Determination of Saffron Flower Metabolites by Near-Infrared Spectroscopy for Quality Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of Extracts of Crocus sativus L. Flowers
2.4. Chromatographic Conditions
2.5. Near-Infrared Spectroscopy Measurements
2.6. Data Analysis
3. Results and Discussion
3.1. Crocus sativus Flower Metabolite Content (RP-HPLC-DAD) for Set of Samples
3.2. NIR Interpretation for Crocus sativus L. Flower Metabolites
3.3. NIR Calibration and Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- José Bagur, M.; Alonso Salinas, G.L.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Valle García-Rodríguez, M.; Serrano-Díaz, J.; Tarantilis, P.A.; López-Córcoles, H.; Carmona, M.; Alonso, G.L. Determination of Saffron Quality by High-Performance Liquid Chromatography. J. Agric. Food Chem. 2014, 62, 8068–8074. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.M.; Carmona, M.; del Campo, C.P.; Alonso, G.L. Solid-Phase Extraction for Picrocrocin Determination in the Quality Control of Saffron Spice (Crocus sativus L.). Food Chem. 2009, 116, 792–798. [Google Scholar] [CrossRef]
- Chryssanthi, D.G.; Lamari, F.N.; Georgakopoulos, C.D.; Cordopatis, P. A New Validated SPE-HPLC Method for Monitoring Crocetin in Human Plasma-Application after Saffron Tea Consumption. J. Pharm. Biomed. Anal. 2011, 55, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D. Trans-Sodium Crocetinate Increases Oxygen Delivery to Brain Parenchyma in Rats on Oxygen Supplementation. Neurosci. Lett. 2003, 352, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Vignolini, P.; Heimler, D.; Pinelli, P.; Ieri, F.; Sciullo, A.; Romani, A. Characterization of By-Products of Saffron (Crocus sativus L.) Production. Nat. Prod. Commun. 2008, 3, 1959–1962. [Google Scholar] [CrossRef]
- Serrano-Díaz, J.; Sánchez, A.M.; Maggi, L.; Martínez-Tomé, M.; García-Diz, L.; Murcia, M.A.; Alonso, G.L. Increasing the Applications of Crocus sativus Flowers as Natural Antioxidants. J. Food Sci. 2012, 77, C1162–C1168. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gong, Y.; Sun, J.; Zhang, Y.; Luo, Z.; Nishanbaev, S.Z.; Usmanov, D.; Song, X.; Zou, L.; Benito, M.J. Bioactive Components and Biological Activities of Crocus sativus L. Byproducts: A Comprehensive Review. J. Agric. Food Chem. 2023, 71, 19189–19206. [Google Scholar] [CrossRef] [PubMed]
- Gismondi, A.; Fanali, F.; Martínez Labarga, J.M.; Caiola, M.G.; Canini, A. Crocus sativus L. Genomics and Different DNA Barcode Applications. Plant Syst. Evol. 2013, 299, 1859–1863. [Google Scholar] [CrossRef]
- Eghbali, S.; Farhadi, F.; Askari, V.R. An Overview of Analytical Methods Employed for Quality Assessment of Crocus sativus (Saffron). Food Chem. X 2023, 20, 100992. [Google Scholar] [CrossRef]
- Moratalla-López, N.; Sánchez, A.M.; Lorenzo, C.; López-Córcoles, H.; Alonso, G.L. Quality Determination of Crocus sativus L. Flower by High-Performance Liquid Chromatography. J. Food Compos. Anal. 2020, 93, 103613. [Google Scholar] [CrossRef]
- Bwambok, D.K.; Siraj, N.; Macchi, S.; Larm, N.E.; Baker, G.A.; Pérez, R.L.; Ayala, C.E.; Walgama, C.; Pollard, D.; Rodriguez, J.D.; et al. Qcm Sensor Arrays, Electroanalytical Techniques and Nir Spectroscopy Coupled to Multivariate Analysis for Quality Assessment of Food Products, Raw Materials, Ingredients and Foodborne Pathogen Detection: Challenges and Breakthroughs†. Sensors 2020, 20, 6982. [Google Scholar] [CrossRef]
- Cebi, N.; Bekiroglu, H.; Erarslan, A. Nondestructive Metabolomic Fingerprinting: FTIR, NIR and Raman Spectroscopy in Food Screening. Molecules 2023, 28, 7933. [Google Scholar] [CrossRef]
- Tian, W.; Li, Y.; Guzman, C.; Ibba, M.I.; Tilley, M.; Wang, D.; He, Z. Quantification of Food Bioactives by NIR Spectroscopy: Current Insights, Long-Lasting Challenges, and Future Trends. J. Food Compos. Anal. 2023, 124, 105708. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. An Overview on the Application of Chemometrics Tools in Food Authenticity and Traceability. Foods 2022, 11, 3940. [Google Scholar] [CrossRef]
- Wang, H.P.; Chen, P.; Dai, J.W.; Liu, D.; Li, J.Y.; Xu, Y.P.; Chu, X.L. Recent Advances of Chemometric Calibration Methods in Modern Spectroscopy: Algorithms, Strategy, and Related Issues. TrAC-Trends Anal. Chem. 2022, 153, 116648. [Google Scholar] [CrossRef]
- Stelluti, S.; Caser, M.; Demasi, S.; Scariot, V. Sustainable Processing of Floral Bio-Residues of Saffron (Crocus sativus L.) for Valuable Biorefinery Products. Plants 2021, 10, 523. [Google Scholar] [CrossRef]
- Predieri, S.; Magli, M.; Gatti, E.; Camilli, F.; Vignolini, P.; Romani, A. Chemical Composition and Sensory Evaluation of Saffron. Foods 2021, 10, 2604. [Google Scholar] [CrossRef]
- Luo, Z.; Thorp, K.R.; Abdel-Haleem, H. A High-Throughput Quantification of Resin and Rubber Contents in Parthenium Argentatum Using near-Infrared (NIR) Spectroscopy. Plant Methods 2019, 15, 1–14. [Google Scholar] [CrossRef]
- Suchat, S.; Pioch, D.; Palu, S.; Tardan, E.; van Loo, E.N.; Davrieux, F. Fast Determination of the Resin and Rubber Content in Parthenium Argentatum Biomass Using near Infrared Spectroscopy. Ind. Crops Prod. 2013, 45, 44–51. [Google Scholar] [CrossRef]
- Kabiri, M.; Rezadoost, H.; Ghassempour, A. A Comparative Quality Study of Saffron Constituents through HPLC and HPTLC Methods Followed by Isolation of Crocins and Picrocrocin. LWT 2017, 84, 1–9. [Google Scholar] [CrossRef]
- Carmona, M.; Sánchez, A.M.; Ferreres, F.; Zalacain, A.; Tomás-Barberán, F.; Alonso, G.L. Identification of the Flavonoid Fraction in Saffron Spice by LC/DAD/MS/MS: Comparative Study of Samples from Different Geographical Origins. Food Chem. 2007, 100, 445–450. [Google Scholar] [CrossRef]
- Serrano-Díaz, J.; Sánchez, A.M.; Martínez-Tomé, M.; Winterhalter, P.; Alonso, G.L. A Contribution to Nutritional Studies on Crocus sativus Flowers and Their Value as Food. J. Food Compos. Anal. 2013, 31, 101–108. [Google Scholar] [CrossRef]
- Vago, R.; Trevisani, F.; Vignolini, P.; Vita, C.; Fiorio, F.; Campo, M.; Ieri, F.; Di Marco, F.; Salonia, A.; Romani, A.; et al. Evaluation of Anti-Cancer Potential of Saffron Extracts against Kidney and Bladder Cancer Cells. Food Biosci. 2024, 57, 103501. [Google Scholar] [CrossRef]
- Frizon, C.N.T.; Oliveira, G.A.; Perussello, C.A.; Peralta-Zamora, P.G.; Camlofski, A.M.O.; Rossa, Ü.B.; Hoffmann-Ribani, R. Determination of Total Phenolic Compounds in Yerba Mate (Ilex Paraguariensis) Combining near Infrared Spectroscopy (NIR) and Multivariate Analysis. LWT 2015, 60, 795–801. [Google Scholar] [CrossRef]
- Li, W.; Qu Haibin, H. Rapid Quantification of Phenolic Acids in Radix Salvia Miltrorrhiza Extract Solutions by FT-NIR Spectroscopy in Transflective Mode. J. Pharm. Biomed. Anal. 2010, 52, 425–431. [Google Scholar] [CrossRef]
- Moratalla-López, N.; Bagur, M.J.; Lorenzo, C.; Martínez-Navarro, M.E.; Rosario Salinas, M.; Alonso, G.L. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019, 24, 2827. [Google Scholar] [CrossRef]
- Kawasaki, M.; Kawamura, S.; Tsukahara, M.; Morita, S.; Komiya, M.; Natsuga, M. Near-Infrared Spectroscopic Sensing System for on-Line Milk Quality Assessment in a Milking Robot. Comput. Electron. Agric. 2008, 63, 22–27. [Google Scholar] [CrossRef]
- Xu, H.; Qi, B.; Sun, T.; Fu, X.; Ying, Y. Variable Selection in Visible and Near-Infrared Spectra: Application to on-Line Determination of Sugar Content in Pears. J. Food Eng. 2012, 109, 142–147. [Google Scholar] [CrossRef]
- Zalacain, A.; Ordoudi, S.A.; Díaz-Plaza, E.M.; Carmona, M.; Blázquez, I.; Tsimidou, M.Z.; Alonso, G.L. Near-Infrared Spectroscopy in Saffron Quality Control: Determination of Chemical Composition and Geographical Origin. J. Agric. Food Chem. 2005, 53, 9337–9341. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near Infrared Spectroscopy for Determination of Various Physical, Chemical and Biochemical Properties in Mediterranean Soils. Soil. Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhus, J.L. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl. Spectrosc. 2017, 71, 1403–1426. [Google Scholar] [CrossRef] [PubMed]
Minutes | Acetonitrile (%) | Water/Trifluoroacetic Acid (%) |
---|---|---|
0 | 0 | 100 |
30 | 30 | 70 |
40–45 | 80 | 20 |
50–55 | 20 | 80 |
55–59 | 0 | 100 |
Compound | Range (g kg−1 Flower Dry Weight) | Mean | SD | CV (%) |
---|---|---|---|---|
cis-4-GG | 0.56–2.30 | 1.31 | 0.58 | 44 |
cis-2-G | 0.03–0.52 | 0.26 | 0.09 | 15 |
cis-3-Gg | 0.58–2.28 | 2.43 | 0.79 | 32 |
cis-2-gg | 0.03–0.07 | 0.03 | 0.01 | 33 |
trans-5-tG | 0.15–0.51 | 0.28 | 0.13 | 16 |
trans-5-ng | 0.22–0.35 | 0.24 | 0.12 | 50 |
trans-4-GG | 8.32–33.89 | 16.84 | 8.54 | 50 |
trans-4-ng | 0.17–2.30 | 0.20 | 0.08 | 40 |
trans-3-Gg | 3.94–25.06 | 9.56 | 4.47 | 46 |
trans-2-G | 0.03–0.38 | 0.52 | 0.31 | 59 |
Picrocrocin | 2.03–49.5 | 30.14 | 6.44 | 21 |
K-3-O-β-s | 0.42–50.2 | 35.28 | 7.65 | 21 |
K-3-O-s-7-O-g | 3.42–7.40 | 5.58 | 1.15 | 20 |
K | 0.01–0.19 | 0.09 | 0.06 | 66 |
D-3,5-di-O-g | 1.09–9.1 | 6.21 | 1.04 | 16 |
P-3,5-di-O-g | 0.27–0.45 | 0.3 | 0.11 | 36 |
D-3-O-g | 0.76–2.23 | 1.08 | 0.27 | 25 |
M-3,5-di-O-g | 0.07–4.64 | 2.67 | 1.24 | 46 |
P-3-O-g | 0.24–0.26 | 0.21 | 0.09 | 42 |
N | Spectral Range (cm−1) | Pre-Process * | R2c | |
---|---|---|---|---|
cis-Crocins | 173 | 9000.9–4000 | 2.13.13 | 1.00 |
trans-Crocins | 173 | 9000.9–4000 | 2.13.19 | 0.97 |
Crocins | 173 | 9000.9–4000 | 1.13.13 | 0.99 |
Picrocrocin | 77 | 9000.9–4000 | 1.9.5 | 0.95 |
K-3-O-β-s | 77 | 10,000–4000 | 1.5.13 | 0.99 |
Compound | R2cv | RMSECV | RMSEC | RPD | RPDc | RPDp |
---|---|---|---|---|---|---|
cis-Crocins | 0.90 | 0.48 | 0.11 | 2.47 | 2.31 | 1.25 |
trans-Crocins | 0.84 | 2.21 | 4.01 | 6.51 | 2.45 | 1.16 |
Crocins | 0.98 | 1.24 | 0.78 | 8.83 | 8.83 | 5.45 |
Picrocrocin | 0.82 | 3.1 | 5.2 | 7.2 | 9.23 | 7.27 |
K-3-O-β-s | 0.80 | 3.46 | 0.001 | 2.21 | 2.18 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar-Talavera, J.F.; Martínez-Navarro, M.E.; Alonso, G.L.; Sánchez-Gómez, R. Determination of Saffron Flower Metabolites by Near-Infrared Spectroscopy for Quality Control. Horticulturae 2024, 10, 593. https://doi.org/10.3390/horticulturae10060593
Escobar-Talavera JF, Martínez-Navarro ME, Alonso GL, Sánchez-Gómez R. Determination of Saffron Flower Metabolites by Near-Infrared Spectroscopy for Quality Control. Horticulturae. 2024; 10(6):593. https://doi.org/10.3390/horticulturae10060593
Chicago/Turabian StyleEscobar-Talavera, Jorge F., María Esther Martínez-Navarro, Gonzalo L. Alonso, and Rosario Sánchez-Gómez. 2024. "Determination of Saffron Flower Metabolites by Near-Infrared Spectroscopy for Quality Control" Horticulturae 10, no. 6: 593. https://doi.org/10.3390/horticulturae10060593
APA StyleEscobar-Talavera, J. F., Martínez-Navarro, M. E., Alonso, G. L., & Sánchez-Gómez, R. (2024). Determination of Saffron Flower Metabolites by Near-Infrared Spectroscopy for Quality Control. Horticulturae, 10(6), 593. https://doi.org/10.3390/horticulturae10060593