Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Exogenous EG and AM Fungal Agents
2.2. Experimental Set-Up and Design
2.3. Determinations of Variables
2.4. Statistical Analysis
3. Results
3.1. Changes in Root AM Fungal Colonization Rate
3.2. Changes in Fruit Traits
3.3. Changes in Saturated Fatty Acid Levels of Seeds
3.4. Changes in Unsaturated Fatty Acid Levels of Seeds
Abbreviations | UFAs | Treatments (μg/g FW) | ||
---|---|---|---|---|
Control | R.i. | EG | ||
C14:1T | Myristelaidic acid | 117.79 ± 22.4 a | 78.70 ± 8.36 a | 119.74 ± 25.71 a |
C18:1N-12 | Petroselinic acid | 1972.84 ± 317.9 b | 3095.92 ± 465.14 b | 4746.35 ± 721.01 a |
C18:1N-9C | Oleic acid | 14208.79 ± 3227.01 b | 16614.00 ± 1566.81 ab | 22698.45 ± 4917.37 a |
C18:1N-7 | Vaccenic acid | 143.04 ± 47.17 b | 224.50 ± 39.65 ab | 282.61 ± 48.96 a |
C18:2N-6T | Linolelaidic acid | 9.58 ± 1.63 a | 7.33 ± 3.88 a | 11.24 ± 0.66 a |
C18:2N-6 | Linoleic acid | 836.34 ± 76.41 b | 1176.02 ± 168.62 a | 1343.04 ± 121.87 a |
C20:1 | 11-Eicosenoic acid | 20.13 ± 2.17 a | 7.18 ± 0.88 b | 8.45 ± 1.62 b |
C18:3N-3 | Alpha linolenic aicd | 87.10 ± 11.78 a | 85.67 ± 16.55 a | 94.43 ± 19.60 a |
C20:2 | 11-14 Eicosadienoic acid | 4.17 ± 2.33 a | 4.43 ± 3.50 a | 5.52 ± 0.69 a |
C22:2 | Docosadienoic aicd | 1.06 ± 0.38 a | 0.67 ± 0.16 ab | 0.43 ± 0.06 b |
C22:5N-3 | Docosapentaenoic acid | 2.49 ± 0.29 b | 2.74 ± 0.39 ab | 3.26 ± 0.22 a |
C22:6N-3 | Docosahexaenoic aicd | 2.16 ± 0.89 ab | 2.99 ± 0.62 a | 1.42 ± 0.30 b |
UFAs/total fatty acids | 81.1% | 87.2% | 89.9% |
3.5. Changes in Unsaturated Index of Fatty Acids and Fatty Acid-Associated Gene Expression in Seeds
3.6. Correlationship Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gadkar, V.; David-Schwartz, R.; Kunik, T.; Kapulnik, Y. Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol. 2001, 127, 1493–1499. [Google Scholar] [CrossRef]
- Saia, S.; Jansa, J. Arbuscular mycorrhizal fungi: The bridge between plants, soils, and humans. Front. Plant Sci. 2022, 13, 875958. [Google Scholar] [CrossRef]
- Verbruggen, E.; Jansa, J.; Hammer, E.C.; Rillig, M.C. Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J. Ecol. 2016, 104, 261–269. [Google Scholar] [CrossRef]
- Rozmoš, M.; Bukovská, P.; Hršelová, H.; Kotianová, M.; Dudáš, M.; Gančarčíková, K.; Jansa, J. Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J. 2022, 16, 676–685. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.Z.; Wang, Q.Q.; Cao, H.Y.; Yang, G.L.; Deng, L.L.; Wang, Y.J.; Zhou, Y.Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Lu, C.Y.; Zhang, Z.C.; Guo, P.R.; Wang, R.; Liu, T.; Luo, J.Q.; Hao, B.H.; Wang, Y.C.; Guo, W. Synergistic mechanisms of bioorganic fertilizer and AMF driving rhizosphere bacterial community to improve phytoremediation efficiency of multiple HMs-contaminated saline soil. Sci. Total Environ. 2023, 883, 163708. [Google Scholar] [CrossRef]
- Lei, A.Q.; Zhou, J.H.; Rong, Z.Y.; Alqahtani, M.D.; Gao, X.B.; Wu, Q.S. Mycorrhiza-triggered changes in leaf food quality and secondary metabolite profile in tea at low temperatures. Rhizosphere 2023, 29, 100840. [Google Scholar] [CrossRef]
- Wu, Q.S.; He, J.D.; Srivastava, A.K.; Zou, Y.N.; Kuča, K. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 2019, 39, 1149–1158. [Google Scholar] [CrossRef]
- Sharma, M.; Delta, A.K.; Kaushik, P. Glomus mosseae and Pseudomonas fluorescens application sustains yield and promote tolerance to water stress in Helianthus annuus L. Stresses 2021, 1, 305–316. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, C.; Ma, Z.; Zhang, L.; Wu, F. Effects of Funneliformis mosseae on growth and photosynthetic characteristics of Camellia oleifera under different nitrogen forms. Plants 2024, 13, 370. [Google Scholar] [CrossRef]
- Wang, Y.J.; He, X.H.; Meng, L.L.; Zou, Y.N.; Wu, Q.S. Extraradical mycorrhizal hyphae promote soil carbon sequestration through difficultly extractable glomalin-related soil protein in response to soil water stress. Microb. Ecol. 2023, 86, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, J.; Jiang, Y.; Wang, H.F.; Mosa, A.; Ling, W.T. Potential interaction mechanisms between PAHs and glomalin related-soil protein (GRSP). Chemosphere 2023, 337, 139287. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, T.T.; Wang, J.; Chen, S.; Ling, W.T. Research progress and prospect of glomalin-related soil protein in the remediation of slightly contaminated soil. Chemosphere 2023, 344, 140394. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.L.; Liang, S.M.; Srivastava, A.K.; Li, Y.; Liu, C.Y.; Zou, Y.N.; Wu, Q.S. Easily extractable glomalin-related soil protein as foliar spray improves nutritional qualities of late ripening sweet oranges. Horticulturae 2021, 7, 228. [Google Scholar] [CrossRef]
- Liu, X.Q.; Xie, Y.C.; Li, Y.; Zheng, L.; Srivastava, A.K.; Hashem, A.; Abd_Allah, E.F.; Harsonowati, W.; Wu, Q.S. Biostimulatory response of easily extractable glomalin-related soil protein on soil fertility mediated changes in fruit quality of citrus. Agriculture 2022, 12, 1076. [Google Scholar] [CrossRef]
- Liu, R.C.; Yang, L.; Zou, Y.N.; Wu, Q.S. Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Hortic. Plant J. 2023, 9, 463–472. [Google Scholar] [CrossRef]
- Yu, X.J.; Zhao, Z.M.; Yan, X.L.; Xie, J.H.; Yu, Q.; Chen, Y. Extraction optimization of tea saponins from Camellia oleifera seed meal with deep eutectic solvents: Composition identification and properties evaluation. Food Chem. 2023, 427, 136681. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.C.; Xiao, Z.Y.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Mycorrhizal fungal diversity and its relationship with soil properties in Camellia oleifera. Agriculture 2021, 11, 470. [Google Scholar] [CrossRef]
- Quan, W.X.; Wang, A.P.; Gao, C.; Li, C.C. Applications of chinese Camellia oleifera and its by-products: A review. Front. Chem. 2022, 10, 921246. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Feng, S.L.; Liu, J.; Zhou, L.J.; Yuan, M.; Ding, C.B. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. Int. J. Biol. Macromol. 2016, 91, 1025–1032. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Z.G.; Zou, Y.W.; Du, Y.W.; Liu, X.W.; Jiang, Y.C.; Xiao, X.Y. Influence of different fertilization formulas on fruit traits and quality dynamic development of Camellia oleifera. Hubei For. Sci. Technol. 2024, 53, 23–26. [Google Scholar]
- Cao, M.A.; Liu, R.C.; Xiao, Z.; Hashem, A.; Abd_Allah, E.F.; Alsayed, M.F.; Harsonowati, W.; Wu, Q.S. Symbiotic fungi alter the acquisition of phosphorus in Camellia oleifera through regulating root architecture, plant phosphate transporter gene expressions and soil phosphatase activities. J. Fungi 2022, 8, 800. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–160. [Google Scholar] [CrossRef]
- Hoving, L.R.; Heijink, M.; van Harmelen, V.; van Dijk, K.W.; Giera, M. GC-MS Analysis of Medium- and Long-Chain Fatty Acids in Blood Samples. In Clinical Metabolomics; Giera, M., Ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1730. [Google Scholar]
- Guo, Y.J.; Wang, H.; Zhou, K.B.; Wang, P.X.; Yang, C.K.; Chen, J. Dynamic changes of fatty acid accumulation andrelated gene expression in Camellia vietnamensis. J. For. Environ. 2020, 40, 203–210. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and 2–∆∆Ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhao, G.; Song, Z.B.; Liu, M.L.; Long, H.X.; Li, Z.; Zhang, L. Cloning and expression analysis of a phospholipid: Diacylglycerol acyltransferase (PDAT) gene in Camellia oleifera. Plant Physiol. 2017, 53, 1619–1628. [Google Scholar]
- Zhang, S.; Lehmann, A.; Zheng, W.; You, Z.; Rillig, M.C. Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytol. 2019, 222, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Mulyadi; Jiang, L. Combined application of arbuscular mycorrhizal fungi (AMF) and nitrogen fertilizer alters the physicochemical soil properties, nitrogen uptake, and rice yield in a polybag experiment. Agriculture 2023, 13, 1364. [Google Scholar] [CrossRef]
- Cui, L.; Guo, F.; Zhang, J.L.; Yang, S.; Wang, J.G.; Meng, J.J.; Geng, Y.; Li, X.G.; Wan, S.B. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae. Chin. J. Plant Ecol. 2019, 43, 718–728. [Google Scholar] [CrossRef]
- Klironomos, J.N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 2003, 84, 2292–2301. [Google Scholar] [CrossRef]
- Long, L.; Gao, C.; Qiu, J.; Yang, L.; Wei, H.L.; Zhou, Y.C. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Sci. Rep. 2022, 12, 16554. [Google Scholar] [CrossRef] [PubMed]
- Marro, N.; Cofré, N.; Grilli, G.; Alvarez, C.; Labuckas, D.; Maestri, D.; Urcelay, C. Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono- and rotation-cropped soils. Appl. Soil Ecol. 2020, 152, 103575. [Google Scholar] [CrossRef]
- Xia, T.F.; Chen, J.L.; Xiong, Z.J.; Sun, X.X.; Ma, G.Y.; Wang, C.M.; Liang, Z.R.; Feng, Y.X.; Zheng, D.J. Nutritional components analysis and comprehensive quality evaluation of oil-tea camellia seed oil from different main producing areas in Hainan lsland. China Oils Fat. 2023, 48, 91–98. [Google Scholar]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Janmohammadi, M.; Maggi, F. Funneliformis mosseae application improves the oil quantity and quality and eco-physiological characteristics of soybean (Glycine max L.) under water stress conditions. J. Soil Sci. Plant Nut. 2021, 21, 3076–3090. [Google Scholar] [CrossRef]
- Ma, X.H. Research and application prospect of Camellia oleifera oils. J. Green Sci. Technol. 2013, 12, 116–117. [Google Scholar]
- Seyed Sharifi, R. Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Zemdirbyste-Agriculture 2021, 103, 251–258. [Google Scholar] [CrossRef]
- Meuronen, T.; Lankinen, M.A.; Kolmert, J.; de Mello, V.D.; Sallinen, T.; Ågren, J.; Virtanen, K.A.; Laakso, M.; Wheelock, C.E.; Pihlajamäki, J.; et al. The FADS1 rs174550 genotype modifies the n-3 and n-6 PUFA and lipid mediator responses to a high alpha-linolenic acid and high linoleic acid diets. Mol. Nutr. Food Res. 2022, 66, 2200351. [Google Scholar] [CrossRef] [PubMed]
- Li, S.T.; Duan, Y.; Guo, T.W.; Zhang, P.L.; He, P.; Majumdar, K. Sunflower response to potassium fertilization and nutrient requirement estimation. J. Integr. Agric. 2018, 17, 2802–2812. [Google Scholar] [CrossRef]
- Gholinezhad, E.; Darvishzadeh, R. Influence of arbuscular mycorrhiza fungi and drought stress on fatty acids profile of sesame (Sesamum indicum L.). Field Crop. Res. 2021, 262, 108035. [Google Scholar] [CrossRef]
- Wu, B.; Ruan, C.J.; Xiong, C.W.; Han, P.; Zhang, W.C.; Ruan, D. Analysis of related gene expression patterns of oleicacid synthesis and accumulation in Camellia oleifera seed. Mol. Plant Breed. 2019, 17, 1493–1502. [Google Scholar]
- Zhang, W.L.; Pu, J.Y.; Zhu, M.Y.; Niu, J.; Feng, Q.M.; Hu, H.W.; Hou, Q.; Guo, J.; Yuan, Y.M.; Zhang, Z.X.; et al. Cloning and analysis of PcSAD gene from Pistacia chinensis Bunge. Genom. Appl. Biol. 2013, 32, 503–509. [Google Scholar]
- Wu, L.; Jia, Y.L.; Wu, G.; Lu, C.M. Molecular evidencefor blocking erucic acid synthesis in rapeseed(Brassica na-pus L.)by a two-base-pair deletion in FAE1 (fatty acid elon-gase 1). J. Integr. Agric. 2015, 14, 1251–1260. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Sun, J.; Sun, J.B.; Zhang, X.Q.; Zhao, C.Z.; Pan, J.W.; Hou, L.; Tian, R.Z.; Wang, X.J. Insights into the novel FAD2 gene regulating oleic acid accumulation in peanut seeds with different maturity. Genes 2022, 13, 2076. [Google Scholar] [CrossRef] [PubMed]
- Menard, G.N.; Moreno, J.M.; Bryant, F.M.; Munoz-Azcarate, O.; Kelly, A.A.; Hassani-Pak, K.; Kurup, S.; Eastmond, P.J. Genome wide analysis of fatty acid desaturation and its response to temperature. Plant Physiol. 2017, 173, 1594–1605. [Google Scholar] [CrossRef]
- Ye, Z.C.; Yu, J.; Yan, W.P.; Zhang, J.F.; Yang, D.M.; Yao, G.L.; Liu, Z.J.; Wu, Y.G.; Hou, X.L. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera. Hortic. Res. 2021, 8, 157. [Google Scholar] [CrossRef]
Genes | Forward Sequence (5′→3′) | Reverse Sequence (5′→3′) |
---|---|---|
CoSAD | TCTCGCACGGGAACACAG | ATCAAGTGGGCTGGCATAGA |
CoFAD2 | ACACTCATCCTGCTCTGCCT | CTCTTGCCTCCCTCCACATC |
CoFAD3 | GCCAAAAAAATCGGGTC | ATCGCAAAGAATCACTCC |
CoFAE | GACACTTCTGGTGTTCCTATCC | TGACGAGCATCTTCTGGTITAT |
EF-1α | CAAAGAAGGGTGCCAAGTGA | ACCAAACAACCGACCTACGA |
Treatments | Fruit Transverse Diameter (mm) | Fruit Longitudinal Diameter (mm) | Single Fruit Weight (g) | Number of Seeds per Fruit | Seed Weight (g) |
---|---|---|---|---|---|
Control | 38.8 ± 2.3 b | 38.0 ± 2.2 b | 32.9 ± 3.2 b | 4.2 ± 0.4 b | 14.3 ± 1.9 b |
R.i. | 36.1 ± 1.1 b | 40.3 ± 2.3 ab | 33.2 ± 3.1 b | 4.3 ± 1.0 b | 15.2 ± 2.2 ab |
EG | 41.9 ± 2.9 a | 41.2 ± 1.8 a | 38.8 ± 3.8 a | 5.5 ± 1.0 a | 18.1 ± 2.9 a |
Abbreviations | SFAs | Treatments (μg/g FW) | ||
---|---|---|---|---|
Control | R.i. | EG | ||
C11:0 | Undecanoic acid | 2.00 ± 0.25 a | 0.71 ± 0.25 b | 1.07 ± 0.08 b |
C13:0 | Tridecanoic acid | 0.21 ± 0.03 ab | 0.24 ± 0.03 a | 0.16 ± 0.01 b |
C14:0 | Myristic acid | 14.56 ± 4.88 a | 13.18 ± 2.47 a | 17.48 ± 0.20 a |
C15:0 | Pentadecanoic acid | 9.94 ± 0.45 a | 7.14 ± 0.67 b | 7.22 ± 0.79 b |
C16:0 | Palmitic acid | 3368.01 ± 231.68 a | 2540.19 ± 184.04 b | 2626.22 ± 487.65 b |
C17:0 | Heptadecanoic acid | 23.42 ± 6.28 a | 28.17 ± 5.48 a | 28.83 ± 2.33 a |
C18:0 | Stearic acid | 639.40 ± 46.61 a | 510.75 ± 84.13 b | 586.19 ± 65.06 ab |
C20:0 | Arachidic acid | 9.42 ± 1.81 a | 8.54 ± 2.97 a | 11.42 ± 0.57 a |
C22:0 | Behenic acid | 0.52 ± 0.15 a | 0.49 ± 0.13 a | 0.65 ± 0.07 a |
C23:0 | Tricosanoic acid | 0.64 ± 0.04 a | 0.46 ± 0.03 b | 0.58 ± 0.08 ab |
C24:0 | Lignoceric acid | 6.89 ± 0.83 b | 5.77 ± 0.81 b | 9.16 ± 0.30 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-J.; Zou, Y.-N.; Xiao, Z.-Y.; Wang, F.-L.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.-S. Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin. Horticulturae 2024, 10, 580. https://doi.org/10.3390/horticulturae10060580
Wu W-J, Zou Y-N, Xiao Z-Y, Wang F-L, Hashem A, Abd_Allah EF, Wu Q-S. Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin. Horticulturae. 2024; 10(6):580. https://doi.org/10.3390/horticulturae10060580
Chicago/Turabian StyleWu, Wei-Jia, Ying-Ning Zou, Zhi-Yan Xiao, Fang-Ling Wang, Abeer Hashem, Elsayed Fathi Abd_Allah, and Qiang-Sheng Wu. 2024. "Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin" Horticulturae 10, no. 6: 580. https://doi.org/10.3390/horticulturae10060580
APA StyleWu, W. -J., Zou, Y. -N., Xiao, Z. -Y., Wang, F. -L., Hashem, A., Abd_Allah, E. F., & Wu, Q. -S. (2024). Changes in Fatty Acid Profiles in Seeds of Camellia oleifera Treated by Mycorrhizal Fungi and Glomalin. Horticulturae, 10(6), 580. https://doi.org/10.3390/horticulturae10060580