ± 0.14 b | 0.03 ± 0.002 b |
% | 52.62 | 8.72 | 65.38 | 42.77 | 42.89 | 67.43 | |
L52 | 0 | 4.11 ± 0.31 a | 0.5 ± 0.06 a | 877.4 ± 26.86 a | 43.66 ± 1.69 a | 11 ± 0.66 a | 0.13 ± 0.023 a |
L52 | 175 | 1.9475 ± 0.11 b | 0.41 ± 0.03 a | 306.54 ± 14.54 b | 18.66 ± 0.91 b | 6.95 ± 0.31 a | 0.04 ± 0.004 b |
% | 52.67 | 18.50 | 65.06 | 57.25 | 36.74 | 67.52 | |
L69 | 0 | 1.72 ± 0.57 a | 0.18 ± 0.11 a | 541.11 ± 12.52 a | 39.73 ± 4.64 a | 11.83 ± 1 a | 0.15 ± 0.051 a |
L69 | 175 | 1.14 ± 0.08 a | 0.19 ± 0.03 a | 181.79 ± 11.26 b | 16.21 ± 1.19 b | 6.08 ± 0.09 b | 0.03 ± 0.009 b |
33.91 | −5.55 | 66.40 | 59.21 | 48.59 | 75.92 | ||
LOR133 | 0 | 3.24 ± 0.25 a | 0.34 ± 0.04 a | 805.7 ± 4.72 a | 47.08 ± 4.65 a | 18.66 ± 1.33 a | 0.21 ± 0.037 a |
LOR133 | 175 | 1.66 ± 0.05 b | 0.41 ± 0.02 a | 301.07 ± 13.08 b | 25.194 ± 2.52 b | 7.41 ± 0.18 b | 0.05 ± 0.003 b |
48.61 | −19.56 | 62.63 | 46.48 | 60.26 | 76.88 | ||
LOR134 | 0 | 2.55 ± 0.06 a | 0.39 ± 0.01 a | 620.91 ± 20.24 a | 45.209 ± 0.38 a | 13.91 ± 1.41 a | 0.16 ± 0.001 a |
LOR134 | 175 | 1.6 ± 0.04 a | 0.53 ± 0.03 a | 311.79 ± 11.46 b | 31.788 ± 3.15 a | 6.91 ± 0.17 b | 0.03 ± 0.005 b |
37.25 | −35.89 | 49.78 | 29.68 | 50.29 | 75.81 | ||
LOR85 | 0 | 5.24 ± 1.24 a | 0.7 ± 0.15 a | 1433.8 ± 146.77 a | 42.3 ± 0.16 a | 16.58 ± 4.91 a | 0.12 ± 0.047 a |
LOR85 | 175 | 2.89 ± 0.16 b | 0.702 ± 0.06 a | 496.49 ± 27.96 b | 27.31 ± 3.31 a | 11.83 ± 0.15 b | 0.04 ± 0.001 b |
44.89 | −0.35 | 65.37 | 35.42 | 28.64 | 60.36 | ||
LOR89 | 0 | 3.06 ± 0.31 a | 0.36 ± 0.1 a | 808.77 ± 83.08 a | 43.47 ± 0.77 a | 12.08 ± 0.91 a | 0.12 ± 0.023 a |
LOR89 | 175 | 2.22 ± 0.05 a | 0.59 ± 0.03 a | 411.7 ± 12.24 b | 25.47 ± 1.77 b | 8.91 ± 0.29 a | 0.05 ± 0.007 b |
27.56 | −64.58 | 49.09 | 41.41 | 26.20 | 59.19 | ||
PIMP | 0 | 6.55 ± 0 a | 0.97 ± 0.02 a | 1161.11 ± 5.85 a | 51.08 ± 2.74 a | 26.91 ± 0.08 a | 0.21 ± 0.01 a |
PIMP | 175 | 2.63 ± 0.14 b | 0.81 ± 0.09 a | 464.18 ± 23.86 b | 24.99 ± 1.58 b | 13.79 ± 0.51 b | 0.07 ± 0.008 b |
59.77 | 16.92 | 60.02 | 51.07 | 48.76 | 65.58 | ||
QUIMH3-1 | 0 | 1.77 ± 0.23 a | 0.24 ± 0.03 a | 650.72 ± 145.58 a | 42.38 ± 3.05 a | 10.33 ± 0.16 a | 0.18 ± 0.013 a |
QUIMH3-1 | 175 | 1.21 ± 0.09 a | 0.36 ± 0.04 a | 238.39 ± 14.39 b | 26.78 ± 0.85 a | 6.5 ± 0.14 a | 0.06 ± 0.006 b |
31.35 | −51.04 | 63.36 | 36.81 | 37.09 | 64.16 | ||
SILNVO9 | 0 | 3.13 ± 0.31 a | 0.42 ± 0.05 a | 583.52 ± 6.92 a | 43.86 ± 1.98 a | 11.75 ± 0.08 a | 0.1 ± 0.004 a |
SILNVO9 | 175 | 1.41 ± 0.06 b | 0.31 ± 0.02 a | 206.12 ± 7.35 b | 19.76 ± 0.89 b | 8.21 ± 0.18 a | 0.02 ± 0.007 b |
55.18 | 26.78 | 64.67 | 54.93 | 30.14 | 78.33 | ||
SS3 | 0 | 5.63 ± 0.26 a | 0.63 ± 0.04 b | 1245.29 ± 91.43 a | 42.11 ± 0.92 a | 22.91 ± 0.08 a | 0.15 ± 0.003 a |
SS3 | 175 | 3.59 ± 0.17 b | 1.02 ± 0.03 a | 707.41 ± 45.51 b | 32.99 ± 0.93 a | 14.12 ± 0.48 b | 0.06 ± 0.002 b |
36.10 | −61.02 | 43.19 | 21.66 | 38.36 | 61.45 | ||
SS4 | 0 | 4.07 ± 0.11 a | 0.75 ± 0.02 a | 871.17 ± 3.79 a | 47.58 ± 1.51 a | 13.83 ± 0.16 a | 0.11 ± 0.013 a |
SS4 | 175 | 2.29 ± 0.06 b | 0.75 ± 0.03 a | 366.45 ± 15.42 b | 25.16 ± 1.58 b | 9.37 ± 0.2 a | 0.04 ± 0.004 b |
43.61 | 0.66 | 57.93 | 47.11 | 32.22 | 60.33 | ||
TOPONGA | 0 | 3.84 ± 0.01 a | 0.46 ± 0.005 a | 788.65 ± 87.42 a | 42.11 ± 0.67 a | 17.58 ± 2.41 a | 0.13 ± 0.006 a |
TOPONGA | 175 | 1.98 ± 0.09 b | 0.56 ± 0.04 a | 296.3 ± 14.34 b | 27.72 ± 1.71 a | 10.16 ± 0.27 b | 0.02 ± 0.004 b |
48.50 | −21.51 | 62.42 | 34.17 | 42.17 | 77.84 |
References
- FAO. Global Map of Salt Affected Soils Version 1.0. 2021. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/ (accessed on 24 April 2024).
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.M.; Aragon, B.; Al-Mashharawi, S.K.; Ziliani, M.G.; Angel, Y.; Fiene, G.M.; Negrão, S.S.C.; Mousa, M.A.A.; et al. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress. Front. Plant Sci. 2019, 10, 370. [Google Scholar] [CrossRef]
- Secretaría de Agricultura y Desarrollo Rural. Mapa Agrícola de Afectación por Salinidad en México. 2021. Available online: https://www.gob.mx/agricultura/acciones-y-programas/mapa-agricola-de-afectacion-por-salinidad-en-mexico (accessed on 24 April 2024).
- Li, H.; Zhu, Y.; Hu, Y.; Han, W.; Gong, H. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol. Plant. 2015, 37, 71. [Google Scholar] [CrossRef]
- Bogoutdinova, L.R.; Baranova, E.N.; Kononenko, N.V.; Chaban, I.A.; Konovalova, L.N.; Gulevich, A.A.; Lazareva, E.M.; Khaliluev, M.R. Characteristics of Root Cells during In Vitro Rhizogenesis under Action of NaCl in Two Tomato Genotypes Differing in Salt Tolerance. Int. J. Plant Biol. 2023, 14, 104–119. [Google Scholar] [CrossRef]
- Horie, T.; Karahara, I.; Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 2012, 5, 11. [Google Scholar] [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Sarwar, M.I. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34. [Google Scholar] [CrossRef]
- Frukh, A.; Siddiqi, T.O.; Khan, M.I.R.; Ahmad, A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol. Biochem. 2020, 146, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, X.S.; Guo, H.D.; Bai, S.Y.; Khan, A.; Wang, X.M.; Gao, Y.M.; Li, J.S. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front. Plant Sci. 2022, 13, 949541. [Google Scholar] [CrossRef]
- Parra-Terraza, S.; Angulo-Castro, A.; Sánchez-Peña, P.; Valdez-Torres, J.B.; Rubio-Carrasco, W. Effect of Cl− and Na+ ratios nutrient solutions on tomato (Solanum lycopersicum L.) yield in a hydroponic system. Rev. Chapingo Ser. Hortic. 2021, 28, 67–78. [Google Scholar] [CrossRef]
- Sun, W.; Xu, X.; Zhu, H.; Liu, A.; Liu, L.; Li, J.; Hua, X. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol. 2010, 51, 997–1006. [Google Scholar] [CrossRef]
- Peleg, Z.; Apse, M.P.; Blumwald, E. Engineering Salinity and Water-Stress Tolerance in Crop Plants: Getting Closer to the Field. Adv. Bot. Res. 2021, 57, 407–443. [Google Scholar] [CrossRef]
- Ruiz-Espinoza, F.H.; Villalpando-Gutiérrez, R.L.; Murillo-Amador, B.; Beltrán-Morales, F.A.; Hernández-Montiel, L.G. Respuesta diferencial a la salinidad de genotipos de tomate (Lycopersicon esculentum Mill.) en primeras etapas fenológicas. Terra Latinoam. 2014, 32, 311–323. [Google Scholar]
- Sanjuan-Lara, F.; Ramírez-Vallejo, P.; Sánchez-García, P.; Sandoval-Villa, M.; Livera-Muñoz, M.; Carrillo-Rodríguez, J.C.; Perales-Segovia, C. Tolerancia de líneas nativas de tomate (Solanum lycopersicum L.) a la salinidad con NaCl. Interciencia 2015, 40, 704–709. [Google Scholar]
- Cuartero, J.; Yeo, A.R.; Flowers, T.J. Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. 1992, 121, 63–69. [Google Scholar] [CrossRef]
- Martínez, J.P.; Antúnez, A.; Araya, H.; Pertuzé, R.; Fuentes, L.; Lizana, X.C.; Lutts, S. Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum lycopersicum and its wild relative Solanum chilense. Aust. J. Bot. 2014, 62, 359–368. [Google Scholar] [CrossRef]
- Marín-Montes, I.M.; Rodríguez-Pérez, J.E.; Sahagún-Castellanos, J.; Hernández-Ibáñez, L.; Velasco-García, A.M. Morphological and molecular variation in 55 native tomato collections from Mexico. Rev. Chapingo Ser. Hortic. 2016, 22, 117–131. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernández-Muñoz, R. Tomato and salinity. Sci. Hortic. 1999, 78, 83–125. [Google Scholar] [CrossRef]
- Foolad, M.R.; Lin, G.Y. Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience 1997, 32, 296–300. [Google Scholar] [CrossRef]
- Pérez-Alfocea, F.; Balibrea, M.E.; Santa-Cruz, A.; Están, M.T. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil. 1996, 180, 251–257. [Google Scholar] [CrossRef]
- Chetelat, R.T.; Rick, C.M. Tomato Genetics Resource Center Department of Vegetable Crops; University of California: Davis, CA, USA, 2004; Available online: http://tgrc.ucdavis.edu/ (accessed on 24 April 2024).
- Rick, C.M.; Chetelat, R.T. Utilization of related wild species for tomato improvement. Acta Hort. 1995, 412, 21–38. [Google Scholar] [CrossRef]
- Zegarra, R. Biodiversidad y taxonomía de la flora desértica sur peruana: Familia solanáceae. Idesia 2005, 22, 64–69. [Google Scholar] [CrossRef]
- Chetelat, R.T.; Pertuzé, R.A.; Faúndez, L.; Graham, E.B.; Jones, C.M. Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama desert region of Northern Chile. Euphytica 2009, 167, 77–93. [Google Scholar] [CrossRef]
- Hoyt, E. Conservando los Parientes Silvestres de las Plantas Cultivadas; Addison-Wesley Iberoamericana: Wilmington, DC, USA, 1992; 52p. [Google Scholar]
- Pailles, Y.; Awlia, M.; Julkowska, M.M.; Passone, L.; Zemmouri, K.; Negrão, S.; Tester, M. Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiol. 2019, 182, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Razali, R.; Bougouffa, S.; Morton, M.J.; Lightfoot, D.J.; Alam, I.; Essack, M.; Arold, S.T.; Kamau, A.A.; Schmöckel, S.M.; Pailles, Y.; et al. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front. Plant Sci. 2018, 9, 1402. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Guzmán, E.; Vargas-Canela, D.; de Sánchez-González, J.J.; Lépiz-Idelfonso, R.; Rodríguez-Contreras, A.; Ruiz-Corral, J.A.; Puente-Ovalle, P.; Miranda-Medrano, R. Etnobotánica de Solanum var cerasiforme en el occidente de México. Nat. Desarro. 2009, 7, 45–57. [Google Scholar]
- Ramírez-Ojeda, G.; Rodríguez-Pérez, J.E.; Rodríguez-Guzmán, E.; Sahagún-Castellanos, J.; Chávez-Servia, J.L.; Peralta, I.E.; Barrera-Guzmán, L.Á. Distribution and Climatic Adaptation of Wild Tomato Populations (Solanum lycopersicum L.) in Mexico. Plants 2022, 11, 2007. [Google Scholar] [CrossRef]
- Ramírez-Ojeda, G.; Peralta, I.E.; Rodríguez-Guzmán, E.; Chávez-Servia, J.L.; Sahagún-Castellanos, J.; Rodríguez-Pérez, J.E. Climatic Diversity and Ecological Descriptorsof Wild Tomato Species (Solanum sect. Lycopersicon) and Close Related Species (Solanum sect. Juglandifolia y sect. Lycopersicoides) in Latin America. Plants 2021, 10, 855. [Google Scholar] [PubMed]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Khan, T.A.; Saleem, M.; Fariduddin, Q. Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. J. Plant Growth Regul. 2023, 42, 2408–2432. [Google Scholar] [CrossRef]
- El-Habbasha, K.M.; Shaheen, A.M.; Rizk, F.A. Germination of some tomato cultivars as affected by salinity stress condition. Egypt. J. Hortic. 1996, 23, 179–190. [Google Scholar]
- Singer, S.M. Germination responses of some tomato genotypes as affected by salinity and temperature stress. Egypt. J. Hortic. 1994, 21, 47–64. [Google Scholar]
- Srinivas, T.R. Salinity tolerance of tomato germplasm during germination. Seed Sci. Technol. 2001, 29, 673–677. [Google Scholar]
- Goykovic-Cortés, V.; Nina-Alanoca, P.; Calle-Llave, M. Efecto de la salinidad sobre la germinación y crecimiento vegetativo de plantas de tomate silvestres y cultivadas. Interciencia 2014, 39, 511–517. [Google Scholar]
- Ávila-Amador, C.; Argentel-Martínez, L.; Peñuelas-Rubio, O.; López-Sánches, R.C.; González-Aguilera, J. Variabilidad de respuesta de 8 cultivares de tomate al estrés salino durante los primeros estadios de desarrollo. Ciência Em Foco 2023, 11, 52–64. [Google Scholar] [CrossRef]
- Sholi, N.J.Y. Effect of salt stress on seed germination, plant growth, photosynthesis and ion accumulation of four tomato cultivars. Am. J. Plant Physiol. 2012, 7, 269–275. [Google Scholar] [CrossRef]
- Adilu, G.S.; Gebre, Y.G. Effect of salinity on seed germination of some tomato (Lycopersicon esculentum mill.) varieties. J. Arid. Agric. 2021, 7, 76–82. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of germination, aid in selection and evaluation of seedling emergence vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Wafa’a, A. Comparative effects of drought and salt stress on germination and seedling growth of Pennisetum divisum (Gmel.). Henr. Am. J. Appl. Sci. 2010, 7, 640–646. [Google Scholar]
- Saeed, A.; Shahid, M.Q.; Anjum, S.A.; Khan, A.A.; Shakeel, A.; Saleem, M.F.; Saeed, N. Genetic analysis of NaCl tolerance in tomato. Genet. Mol. Res. 2010, 10, 1754–1776. [Google Scholar] [CrossRef] [PubMed]
- González-Grande, P.; Suárez, N.; Marín, O. Effect of salinity and seed salt priming on the physiology of adult plants of Solanum lycopersicum cv. ‘Río Grande’. Braz. J. Bot. 2020, 43, 775–787. [Google Scholar] [CrossRef]
- Faisal-Alharby, H. Using some growth stimuli, a comparative study of salt tolerance in two tomatoes cultivars and a related wild line with special reference to superoxide dismutases and related micronutrients. Saudi J. Biol. Sci. 2021, 28, 6133–6144. [Google Scholar] [CrossRef]
- Moles, T.M.; Guglielminetti, L.; Reyes, T.H. Differential effects of sodium chloride on germination and post-germination stages of two tomato genotypes. Sci. Hortic. 2019, 257, 108730. [Google Scholar] [CrossRef]
- Argentel-Martínez, L.; Garatuza-Payan, J.; Yepez, E.A.; Arredondo, T.; De los Santos-Villalobos, S. Water regime and osmotic adjustment under warming conditions on wheat in the Yaqui Valley, Mexico. PeerJ 2019, 7, e7029. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Farid, I.B.; Marghany, M.R.; Rowezek, M.M.; Sheded, M.G. Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants 2020, 9, 1626. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Sastry, E.V.; Singh, V. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiol. Mol. Biol. Plants 2012, 18, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Florido-Bacallao, M.; Bao-Fundora, L. Tolerancia a estrés por déficit hídrico en tomate (Solanum lycopersicum L.). Cultiv. Trop. 2014, 35, 70–88. [Google Scholar]
- Ludwiczak, A.; Osiak, M.; Cárdenas-Pérez, S.; Lubińska-Mielińska, S.; Piernik, A. Osmotic stress or ionic composition: Which affects the early growth of crop species more? Agronomy 2021, 11, 435. [Google Scholar] [CrossRef]
- Almeida, P.; de Boer, G.J.; de Boer, A.H. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2. J. Plant Physiol. 2014, 171, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulou, A.; Nifakos, K.; Salmas, I.; Kalogeropoulos, P. Growth, ion uptake, and yield responses of three indigenous small-sized greek tomato (Lycopersicon esculentum) cultivars and four hybrids of cherry tomato under NaCl salinity stress. Commun. Soil Sci. Plant Anal. 2015, 46, 2357–2377. [Google Scholar] [CrossRef]
- Rosca, M.; Mihalache, G.; Stoleru, V. Tomato responses to salinity stress: From morphological traits to genetic changes. Front. Plant Sci. 2023, 14, 1118383. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Sheldon, A.R.; Dalal, R.C.; Kirchhof, G.; Kopittke, P.M.; Menzies, N.W. The effect of salinity on plant-available water. Plant Soil. 2017, 418, 477–491. [Google Scholar] [CrossRef]
- Derkaoui, M.K.; Sahnoune, M.; Belkhodja, M. Effect of Salinity on Some Physiological Parameters in Tomato. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1161–1169. [Google Scholar] [CrossRef]
- Sánchez, A.; Membrives, J.; Valenzuela, J.L.; Guzmán, M. Effects of saline stress and Ca2+/K+ interaction on biomass and mineral contents of tomato. Acta Hortic. 2012, 932, 345–350. [Google Scholar] [CrossRef]
- De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A. Seasonal and multiannual effects of salinization on tomato yield and fruit quality. Funct. Plant Biol. 2012, 39, 689. [Google Scholar] [CrossRef]
- Casierra-Posada, F.; Arias-Aguirre, J.A.; Pachón, C.A. Efecto de la salinidad por NaCl en híbridos de tomate (Lycopersicon esculentum Miller). Orinoquia 2013, 17, 23–29. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Muir, C.D.; Hangarter, R.P.; Moyle, L.C.; Davis, P.A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell Environ. 2014, 37, 1415–1426. [Google Scholar] [CrossRef]
- Chen, T.; Shabala, S.; Niu, Y.; Chen, Z.H.; Shabala, L.; Meinke, H.; Venkataraman, G.; Pareek, A.; Xu, J.; Zhou, M. Molecular mechanisms of salinity tolerance in rice. Crop J. 2021, 9, 506–520. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Britto, D.T. Sodium transport in plants: A critical review. New Phytol. 2011, 189, 54–81. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Lv, X.; Chen, S.; Wang, Y. Advances in understanding the physiological and molecular responses of sugar beet to salt stress. Front. Plant Sci. 2019, 10, 1431. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, C.; Li, G.; Khan, M.N.; Wu, H. ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainability 2021, 13, 3552. [Google Scholar] [CrossRef]
- Shu, P.; Li, Y.; Li, Z.; Sheng, J.; Shen, L. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environ. Exp. Bot. 2022, 193, 104698. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, J.; Meng, S.; Liu, Y.; Mostafa, I.; Qi, M.; Li, T. Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J. Plant Interact. 2019, 14, 453–463. [Google Scholar] [CrossRef]
SV | DF | GP | SG | SL | RL | NP | SDM | RDM | TOTDM |
---|---|---|---|---|---|---|---|---|---|
GEN | 56 | 1507.2 * | 8.7 * | 6.79 * | 1.89 * | 1031.4 * | 234.9 * | 9.50 * | 332.2 * |
CON | 1 | 300,642.0 * | 2922.0 * | 1472.80 * | 62.25 * | 220,422.0 * | 13,144.0 * | 405.93 * | 17,869.0 * |
GENxCON | 56 | 1525.4 * | 3.9 * | 2.82 * | 2.34 * | 1286.9 * | 82.2 * | 4.85 * | 128.0 * |
ERROR | 228 | 298.2 | 0.7 | 0.97 | 0.85 | 636.6 | 16.8 | 1.50 | 26.3 |
TOTAL | 341 | ||||||||
CV | 28.2 | 22.4 | 27.00 | 65.74 | 42.1 | 34.7 | 50.49 | 35.8 | |
MEAN | 61.3 | 3.7 | 3.64 | 1.41 | 59.9 | 11.8 | 2.43 | 14.3 |
CON (mM) | GP | SG | SL | RL | NP | SDM | RDM | TOTDM |
---|---|---|---|---|---|---|---|---|
0 | 91.0 ± 0.79 a | 6.61 ± 0.15 a | 5.71 ± 0.07 a | 1.83 ± 0.06 a | 85.3 ± 1.24 a | 18.02 ± 0.59 a | 3.51 ± 0.13 a | 21.5 ± 0.70 a |
150 | 31.7 ± 2.74 b | 0.81 ± 0.07 b | 1.56 ± 0.14 b | 0.98 ± 0.10 b | 34.5 ± 2.81 b | 5.63 ± 0.61 b | 1.34 ± 0.14 b | 7.1 ± 0.77 b |
HSD | 3.7 | 0.22 | 0.21 | 0.20 | 5.4 | 0.87 | 0.26 | 1.1 |
Decrease % | 65.2 | 88.2 | 72.50 | 46.56 | 59.5 | 68.78 | 61.99 | 67.1 |
CON | GP | SG | SL | R | NP | SDM | RDM | |
---|---|---|---|---|---|---|---|---|
GP | −0.74 * | |||||||
SG | −0.87 * | 0.82 * | ||||||
SL | −0.81 * | 0.9 * | 0.86 * | |||||
RL | −0.35 * | 0.66 * | 0.46 * | 0.63 * | ||||
NP | −0.66 * | 0.75 * | 0.50 * | 0.77 * | 0.56 * | |||
SDM | −0.61 * | 0.79 * | 0.69 * | 0.82 * | 0.58 * | 0.68 * | ||
RDM | −0.51 * | 0.78 * | 0.65 * | 0.75 * | 0.66 * | 0.62 * | 0.87 * | |
TOTDM | −0.60 * | 0.81 * | 0.74 * | 0.82 * | 0.61 * | 0.69 * | 0.99 * | 0.90 * |
GEN | CON | GP | SG | SL | RL | NP | SDM | RDM | TOTDM |
---|---|---|---|---|---|---|---|---|---|
TOLERANT | |||||||||
CJ103-1 | 0 | 98.7 ± 1.33 a | 10.4 ± 1.51 a | 7.82 ± 0.27 a | 2.02 ± 0.09 a | 93.22 ± 1.39 a | 38.2 ± 2.04 a | 5.83 ± 0.81 a | 44.03 ± 1.35 a |
CJ103-1 | 150 | 98.7 ± 1.33 a | 2.7 ± 0.15 b | 5.44 ± 1 a | 3.38 ± 1.21 a | 73 ± 4.72 a | 33.73 ± 2 a | 5.9 ± 1.15 a | 39.63 ± 3.12 a |
% | 0 | 74 | 30 | −67 | 22 | 12 | −1 | 10 | |
CJ106 | 0 | 90.7 ± 1.33 a | 5.7 ± 0.45 a | 4.28 ± 0.23 a | 1.09 ± 0.1 a | 66.21 ± 7.59 a | 8.83 ± 1.45 a | 1.66 ± 0.17 a | 10.5 ± 1.56 a |
CJ106 | 150 | 80 ± 4.61 a | 2.1 ± 0.12 b | 1.78 ± 0.21 a | 2.14 ± 0.78 a | 40.45 ± 4.78 a | 4.4 ± 0.65 a | 1.73 ± 0.31 a | 6.13 ± 0.55 a |
% | 128 | 63 | 58 | −96 | 39 | 50 | −4 | 42 | |
CJ83 | 0 | 86.7 ± 1.33 a | 7.5 ± 0.64 a | 5.53 ± 0.21 a | 1.57 ± 0.3 a | 89.32 ± 3.95 a | 24.03 ± 1.21 a | 4.76 ± 0.43 a | 28.8 ± 1.62 a |
CJ83 | 150 | 77.3 ± 4.8 a | 1.5 ± 0.19 b | 2.86 ± 0.62 a | 1.66 ± 0.49 a | 43.87 ± 13.7 a | 19.4 ± 2.49 a | 3.83 ± 0.69 a | 23.23 ± 1.8 a |
% | 11 | 80 | 48 | −6 | 51 | 19 | 20 | 19 | |
CM15-1 | 0 | 100 ± 0 a | 11.1 ± 0.44 a | 5.84 ± 0.49 a | 1.8 ± 0.25 a | 88 ± 6.11 a | 31.76 ± 1.32 a | 6.73 ± 1.41 a | 38.5 ± 2.74 a |
CM15-1 | 150 | 93.3 ± 3.52 a | 2.9 ± 0.56 b | 5.05 ± 0.49 a | 2.33 ± 1.15 a | 82.77 ± 10.9 a | 26.16 ± 1.83 a | 7 ± 0.86 a | 33.16 ± 1.73 a |
% | 7 | 74 | 13 | −30 | 6 | 18 | −4 | 1 | |
CM53 | 0 | 89.3 ± 3.52 a | 7.4 ± 0.31 a | 6.32 ± 0.03 a | 1.27 ± 0.35 a | 88.16 ± 3.71 a | 24.03 ± 0.76 a | 3.66 ± 1.12 a | 27.7 ± 0.41 a |
CM53 | 150 | 61.3 ± 28.8 a | 1.9 ± 0.93 b | 3.28 ± 1.64 a | 1.83 ± 1.11 a | 53.76 ± 30.1 a | 15.33 ± 7.69 a | 3.26 ± 1.65 a | 18.6 ± 9.31 a |
% | 31 | 74 | 48 | −44 | 39 | 36 | 11 | 33 | |
LOR122 | 0 | 80.0 ± 8.0 a | 5.4 ± 0.86 a | 5.08 ± 0.34 a | 1.67 ± 0.32 a | 72.34 ± 7.19 a | 6.6 ± 0.97 a | 1.4 ± 0.47 a | 8 ± 1.31 a |
LOR122 | 150 | 42.7 ± 13.1 a | 1.1 ± 0.39 b | 1.94 ± 0.31 a | 1.41 ± 0.08 a | 54.24 ± 12.4 a | 2.93 ± 0.08 a | 0.76 ± 0.71 a | 3.7 ± 0.8 a |
% | 47 | 80 | 62 | 16 | 25 | 56 | 45 | 54 | |
LOR133 | 0 | 81.3 ± 5.81 a | 5.3 ± 0.67 a | 5.41 ± 0.24 a | 2.12 ± 0.12 a | 66.03 ± 3.31 a | 9.2 ± 0.85 a | 1.86 ± 0.54 a | 11.06 ± 0.67 a |
LOR133 | 150 | 28.0 ± 12.2 a | 0.6 ± 0.26 b | 2.96 ± 0.31 a | 1.3 ± 0.33 a | 88.03 ± 30.2 a | 4.1 ± 1.17 a | 1.1 ± 0.63 a | 5.2 ± 1.8 a |
% | 66 | 89 | 45 | 39 | −33 | 55 | 41 | 53 | |
LOR85 | 0 | 90.7 ± 3.52 a | 5.8 ± 0.66 a | 5.94 ± 0.22 a | 2.32 ± 0.57 a | 69.02 ± 1.23 a | 14.7 ± 0.55 a | 3.36 ± 0.23 a | 18.06 ± 0.53 a |
LOR85 | 150 | 86.7 ± 5.33 a | 2.2 ± 0.31 b | 4.7 ± 0.58 a | 2.75 ± 0.95 a | 66.28 ± 2.72 a | 15.13 ± 0.81 a | 3.76 ± 1.18 a | 18.9 ± 0.73 a |
% | 4 | 62 | 21 | −19 | 4 | −3 | −12 | −5 | |
LOR87 | 0 | 92.0 ± 0.0 a | 6.7 ± 0.5 a | 6.51 ± 0.28 a | 1.28 ± 0.31 a | 60.86 ± 5.02 a | 15.86 ± 1.26 a | 3.06 ± 0.85 a | 18.93 ± 2.11 a |
LOR87 | 150 | 84.0 ± 6.11 a | 2.1 ± 0.18 b | 4.21 ± 0.12 a | 3.78 ± 0.28 a | 52.26 ± 1.21 a | 10.23 ± 2.94 a | 3.33 ± 0.61 a | 13.56 ± 3.49 a |
% | 9 | 68 | 35 | −194 | 14. | 36 | −9 | 28 | |
LOR89 | 0 | 90.7 ± 1.33 a | 7.0 ± 0.38 a | 5.86 ± 0.19 a | 1.51 ± 0.31 a | 74.96 ± 1.68 a | 12.66 ± 1.16 a | 2.03 ± 0.31 a | 14.7 ± 0.86 a |
LOR89 | 150 | 72.0 ± 10.6 a | 1.8 ± 0.36 b | 3.31 ± 0.83 a | 1.52 ± 0.37 a | 57.39 ± 14.7 a | 9.4 ± 3.35 a | 2.93 ± 1.03 a | 12.33 ± 3.89 a |
% | 21 | 74 | 44 | −0.4 | 23 | 26 | −44 | 16 | |
LOR90 | 0 | 88.0 ± 6.11 a | 6.9 ± 0.45 a | 6.63 ± 0.43 a | 1.48 ± 0.19 a | 78.39 ± 2.82 a | 15.63 ± 1.59 a | 3.03 ± 0.14 a | 18.66 ± 1.49 a |
LOR90 | 150 | 69.3 ± 3.52 a | 1.8 ± 0.09 b | 5.33 ± 0.34 a | 1.18 ± 0.37 a | 38.62 ± 2.59 a | 12 ± 1.96 a | 2.53 ± 0.49 a | 14.53 ± 1.61 a |
% | 21 | 74 | 20 | 20 | 51 | 23 | 16 | 22 | |
SS3 | 0 | 76.0 ± 5.81 a | 4.4 ± 0.49 a | 6.21 ± 0.29 a | 1.31 ± 0.09 a | 88.16 ± 9.39 a | 19.23 ± 4.43 a | 3.8 ± 0.28 a | 23.03 ± 4.69 a |
SS3 | 150 | 73.3 ± 9.23 a | 1.8 ± 0.31 a | 4.28 ± 0.83 a | 3.26 ± 0.68 a | 38.72 ± 9.12 a | 15.5 ± 0.41 a | 3.63 ± 0.62 a | 19.13 ± 0.71 a |
% | 4 | 60 | 31 | −150 | 57 | 19 | 4 | 17 | |
Susceptible | |||||||||
CJ102 | 0 | 100 ± 0 a | 6.5 ± 0.57 a | 5.84 ± 0.1 a | 1.74 ± 0.16 a | 97.33 ± 1.33 a | 23.33 ± 0.63 a | 4.13 ± 0.61 a | 27.46 ± 0.82 a |
CJ102 | 150 | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b |
% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
CJ103-2 | 0 | 98.7 ± 1.33 a | 5.7 ± 0.8 a | 4.85 ± 0.29 a | 1.79 ± 0.49 a | 91.72 ± 6.38 a | 19.83 ± 1.5 a | 4.33 ± 0.43 a | 24.16 ± 1.76 a |
CJ103-2 | 150 | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b |
% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
CM19 | 0 | 98.7 ± 1.33 a | 7.5 ± 0.31 a | 6.62 ± 0.16 a | 4.82 ± 1.03 a | 94.66 ± 5.33 a | 37.6 ± 1.13 a | 9.23 ± 0.69 a | 46.83 ± 1.82 a |
CM19 | 150 | 4.0 ± 2.31 b | 0.1 ± 0.03 b | 0.5 ± 0.25 b | 0.57 ± 0.31 b | 66.66 ± 33.3 a | 1.7 ± 1.01 b | 0.06 ± 0.03 b | 1.76 ± 1.03 b |
% | 96 | 99 | 92 | 88 | 30 | 95 | 99 | 96 | |
CM29 | 0 | 98.7 ± 1.33 a | 7.6 ± 0.66 a | 6.26 ± 0.54 a | 2.04 ± 0.21 a | 98.66 ± 1.33 a | 30.5 ± 1.02 a | 5.36 ± 0.61 a | 35.86 ± 0.46 a |
CM29 | 150 | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b |
% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
CM43 | 0 | 100 ± 0 a | 7.1 ± 0.11 a | 5.91 ± 0.21 a | 2.41 ± 0.18 a | 98.66 ± 1.33 a | 21.56 ± 0.36 a | 5.1 ± 0.49 a | 26.66 ± 0.84 a |
CM43 | 150 | 1.3 ± 1.33 b | 0.1 ± 0.02 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b |
% | 99 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | |
CM58 | 0 | 96.0 ± 4 a | 4.7 ± 0.62 a | 4.86 ± 0.54 a | 1.45 ± 0.14 a | 92.78 ± 3.95 a | 22.5 ± 1.76 a | 4.66 ± 1.07 a | 27.16 ± 2.83 a |
CM58 | 150 | 5.3 ± 3.52 b | 0.1 ± 0.06 b | 0.24 ± 0.24 b | 0.26 ± 0.26 a | 11.11 ± 11.1 a | 0.33 ± 0.33 b | 0.03 ± 0.03 b | 0.36 ± 0.36 b |
% | 94 | 98 | 95 | 82 | 88 | 99 | 99 | 99 | |
Habro | 0 | 97.3 ± 1.33 a | 6.0 ± 0.31 a | 5.78 ± 0.31 a | 3.91 ± 0.52 a | 80.88 ± 3.42 a | 16.43 ± 5.28 a | 3.86 ± 1.21 a | 20.3 ± 6.5 a |
Habro | 150 | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b | 0 ± 0 a | 0 ± 0 b |
% | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
SV | DF | APDM | RDM | LA | RL | PH | |
---|---|---|---|---|---|---|---|
CON | 1 | 101.89 * | 0.07 * | 8,955,313.33 * | 11,085.97 * | 1263.22 * | 0.3290 * |
BLO(CON) | 4 | 0.08 | 0.01 | 4127.31 | 20.11 | 0.64 | 0.0002 |
GEN | 23 | 8.03 * | 0.29 * | 280,216.77 * | 66.01 * | 66.17 * | 0.0020 * |
GENxCON | 23 | 1.35 * | 0.02 * | 63,215.33 * | 27.52 | 10.22 * | 0.0007 |
ERROR | 92 | 0.13 | 0.01 | 3337.05 | 22.01 | 1.69 | 0.0003 |
CV | 13.72 | 19.32 | 10.72 | 14.90 | 11.36 | 21.5100 | |
MEAN | 2.67 | 0.54 | 538.59 | 31.47 | 11.44 | 0.0810 |
CON (mM) | APDM | RDM | LA | RL | PH | β |
---|---|---|---|---|---|---|
0 | 3.86 ± 0.25 a | 0.50 ± 0.03 a | 891.27 ± 47.831 a | 43.88 ± 0.62 a | 15.63 ± 0.70 a | 0.14 ± 0.005 a |
175 | 2.07 ± 0.08 b | 0.55 ± 0.02 a | 362.26 ± 14.959 b | 25.26 ± 0.654 b | 9.34 ± 0.21 b | 0.04 ± 0.001 b |
HSD | 0.14 | 0.04 | 31.53 | 2.20 | 0.39 | 0.007 |
Decrease % | 46.37 | −10 | 59.35 | 42.43 | 40.24 | 71.42 |
CON | APDM | RDM | LA | RL | PH | |
---|---|---|---|---|---|---|
APDM | −0.57 * | |||||
RDM | 0.09 | 0.64 * | ||||
LA | −0.74 * | 0.92 * | 0.44 * | |||
RL | −0.84 * | 0.62 * | 0.22 * | 0.73 * | ||
PH | −0.64 * | 0.88 * | 0.49 * | 0.86 * | 0.66 * | |
−0.89 * | 0.52 * | −0.04 | 0.68 * | 0.80 * | 0.69 * |
GEN | CON | APDM | RDM | LA | RL | PH | β |
---|---|---|---|---|---|---|---|
Tolerant | |||||||
CJ106 | 0 | 1.66 ± 0.27 a | 0.29 ± 0.09 a | 386.7 ± 48.3 a | 44.6 ± 3.2 a | 9.83 ± 1.00 a | 0.17 ± 0.031 a |
CJ106 | 150 | 1.08 ± 0.03 a | 0.30 ± 0.03 a | 210.6 ± 8.6 a | 24.6 ± 2.9 b | 6.79 ± 0.30 a | 0.07 ± 0.006 b |
% | 34.79 | −5.26 | 45.5 | 44.9 | 30.93 | 58.75 | |
QUIM3-1 | 0 | 1.77 ± 0.23 a | 0.24 ± 0.03 a | 650.7 ± 45.5 a | 42.4 ± 3.1 a | 10.33 ± 0.16 a | 0.18 ± 0.011 a |
QUIM3-1 | 150 | 1.22 ± 0.09 a | 0.36 ± 0.04 a | 238.4 ± 14.4 b | 26.8 ± 0.9 a | 6.50 ± 0.14 a | 0.07 ± 0.006 b |
% | 31.36 | −51.04 | 63.4 | 36.8 | 37.09 | 64.16 | |
CM3 | 0 | 1.25 ± 0.03 a | 0.21 ± 0.02 a | 311.2 ± 22.9 a | 39.1 ± 0.8 a | 7.67 ± 0.33 a | 0.13 ± 0.006 a |
CM3 | 150 | 1.06 ± 0.16 a | 0.26 ± 0.05 a | 188.8 ± 31.2 a | 19.5 ± 2.4 b | 5.71 ± 0.14 a | 0.05 ± 0.005 b |
% | 15.00 | −22.62 | 39.3 | 49.9 | 25.55 | 65.37 | |
Susceptible | |||||||
CM46 | 0 | 6.61 ± 0.86 a | 0.77 ± 0.11 a | 1412.9 ± 59.2 a | 45.4 ± 1.6 a | 23.17 ± 1.83 a | 0.17 ± 0.003 a |
CM46 | 150 | 3.02 ± 0.21 b | 0.75 ± 0.08 a | 518.7 ± 37.0 b | 25.2 ± 5.2 b | 12.75 ± 0.32 b | 0.07 ± 0.004 b |
% | 54.31 | 2.27 | 63.3 | 44.5 | 44.96 | 60.08 | |
IMPERIAL | 0 | 6.50 ± 0.45 a | 0.72 ± 0.18 a | 1402.12 ± 18.2 a | 50.2 ± 0.4 a | 19.00 ± 0.20 a | 0.11 ± 0.026 a |
IMPERIAL | 150 | 3.30 ± 0.07 b | 0.84 ± 0.02 a | 535.9 ± 8.6 b | 28.3 ± 1.8 b | 12.29 ± 0.25 b | 0.03 ± 0.005 b |
% | 49.23 | −16.78 | 61.8 | 43.8 | 35.31 | 69.51 | |
L47B1 | 0 | 3.47 ± 0.61 a | 0.35 ± 0.04 a | 988.5 ± 78.8 a | 43.4 ± 1.2 a | 15.33 ± 0.33 a | 0.15 ± 0.017 a |
L47B1 | 150 | 1.88 ± 0.09 b | 0.35 ± 0.04 a | 318.6 ± 22.7 b | 21.8 ± 1.9 b | 8.04 ± 0.28 b | 0.03 ± 0.006 b |
% | 45.74 | 0.00 | 67.8 | 49.8 | 47.55 | 78.93 | |
L47S8 | 0 | 3.05 ± 0.06 a | 0.43 ± 0.03 a | 635.1 ± 40.1 a | 41.2 ± 3.4 a | 15.83 ± 0.50 a | 0.10 ± 0.008 a |
L47S8 | 150 | 1.44 ± 0.21 b | 0.39 ± 0.08 a | 219.8 ± 32.6 b | 23.6 ± 2.5 b | 9.04 ± 0.14 b | 0.03 ± 0.002 b |
% | 52.63 | 8.72 | 65.4 | 42.8 | 42.89 | 67.43 | |
LOR133 | 0 | 3.24 ± 0.25 a | 0.35 ± 0.04 a | 805.7 ± 4.7 a | 47.1 ± 4.7 a | 18.67 ± 1.33 a | 0.22 ± 0.037 a |
LOR133 | 150 | 1.67 ± 0.05 b | 0.41 ± 0.02 a | 301.1 ± 13.1 b | 25.2 ± 2.5 b | 7.42 ± 0.18 b | 0.05 ± 0.003 b |
% | 48.61 | −19.57 | 62.6 | 46.5 | 60.27 | 76.89 | |
PIMP | 0 | 6.55 ± 0 a | 0.98 ± 0.02 a | 1161.1 ± 5.8 a | 51.1 ± 2.7 a | 26.92 ± 0.08 a | 0.21 ± 0.012 a |
PIMP | 150 | 2.64 ± 0.14 b | 0.81 ± 0.09 a | 464.2 ± 23.9 b | 25.0 ± 1.6 b | 13.79 ± 0.51 b | 0.07 ± 0.008 b |
% | 59.77 | 16.92 | 60.0 | 51.1 | 48.76 | 65.59 | |
SS3 | 0 | 5.63 ± 0.26 a | 0.64 ± 0.04 b | 1245.2 ± 91.4 a | 42.1 ± 0.9 a | 22.92 ± 0.08 a | 0.16 ± 0.003 a |
SS3 | 150 | 3.60 ± 0.17 b | 1.02 ± 0.03 a | 707.4 ± 45.5 b | 32.9 ± 0.9 a | 14.13 ± 0.48 b | 0.06 ± 0.002 b |
% | 36.10 | −61.02 | 43.2 | 21.7 | 38.36 | 61.45 | |
CLAUDIA | 0 | 4.78 ± 0.68 a | 0.63 ± 0.17 a | 1085.9 ± 87.3 a | 45.6 ± 1.8 a | 16.00 ± 0.33 a | 0.15 ± 0.001 a |
CLAUDIA | 150 | 2.58 ± 0.12 b | 0.72 ± 0.04 a | 469.9 ± 21.9 b | 25.4 ± 2.5 b | 11.00 ± 0.58 b | 0.05 ± 0.001 b |
% | 45.97 | −13.49 | 56.7 | 44.3 | 31.25 | 65.11 | |
CM29 | 0 | 4.49 ± 0.06 a | 0.59 ± 0.02 a | 1055.0 ± 5.0 a | 38.8 ± 0.2 a | 16.83 ± 0 a | 0.16 ± 0.011 a |
CM29 | 150 | 2.29 ± 0.09 b | 0.52 ± 0.03 a | 414.7 ± 4.5 b | 19.9 ± 2.7 b | 9.13 ± 0.08 b | 0.04 ± 0.006 b |
% | 49.05 | 11.86 | 60.7 | 48.7 | 45.79 | 73.87 | |
HSD | 1.29 | 0.37 | 206.6 | 16.7 | 4.56 | 2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Méndez, A.G.; Rodríguez-Pérez, J.E.; Mascorro-Gallardo, J.O.; Sahagún-Castellanos, J.; Lobato-Ortiz, R. Sodium Chloride Tolerance during Germination and Seedling Stages of Tomato (Solanum lycopersicum L.) Lines Native to Mexico. Horticulturae 2024, 10, 466. https://doi.org/10.3390/horticulturae10050466
López-Méndez AG, Rodríguez-Pérez JE, Mascorro-Gallardo JO, Sahagún-Castellanos J, Lobato-Ortiz R. Sodium Chloride Tolerance during Germination and Seedling Stages of Tomato (Solanum lycopersicum L.) Lines Native to Mexico. Horticulturae. 2024; 10(5):466. https://doi.org/10.3390/horticulturae10050466
Chicago/Turabian StyleLópez-Méndez, Ariadna Goreti, Juan Enrique Rodríguez-Pérez, José Oscar Mascorro-Gallardo, Jaime Sahagún-Castellanos, and Ricardo Lobato-Ortiz. 2024. "Sodium Chloride Tolerance during Germination and Seedling Stages of Tomato (Solanum lycopersicum L.) Lines Native to Mexico" Horticulturae 10, no. 5: 466. https://doi.org/10.3390/horticulturae10050466
APA StyleLópez-Méndez, A. G., Rodríguez-Pérez, J. E., Mascorro-Gallardo, J. O., Sahagún-Castellanos, J., & Lobato-Ortiz, R. (2024). Sodium Chloride Tolerance during Germination and Seedling Stages of Tomato (Solanum lycopersicum L.) Lines Native to Mexico. Horticulturae, 10(5), 466. https://doi.org/10.3390/horticulturae10050466