Identification and Characterization of a Virulent Meloidogyne incognita Population Breaking Tomato Mi-1-Mediated Resistance in Indiana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Propagation of the Root-Knot Nematode Population, RKN-12
2.2. Species Identification of the RKN-12 Population
2.3. Evaluation of Virulence of RKN-12 on Tomatoes Harboring the Resistance Gene Mi-1
2.4. Nematode Penetration and Development Study
2.5. Statistical Analysis
3. Results
3.1. Species Identification of the RKN-12 Population
3.2. RKN-12 Population Can Overcome the Tomato Mi-1 Resistance Gene
3.3. RKN-12 Penetration and Development in Tomato Roots
3.4. Enrichment and Study of the Virulent Sub-Population of RKN-12
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collange, B.; Navarrete, M.; Peyre, G.; Mateille, T.; Tchamitchian, M. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot. 2011, 30, 1251–1262. [Google Scholar] [CrossRef]
- Koenning, S.R.; Overstreet, C.; Noling, J.W.; Donald, P.A.; Becker, J.O.; Fortnum, B.A. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J. Nematol. 1999, 31, 587–618. [Google Scholar] [PubMed]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Fullana, A.M.; Expósito, A.; Escudero, N.; Cunquero, M.; Loza-Alvarez, P.; Giné, A.; Sorribas, F.J. Crop rotation with Meloidogyne-resistant germplasm is useful to manage and revert the (a)virulent populations of Mi1.2 gene and reduce yield losses. Front. Plant Sci. 2023, 14, 1133095. [Google Scholar] [CrossRef] [PubMed]
- Favery, B.; Quentin, M.; Jaubert-Possamai, S.; Abad, P. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. J. Insect Physiol. 2016, 84, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Mitkowski, N.A.; Abawi, G.S. Root-knot nematodes. Plant Health Instr. 2003, 3. [Google Scholar] [CrossRef]
- Taylor, A.L.; Sasser, J.N. Biology, identification and control of root-knot nematodes (Meloidogyne species); International Nematology Project; North Carolina State University: Raleigh, NC, USA, 1978. [Google Scholar]
- Bajek, V.; Munir, M.; Rudolph, R.E. Soil Census of Kentucky High Tunnels Reveals Statewide Distribution of Two Meloidogyne Species. Plant Health Prog. 2023, 24, 508–515. [Google Scholar] [CrossRef]
- East, K.E.; Zasada, I.A.; Schreiner, R.P.; Moyer, M.M. Developmental Dynamics of Meloidogyne hapla in Washington Wine Grapes. Plant Dis. 2019, 103, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Faske, T.R.; Mueller, J.D.; Becker, J.O.; Bernard, E.; Bradley, C.A.; Bond, J.P.; Desaeger, J.; Eisenback, J.D.; Grabau, Z.J.; Hu, J.; et al. Summarized distribution of the southern root-knot nematode, Meloidogyne incognita, in field crops in the United States. Plant Health Prog. 2023, 24, 522–524. [Google Scholar] [CrossRef]
- Khanal, C.; Land, J. Study on two nematode species suggests climate change will inflict greater crop damage. Sci. Rep. 2023, 13, 14185. [Google Scholar] [CrossRef]
- Dutta, T.K.; Phani, V. The pervasive impact of global climate change on plant-nematode interaction continuum. Front. Plant Sci. 2023, 14, 1143889. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Ernst, M. High tunnel overview. University of Kentucky Center for Crop Diversification Factsheet CCD-SP-2. 2021. Available online: https://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/hightunneloverview.pdf (accessed on 1 January 2021).
- Giné, A.; López-Gómez, M.; Vela, M.D.; Ornat, C.; Talavera, M.; Verdejo-Lucas, S.; Sorribas, F.J. Thermal requirements and population dynamics of root-knot nematodes on cucumber and yield losses under protected cultivation. Plant Pathol. 2014, 63, 1446–1453. [Google Scholar] [CrossRef]
- O’Connell, S.; Rivard, C.; Peet, M.M.; Harlow, C.; Louws, F. High Tunnel and Field Production of Organic Heirloom Tomatoes: Yield, Fruit Quality, Disease, and Microclimate. HortScience 2012, 47, 1283–1290. [Google Scholar] [CrossRef]
- Kubota, C.; McClure, M.A.; Kokalis-Burelle, N.; Bausher, M.G.; Rosskopf, E.N. Vegetable grafting: History, use, and current technology status in North America. HortScience 2008, 43, 1664–1669. [Google Scholar] [CrossRef]
- Roberts, P.A. Current status of the availability, development, and use of host plant resistance to nematodes. J. Nematol. 1992, 24, 213–227. [Google Scholar] [PubMed]
- Williamson, V.M. Root-knot nematode resistance genes in tomato and their potential for future use. Annu. Rev. Phytopathol. 1998, 36, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Ploeg, A.T.; Stoddard, C.S.; Turini, T.A.; Nunez, J.J.; Miyao, E.M.; Subbotin, S.A. Tomato -gene Resistance-Breaking Populations of Show Variable Reproduction on Susceptible and Resistant Crop Cultivars. J. Nematol. 2023, 55, 20230043. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.E.; Zhao, X.; McSorley, R. Grafting for Root-knot Nematode Control and Yield Improvement in Organic Heirloom Tomato Production. HortScience 2012, 47, 614–620. [Google Scholar] [CrossRef]
- Bajek, V.; Rudolph, R.E. Managing Southern Root-knot Nematode in Kentucky High Tunnels Using Grafted Tomato. HortScience 2023, 58, 704–713. [Google Scholar] [CrossRef]
- Rivard, C.L.; O’Connell, S.; Peet, M.M.; Louws, F.J. Grafting Tomato with Interspecific Rootstock to Manage Diseases Caused by Sclerotium rolfsii and Southern Root-Knot Nematode. Plant Dis. 2010, 94, 1015–1021. [Google Scholar] [CrossRef]
- Hajihassani, A.; Marquez, J.; Woldemeskel, M.; Hamidi, N. Identification of Four Populations of Meloidogyne incognita in Georgia, United States, Capable of Parasitizing Tomato-Bearing Mi-1.2 Gene. Plant Dis. 2022, 106, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; McGiffen, M.; Kaloshian, I. Reproduction of Mi-Virulent Meloidogyne incognita Isolates on Lycopersicon spp. J. Nematol. 2004, 36, 69–75. [Google Scholar]
- Kaloshian, I.; Williamson, V.M.; Miyao, G.; Lawn, D.A.; Westerdahl, B.B. Resistance-breaking” nematodes identified in California tomatoes. Calif. Agric. 1996, 50, 18–19. [Google Scholar] [CrossRef]
- Guan, T.; Shen, J.; Fa, Y.; Su, Y.; Wang, X.; Li, H. Resistance-breaking population of Meloidogyne incognita utilizes plant peroxidase to scavenge reactive oxygen species, thereby promoting parasitism on tomato carrying Mi-1 gene. Biochem. Biophys. Res. Commun. 2017, 482, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Castagnone-Sereno, P.; Bongiovanni, M.; Dalmasso, A. Reproduction of Virulent Isolates of Meloidogyne incognita on Susceptible and Mi-resistant Tomato. J. Nematol. 1994, 26, 324–328. [Google Scholar]
- Djian-Caporalino, C.; Molinari, S.; Palloix, A.; Ciancio, A.; Fazari, A.; Marteu, N.; Ris, N.; Castagnone-Sereno, P. The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur. J. Plant Pathol. 2011, 131, 431–440. [Google Scholar] [CrossRef]
- Bucki, P.; Paran, I.; Ozalvo, R.; Iberkleid, I.; Ganot, L.; Braun Miyara, S. Pathogenic Variability of Meloidogyne incognita Populations Occurring in Pepper-Production Greenhouses in Israel Toward Me1, Me3 and N Pepper Resistance Genes. Plant Dis. 2017, 101, 1391–1401. [Google Scholar] [CrossRef]
- Randig, O.; Bongiovanni, M.; Carneiro, R.M.D.G.; Castagnone-Sereno, P. Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome 2002, 45, 862–870. [Google Scholar]
- Zijlstra, C.; Donkers-Venne, D.T.H.M.; Fargette, M. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2000, 2, 847–853. [Google Scholar] [CrossRef]
- Ye, W.; Koenning, S.R.; Zeng, Y.; Zhuo, K.; Liao, J. Molecular Characterization of an Emerging Root-Knot Nematode Meloidogyne enterolobii in North Carolina, USA. Plant Dis. 2021, 105, 819–831. [Google Scholar] [CrossRef]
- Wishart, J.; Phillips, M.S.; Blok, V.C. Ribosomal Intergenic Spacer: A Polymerase Chain Reaction Diagnostic for Meloidogyne chitwoodi, M. fallax, and M. hapla. Phytopathology 2002, 92, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Ley, P.D.; Felix, M.-A.; Frisse, L.; Nadler, S.; Sternberg, P.; Thomas, W.K. Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1999, 1, 591–612. [Google Scholar] [CrossRef]
- Quesenberry, K.H.; Baltensperger, D.D.; Dunn, R.A.; Wilcox, C.J.; Hardy, S.R. Selection for Tolerance to Root-Knot Nematodes in Red Clover. Crop Sci. 1989, 29, 62–65. [Google Scholar] [CrossRef]
- Bruce, A.B.; Maynard, E.T.; Farmer, J.R. Farmers’ Perspectives on Challenges and Opportunities Associated with Using High Tunnels for Specialty Crops. HortTechnology 2019, 29, 290–299. [Google Scholar] [CrossRef]
- Milligan, S.B.; Bodeau, J.; Yaghoobi, J.; Kaloshian, I.; Zabel, P.; Williamson, V.M. The Root Knot Nematode Resistance Gene Mi from Tomato Is a Member of the Leucine Zipper, Nucleotide Binding, Leucine-Rich Repeat Family of Plant Genes. Plant Cell 1998, 10, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- El-Sappah, A.H.; M, M.I.; El-awady, H.H.; Yan, S.; Qi, S.; Liu, J.; Cheng, G.-T.; Liang, Y. Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes 2019, 10, 925. [Google Scholar] [CrossRef]
- Bhattarai, K.K.; Li, Q.; Liu, Y.; Dinesh-Kumar, S.P.; Kaloshian, I. The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol. 2007, 144, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Jarquin-Barberena, H.; Dalmasso, A.; Guiran, G.d.; Cardin, M. Acquired virulence in the plant parasitic nematode Meloidogyne incognita. 1. Biological analysis of the phenomenon. Rev. Nématologie 1991, 14, 261–275. [Google Scholar]
- Castagnone -Sereno, P.; Bongiovanni, M.; Dalmasso, A. Stable Virulence Against the Tomato Resistance Mi Gene in the Parthenogenetic Root-Knot Nematode Meloidogyne incognita. Phytopathology 1993, 83, 803–805. [Google Scholar] [CrossRef]
- Cortada, L.; Sakai, H.; Verdejo-Lucas, S.; Mizukubo, T. Meloidogyne virulence locus molecular marker for characterization of selected mi-virulent populations of Meloidogyne spp. is correlated with several genera of betaproteobacteria. Phytopathology 2011, 101, 410–415. [Google Scholar] [CrossRef]
Nematode Population/Cultivar | Root Fresh Weight (g) | Root Gall Index m | Egg Number/Root Fresh Weight (g) | Rf n |
---|---|---|---|---|
RKN-12—35 dpi | ||||
Rutgers | 3.44 ± 0.11 a | 5 a | 21,302.98 ± 788.66 a | 24.21 ± 0.55 a |
Early Girl | 4.18 ± 0.07 b | 4 b | 479.10 ± 34.63 b | 0.67 ± 0.05 b |
Better Boy | 4.81 ± 0.1 c | 4 b | 410.62 ± 24.28 b | 0.65 ± 0.03 b |
RKN-12—45 dpi | ||||
Rutgers | 3.94 ± 0.08 a | 5 a | 57,283.03 ± 3306.08 a | 75.31 ± 4.83 a |
Early Girl | 4.48 ± 0.17 b | 4 b | 2258.57 ± 198.16 b | 3.28 ± 0.19 b |
Better Boy | 4.58 ± 0.08 c | 4 b | 1753.39 ± 63.2 b | 2.67 ± 0.08 b |
MiVW6—35 dpi | ||||
Rutgers | 3.87 ± 0.23 a | 5 a | 39,615.27 ± 2480.40 a | 49.92 ± 2.24 a |
Early Girl | 4.38 ± 0.19 b | 0 b | 0 b | 0 b |
Better Boy | 4.54 ± 0.23 b | 0 b | 0 b | 0 b |
MiVW6—45 dpi | ||||
Rutgers | 4.84 ± 0.09 | 5 | 68,506.63 ± 2034.01 | 110.55 ± 4.47 |
RKN-12/Cultivar | Infective J2 | Parasitic J2 | J3–J4 | Young Female | Adult Female |
---|---|---|---|---|---|
30 dpi | |||||
Rutgers | 0 a | 0 a | 51.2 ± 4.6 a | 158.6 ± 5.0 a | 32.8 ± 2.4 a |
Early Girl | 0 a | 0 a | 33.6 ± 1.8 b | 13 ± 1.1 b | 1 ± 0.5 b |
Better Boy | 0 a | 6.2 ± 1.1 b | 26.4 ± 1.7 c | 14.4 ± 1.6 b | 0 b |
45 dpi | |||||
Rutgers | 287.8 ± 15.7 w | 11.6 ± 3.2 w | 0 a | 185.8 ± 8.7 a | 46.8 ± 3.4 a |
Early Girl | 0 | 0 | 12.6 ± 1.6 b | 37.2 ± 1.6 b | 4 ± 0.4 b |
Better Boy | 0 | 0 | 20 ± 1.6 c | 27.8 ± 2.2 c | 2.2 ± 0.2 c |
RKN-12vir/Cultivar | Root Fresh Weight (g) | Root Gall Index m | Egg Number/Root Fresh Weight (g) | Rf n |
---|---|---|---|---|
Rutgers | 4.00 ± 0.16 a | 5 a | 44,211.45 ± 3773.84 a | 57.37 ± 3.21 a |
Early Girl | 4.85 ± 0.10 b | 5 a | 8734.94 ± 547.13 b | 14.03 ± 0.73 b |
Better Boy | 5.57 ± 0.16 b | 5 a | 7488.16 ± 641.06 b | 13.59 ±1.8 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunwar, V.; Guan, W.; Zhang, L. Identification and Characterization of a Virulent Meloidogyne incognita Population Breaking Tomato Mi-1-Mediated Resistance in Indiana. Horticulturae 2024, 10, 583. https://doi.org/10.3390/horticulturae10060583
Kunwar V, Guan W, Zhang L. Identification and Characterization of a Virulent Meloidogyne incognita Population Breaking Tomato Mi-1-Mediated Resistance in Indiana. Horticulturae. 2024; 10(6):583. https://doi.org/10.3390/horticulturae10060583
Chicago/Turabian StyleKunwar, Vijay, Wenjing Guan, and Lei Zhang. 2024. "Identification and Characterization of a Virulent Meloidogyne incognita Population Breaking Tomato Mi-1-Mediated Resistance in Indiana" Horticulturae 10, no. 6: 583. https://doi.org/10.3390/horticulturae10060583
APA StyleKunwar, V., Guan, W., & Zhang, L. (2024). Identification and Characterization of a Virulent Meloidogyne incognita Population Breaking Tomato Mi-1-Mediated Resistance in Indiana. Horticulturae, 10(6), 583. https://doi.org/10.3390/horticulturae10060583