Improvement of Physiological Features and Essential Oil Content of Thymus vulgaris after Soil Amendment with Chitosan Nanoparticles under Chromium Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Growth Conditions, and Experimental Protocol
2.2. Chitosan Nanoparticles
2.2.1. Materials
2.2.2. Instruments
2.2.3. Synthesis of Chitosan Nanoparticles
2.3. Chlorophyll Fluorescence Parameters
2.4. Plant Sampling and Analysis
2.5. Root, Leaf and Soil Cr Content
2.6. Determination of Photosynthetic Pigments
2.7. Elemental Composition
2.8. Total Soluble Carbohydrates Content (TSC)
2.9. Total Protein Content (TSP)
2.10. Essential Oil Content (EOC) and Yield (EOY)
2.11. Malondialdehyde
2.12. Electrolyte Leakage (EL)
2.13. Catalase (CAT)
2.14. Ascorbate Peroxidase (APX) Activity
2.15. Peroxidase (POX) Activity
2.16. Glutathione Reductase (GR) Activity
2.17. Data Analysis
3. Results
3.1. Synthesis and Characterization
3.2. Fresh Weight (FW) and Dry Weight (DW) of Shoots
3.3. Chlorophyll Fluorescence Indices
3.4. Root, Leaf and Soil Cr Content
3.5. Photosynthetic Pigment Content
3.6. Shoot and Root Macro- and Micronutrient Content
3.7. Essential Oil Content (EOC)
3.8. Essential Oil Yield (EOY)
3.9. Total Protein Content (TSP) and Total Soluble Carbohydrates Content (TSC)
3.10. MDA and EL
3.11. Antioxidant Enzymes Activity (CAT, APX, POD and GR)
3.12. Pearson’s Correlations and Biplot of Principal Component Analysis (PCA) of Cs-NP-Treated Thyme Plants Grown under Chromium Toxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aqeel, U.; Parwez, R.; Aftab, T.; Khan, M.M.A.; Naeem, M. Silicon dioxide nanoparticles suppress copper toxicity in Mentha arvensis L. by adjusting ROS homeostasis and antioxidant defense system and improving essential oil production. Environ. Res. 2023, 236, 116851. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, K.; Khan, A.A.; Alhaithloul, H.A.S.; Al-Harbi, N.A.; Al-Qahtani, S.M.; Aloufi, S.S.; Abdulmajeed, A.M.; Muneer, M.A.; Alghanem, S.M.; Zia-ur-Rehman, M. Synergistic effect of β-sitosterol and biochar application for improving plant growth of Thymus vulgaris under heat stress. Chemosphere 2023, 340, 139832. [Google Scholar] [CrossRef] [PubMed]
- Avasiloaiei, D.I.; Calara, M.; Brezeanu, P.M.; Murariu, O.C.; Brezeanu, C. On the future perspectives of some medicinal plants within Lamiaceae botanic familiy regarding their comprehensive properties against biotic and abiotic stresses. Genes 2023, 14, 955. [Google Scholar] [CrossRef] [PubMed]
- Shahroudi, E.; Zarinkamar, F.; Rezayian, M. Putrescin modulates metabolic and physiological characteristics of Thymus daenensis under drought stress. Sci. Horticult. 2023, 321, 112268. [Google Scholar] [CrossRef]
- Arpanahi, A.A.; Feizian, M.; Mehdipourian, G.; Khojasteh, D.N. Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. Eur. J. Soil Biol. 2020, 100, 103217. [Google Scholar] [CrossRef]
- Mohammadi, H.; Amirikia, F.; Ghorbanpour, M.; Fatehi, F.; Hashempour, H. Salicylic acid induced changes in physiological traits and essential oil constituents in different ecotypes of Thymus kotschyanus and Thymus vulgaris under well-watered and water stress conditions. Ind. Crops Prod. 2019, 129, 561–574. [Google Scholar] [CrossRef]
- Boaventura, T.P.; dos Santos, F.A.C.; de Sena Souza, A.; Batista, F.S.; Júlio, G.S.C.; Luz, R.K. Thymol and linalool chemotypes of the essential oil of Thymus vulgaris (thyme) as anesthetic for Colossoma macropomum: Physiology and feed consumption. Aquaculture 2022, 554, 738161. [Google Scholar] [CrossRef]
- Silva, A.S.; Tewari, D.; Sureda, A.; Suntar, I.; Belwal, T.; Battino, M.; Nabavi, S.M.; Nabavi, S.F. The evidence of health benefits and food applications of Thymus vulgaris L. Trends Food Sci. Technol. 2021, 117, 218–227. [Google Scholar] [CrossRef]
- Alsakhawy, S.A.; Baghdadi, H.H.; El-Shenawy, M.A.; Sabra, S.A.; El-Hosseiny, L.S. Encapsulation of Thymus vulgaris essential oil in caseinate/gelatin nanocomposite hydrogel: In vitro antibacterial activity and in vivo wound healing potential. Int. J. Pharm. 2022, 628, 122280. [Google Scholar] [CrossRef]
- Liu, T.; Kang, J.; Liu, L. Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. LWT 2021, 136, 110354. [Google Scholar] [CrossRef]
- Wen, K.; Li, X.; Huang, R.; Nian, H. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.). Ecotoxicol. Environ. Saf. 2022, 234, 113405. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.A.; Hao, Y.; Shu, H.; Mumtaz, M.A.; Cheng, S.; Alyemeni, M.N.; Ahmad, P.; Wang, Z. Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. J. Hazard. Mater. 2023, 454, 131468. [Google Scholar] [CrossRef] [PubMed]
- Azimychetabi, Z.; Nodehi, M.S.; Moghadam, T.K.; Motesharezadeh, B. Cadmium stress alters the essential oil composition and the expression of genes involved in their synthesis in peppermint (Mentha piperita L.). Ind. Crops Prod. 2021, 168, 113602. [Google Scholar] [CrossRef]
- Andresen, E.; Kappel, S.; Stärk, H.J.; Riegger, U.; Borovec, J.; Mattusch, J.; Heinz, A.; Schmelzer, C.E.; Matoušková, Š.; Dickinson, B. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytol. 2016, 210, 1244–1258. [Google Scholar] [CrossRef] [PubMed]
- Gatasheh, M.K.; Shah, A.A.; Ali, S.; Ramzan, M.; Javad, S.; Waseem, L.; Noor, H.; Ahmed, S.; Wahid, A. Synergistic application of melatonin and silicon alleviates chromium stress in Brassica napus through regulation of antioxidative defense system and ethylene metabolism. Sci. Horticult. 2023, 321, 112280. [Google Scholar] [CrossRef]
- Manzoor, N.; Ali, L.; Ahmed, T.; Rizwan, M.; Ali, S.; Shahid, M.S.; Schulin, R.; Liu, Y.; Wang, G. Silicon oxide nanoparticles alleviate chromium toxicity in wheat (Triticum aestivum L.). Environ. Pollut. 2022, 315, 120391. [Google Scholar] [CrossRef]
- Kumar, D.; Dhankher, O.P.; Tripathi, R.D.; Seth, C.S. Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J. Hazard. Mater. 2023, 454, 131418. [Google Scholar] [CrossRef]
- Ali, S.; Mfarrej, M.F.B.; Rizwan, M.; Hussain, A.; Shahid, M.J.; Wang, X.; Nafees, M.; Waseem, M.; Alharby, H.F. Microbe-citric acid assisted phytoremediation of chromium by castor bean (Ricinus communis L.). Chemosphere 2022, 296, 134065. [Google Scholar] [CrossRef]
- Zaheer, I.E.; Ali, S.; Saleem, M.H.; Noor, I.; El-Esawi, M.A.; Hayat, K.; Rizwan, M.; Abbas, Z.; El-Sheikh, M.A.; Alyemeni, M.N. Iron–lysine mediated alleviation of chromium toxicity in spinach (Spinacia oleracea L.) plants in relation to morpho-physiological traits and iron uptake when irrigated with tannery wastewater. Sustainability 2020, 12, 6690. [Google Scholar] [CrossRef]
- Barzin, G.; Safari, F.; Bishehkolaei, R. Beneficial role of methyl jasmonate on morphological, physiological and phytochemical responses of Calendula officinalis L. under chromium toxicity. Physiol. Mol. Biol. Plants 2022, 28, 1453–1466. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Rasheed, R.; Hussain, I.; Hafeez, A.; Adrees, M.; ur Rehman, M.Z.; Rizwan, M.; Ali, S. Effect of different seed priming agents on chromium accumulation, oxidative defense, glyoxalase system and mineral nutrition in canola (Brassica napus L.) cultivars. Environ. Pollut. 2022, 309, 119769. [Google Scholar] [CrossRef] [PubMed]
- Iber, B.T.; Torsabo, D.; Engku, C.C.E.N.C.; Wahab, F.; Abdullah, S.R.S.; Hassan, H.A.; Kasan, N.A. A study on the recovery and characterization of suspended solid from aquaculture wastewater through coagulation/flocculation using chitosan and its viability as organic fertilizer. J. Agric. Food Res. 2023, 11, 100532. [Google Scholar] [CrossRef]
- Turan, V.; Khan, S.A.; Iqbal, M.; Ramzani, P.M.A.; Fatima, M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018, 161, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.; Sajjad, A.; Asam, Z.U.Z.; Zubair, M.; Rizwan, M.; Abbas, M.; Farid, S.; Ali, S.; Alharby, H.F.; Alzahrani, Y.M. Phytoremediation of contaminated industrial wastewater by duckweed (Lemna minor L.): Growth and physiological response under acetic acid application. Chemosphere 2022, 304, 135262. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, N.; Geetha, N.; Manish, T.; Sahi, S.; Venkatachalam, P. Zinc oxide nanocatalyst mediates cadmium and lead toxicity tolerance mechanism by differential regulation of photosynthetic machinery and antioxidant enzymes level in cotton seedlings. Toxicol. Rep. 2021, 8, 295–302. [Google Scholar]
- Zubair, M.; Ramzani, P.M.A.; Rasool, B.; Khan, M.A.; Akhtar, I.; Turan, V.; Tauqeer, H.M.; Farhad, M.; Khan, S.A.; Iqbal, J. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). J. Environ. Manag. 2021, 284, 112047. [Google Scholar] [CrossRef]
- Shaheen, S.; Rinklebe, J.; Selim, M. Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil. Int. J. Environ. Sci. Technol. 2015, 12, 2765–2776. [Google Scholar] [CrossRef]
- Qu, D.; Gu, W.; Zhang, L.; Li, C.; Chen, X.; Li, J.; Li, L.; Xie, T.; Wei, S. Role of chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of maize seedlings under cadmium stress. Russian J. Plant Physiol. 2019, 66, 140–151. [Google Scholar] [CrossRef]
- de Lima, S.V.A.M.; Marques, D.M.; Silva, M.F.S.; Bressanin, L.A.; Magalhães, P.C.; de Souza, T.C. Applications of chitosan to the roots and shoots change the accumulation pattern of cadmium in Talinum patens (Talinaceae) cuttings. Environ. Sci. Pollut. Res. 2022, 29, 67787–67800. [Google Scholar] [CrossRef]
- Ramzani, P.M.A.; Coyne, M.S.; Anjum, S.; Iqbal, M. In situ immobilization of Cd by organic amendments and their effect on antioxidant enzyme defense mechanism in mung bean (Vigna radiata L.) seedlings. Plant Physiol. Biochem. 2017, 118, 561–570. [Google Scholar] [CrossRef]
- Azimi, F.; Oraei, M.; Gohari, G.; Panahirad, S.; Farmarzi, A. Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiol. Biochem. 2021, 167, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Z.; Saber, M.; Akbari, A.; Mahdavinia, G.R. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol. Environ. Saf. 2018, 161, 111–119. [Google Scholar] [CrossRef]
- Jafari, H.; Mahdavinia, G.R.; Kazemi, B.; Ehrlich, H.; Joseph, Y.; Rahimi-Nasrabadi, M. Highly efficient sunitinib release from pH-responsive mHPMC@ Chitosan core-shell nanoparticles. Carbohydr. Polym. 2021, 258, 117719. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Experim. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Azizi, I.; Esmaielpour, B.; Fatemi, H. Effect of foliar application of selenium on morphological and physiological indices of savory (Satureja hortensis) under cadmium stress. Food Sci. Nutr. 2020, 8, 6539–6549. [Google Scholar] [CrossRef] [PubMed]
- Armon, D. Copper enzymes in isolated chloroplast. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Kalra, Y. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 1998; p. 291. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region, 3rd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2013; p. 244. [Google Scholar]
- Jones, J.B., Jr. Plant tissue analysis in micronutrients. In Micronutrients in Agriculture; Mortvedt, J.J., Ed.; The Soil Science Society of America: Madison, WI, USA, 1991; pp. 477–521. [Google Scholar]
- Chen, L.; Garrett, T.J.; Varghese, J.N.; Fincher, G.B.; Høj, P.B. Crystallization and preliminary X-ray analysis of (1,3)-and (1,3; 1,4)-β-dcl025;-glucanases from germinating barley. J. Mol. Biol. 1993, 234, 888–889. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ostadi, A.; Javanmard, A.; Amani Machiani, M.; Kakaei, K. Optimizing antioxidant activity and phytochemical properties of peppermint (Mentha piperita L.) by integrative application of biofertilizer and stress-modulating nanoparticles under drought stress conditions. Plants 2022, 12, 151. [Google Scholar] [CrossRef]
- Heath, R.; Packer, L. Photoperoxidation in isolated chloroplasts of fatty acid peroxidation chlorophyll. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Liu, D.; Zou, J.; Meng, Q.; Zou, J.; Jiang, W. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 2009, 18, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Kumar, K.B.; Khan, P.A. Age-related changes in catalase and peroxidase activities in the excised leaves of Eleusine coracana Gaertn. cv PR 202 during senescence. Experim. Gerontol. 1983, 18, 409–417. [Google Scholar] [CrossRef]
- Sairam, R.K.; Srivastava, G.C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002, 162, 897–904. [Google Scholar] [CrossRef]
- Ribeiro, E.F.; de Barros-Alexandrino, T.T.; Assis, O.B.G.; Junior, A.C.; Quiles, A.; Hernando, I.; Nicoletti, V.R. Chitosan and crosslinked chitosan nanoparticles: Synthesis, characterization and their role as Pickering emulsifiers. Carbohydr. Polym. 2020, 250, 116878. [Google Scholar] [CrossRef]
- Anbardan, M.A.; Alipour, S.; Mahdavinia, G.R.; Rezaei, P.F. Synthesis of magnetic chitosan/hyaluronic acid/κ-carrageenan nanocarriers for drug delivery. Int. J. Biol. Macromol. 2023, 253, 126805. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Hoseinzadeh, H.; Labib, P.; Jabbari, P.; Mohebbi, A.; Barzeger, S.; Jafari, H. (Magnetic laponite/κ-carrageenan)@ chitosan core–shell carrier for pH-sensitive release of doxorubicin. Polym. Bull. 2023, 80, 12923–12943. [Google Scholar] [CrossRef]
- Ahmad, S.; Mfarrej, M.F.B.; El-Esawi, M.A.; Waseem, M.; Alatawi, A.; Nafees, M.; Saleem, M.H.; Rizwan, M.; Yasmeen, T.; Anayat, A. Chromium-resistant Staphylococcus aureus alleviates chromium toxicity by developing synergistic relationships with zinc oxide nanoparticles in wheat. Ecotoxicol. Environ. Saf. 2022, 230, 113142. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, M.; Fahad, S.; Qayyum, A.; Chen, Y.; Zhu, G. Chromium induces toxicity at different phenotypic, physiological, biochemical, and ultrastructural levels in sweet potato (Ipomoea batatas L.) plants. Int. J. Mol. Sci. 2022, 23, 13496. [Google Scholar] [CrossRef]
- Deng, P.; Wan, W.; Azeem, M.; Riaz, L.; Zhang, W.; Yang, Y.; Li, C.; Yuan, W. Characterization of biochar derived from bamboo and its application to modulate the toxic effects of chromium on wheat plant. Biomass Conver. Biorefin. 2022, 14, 7643–7658. [Google Scholar] [CrossRef]
- Mohammadi, H.; Hatami, M.; Feghezadeh, K.; Ghorbanpour, M. Mitigating effect of nano-zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. Acta Physiol. Plantarum 2018, 40, 69. [Google Scholar] [CrossRef]
- Wang, C.; Tan, H.; Li, H.; Xie, Y.; Liu, H.; Xu, F.; Xu, H. Mechanism study of chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex. Environ. Pollut. 2020, 257, 113558. [Google Scholar] [CrossRef]
- Zeng, F.; Qiu, B.; Wu, X.; Niu, S.; Wu, F.; Zhang, G. Glutathione-mediated alleviation of chromium toxicity in rice plants. Biol. Trace Element Res. 2012, 148, 255–263. [Google Scholar] [CrossRef]
- Faizan, M.; Rajput, V.D.; Al-Khuraif, A.A.; Arshad, M.; Minkina, T.; Sushkova, S.; Yu, F. Effect of foliar fertigation of chitosan nanoparticles on cadmium accumulation and toxicity in Solanum lycopersicum. Biology 2021, 10, 666. [Google Scholar] [CrossRef]
- Heidari, J.; Amooaghaie, R.; Kiani, S. Impact of chitosan on nickel bioavailability in soil, the accumulation and tolerance of nickel in Calendula tripterocarpa. Int. J. Phytoremed. 2020, 22, 1175–1184. [Google Scholar] [CrossRef]
- Hussain, A.; Maitra, J.; Khan, K.A. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater. Appl. Water Sci. 2017, 7, 4525–4537. [Google Scholar] [CrossRef]
- Kamari, A.; Pulford, I.; Hargreaves, J. Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. Int. J. Phytoremed. 2012, 14, 894–907. [Google Scholar] [CrossRef]
- Shirkhani, Z.; Chehregani Rad, A.; Mohsenzadeh, F. Improving Cd-phytoremediation ability of Datura stramonium L. by chitosan and chitosan nanoparticles. Biologia 2021, 76, 2161–2171. [Google Scholar] [CrossRef]
- Mohammed, B.; Mohammed, T.; M’hammed, E.; Tarik, A. Physiological and physico-chemical study of the effect of chromium VI on the nutritional quality of maize (Zea mays L). Procedia Comput. Sci. 2021, 191, 463–468. [Google Scholar] [CrossRef]
- Sadeghipour, O.; Monem, R. Improving arsenic toxicity tolerance in mung bean [Vigna radiata (L.) Wilczek] by salicylic acid application. Vegetos 2021, 34, 663–670. [Google Scholar] [CrossRef]
- Ma, J.; Lv, C.; Xu, M.; Chen, G.; Lv, C.; Gao, Z. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ. Sci. Pollut. Res. 2016, 23, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Handa, N.; Kohli, S.K.; Sharma, A.; Thukral, A.K.; Bhardwaj, R.; Abd-Allah, E.F.; Alqarawi, A.A.; Ahmad, P. Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ. Experim. Bot. 2019, 161, 180–192. [Google Scholar] [CrossRef]
- Dradrach, A.; Iqbal, M.; Lewińska, K.; Jędroszka, N.; Rana, M.A.K.; Tanzeem-ul-Haq, H.S. Effects of soil application of chitosan and foliar melatonin on growth, photosynthesis, and heavy metals accumulation in wheat growing on wastewater polluted soil. Sustainability 2022, 14, 8293. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Turan, V. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol. Environ. Saf. 2019, 183, 109594. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Sherazi, S.T.H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Maksoud, M.A.; Bekhit, M.; El-Sherif, D.M.; Sofy, A.R.; Sofy, M.R. Gamma radiation-induced synthesis of a novel chitosan/silver/Mn-Mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. Int. J. Biol. Macromol. 2022, 194, 306–316. [Google Scholar] [CrossRef]
- ALKahtani, M.D.; Attia, K.A.; Hafez, Y.M.; Khan, N.; Eid, A.M.; Ali, M.A.; Abdelaal, K.A. Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 2020, 10, 1180. [Google Scholar] [CrossRef]
- Rasheed, R.; Ashraf, M.A.; Arshad, A.; Iqbal, M.; Hussain, I. Interactive effects of chitosan and cadmium on growth, secondary metabolism, oxidative defense, and element uptake in pea (Pisum sativum L.). Arab. J. Geosci. 2020, 13, 847. [Google Scholar] [CrossRef]
- Giglou, M.T.; Giglou, R.H.; Esmaeilpour, B.; Azarmi, R.; Padash, A.; Falakian, M.; Śliwka, J.; Gohari, G.; Lajayer, H.M. A new method in mitigation of drought stress by chitosan-coated iron oxide nanoparticles and growth stimulant in peppermint. Ind. Crops Prod. 2022, 187, 115286. [Google Scholar] [CrossRef]
- Rodriguez, E.; Santos, C.; Azevedo, R.; Moutinho-Pereira, J.; Correia, C.; Dias, M.C. Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol. Biochem. 2012, 53, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ali, S.; Abid, M.; Rizwan, M.; Ali, B.; Tanveer, A.; Ahmad, I.; Azam, M.; Ghani, M.A. Glycinebetaine alleviates the chromium toxicity in Brassica oleracea L. by suppressing oxidative stress and modulating the plant morphology and photosynthetic attributes. Environ. Sci. Pollut. Res. 2020, 27, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Singh, V.P.; Prasad, S.M.; Chauhan, D.K.; Dubey, N.K.; Rai, A.K. Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicol. Environ. Saf. 2015, 113, 133–144. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, C.O.; Magalhães, P.C.; Avila, R.G.; Almeida, L.G.; Rabelo, V.M.; Carvalho, D.T.; Cabral, D.F.; Karam, D.; de Souza, T.C. Action of N-succinyl and N, O-dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. J. Plant Growth Regul. 2019, 38, 619–630. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Rahimi, S.; Sukweenadhi, J.; Sunderraj, S.; Shanmugam, R.; Thangavelu, L.; Mijakovic, I.; Perumalsamy, H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr. Polym. 2022, 284, 119189. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, Z.; Han, X.; Zhang, C.; Li, H.; Wu, M. Chitosan soaking improves seed germination of Platycodon grandiflorus and enhances its growth, photosynthesis, resistance, yield, and quality. Horticulturae 2022, 8, 943. [Google Scholar] [CrossRef]
- Sundaramoorthy, P.; Chidambaram, A.; Ganesh, K.S.; Unnikannan, P.; Baskaran, L. Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biol. 2010, 333, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ji, Q.; Rizwan, M.; Li, H.; Li, D.; Chen, G. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. Ecotoxicol. Environ. Saf. 2020, 206, 111184. [Google Scholar] [CrossRef]
- Borges, K.L.R.; Hippler, F.W.R.; Carvalho, M.E.A.; Nalin, R.S.; Matias, F.I.; Azevedo, R.A. Nutritional status and root morphology of tomato under Cd-induced stress: Comparing contrasting genotypes for metal-tolerance. Sci. Horticult. 2019, 246, 518–527. [Google Scholar] [CrossRef]
- Eid, E.M.; Hussain, A.A.; Taher, M.A.; Galal, T.M.; Shaltout, K.H.; Sewelam, N. Sewage sludge application enhances the growth of Corchorus olitorius plants and provides a sustainable practice for nutrient recirculation in agricultural soils. J. Soil Sci. Plant Nutr. 2020, 20, 149–159. [Google Scholar] [CrossRef]
- Jiang, X.; Luo, Y.; Liu, Q.; Liu, S.; Zhao, Q. Effects of cadmium on nutrient uptake and translocation by Indian Mustard. Environ. Geochem. Health 2004, 26, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Pirsarandib, Y.; Hassanpouraghdam, M.B.; Rasouli, F.; Aazami, M.A.; Puglisi, I.; Baglieri, A. Phytoremediation of soil contaminated with heavy metals via arbuscular mycorrhiza (Funneliformis mosseae) inoculation ameliorates the growth responses and essential oil content in lavender (Lavandula angustifolia L.). Agronomy 2022, 12, 1221. [Google Scholar] [CrossRef]
- Turan, V.; Ramzani, P.M.A.; Ali, Q.; Abbas, F.; Iqbal, M.; Irum, A.; Khan, W.-U.-D. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch. Agron. Soil Sci. 2018, 64, 1053–1067. [Google Scholar] [CrossRef]
- Najafi, Z.; Golchin, A.; Naidu, R. The effects of chitosan composites on the immobilization of chromium in soil and marigold (Calendula officinalis) growth. Int. J. Environ. Sci. Technol. 2022, 19, 6057–6070. [Google Scholar] [CrossRef]
- Yi, N.; Wu, Y.; Fan, L.; Hu, S. Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon. Polish J. Environ. Stud. 2019, 28, 1461–1468. [Google Scholar] [CrossRef]
- Memari-Tabrizi, E.F.; Yousefpour-Dokhanieh, A.; Babashpour-Asl, M. Foliar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L.). Plant Physiol. Biochem. 2021, 165, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Kumar, S.; Khaliq, A.; Pandey, A. Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol. Fertil. Soils 2011, 47, 853–861. [Google Scholar] [CrossRef]
- Bidast, S.; Golchin, A.; Mohseni, A. The beneficial effects of bare and CMC-supported α-FeOOH, Fe3O4, and α-Fe2O3 nanoparticles on growth, nutrient content, and essential oil of summer savory (Satureja hortensis L.) under Cd, Pb and Zn stresses. Environ. Sci. Pollut. Res. 2023, 30, 78182–78197. [Google Scholar] [CrossRef] [PubMed]
- Maresca, V.; Badalamenti, N.; Ilardi, V.; Bruno, M.; Basile, A. The antioxidant properties and protective capacity of Prangos trifida and Cachrys cristata essential oils against cd stress in Lunularia cruciata and Brassica napus. Antioxidants 2023, 12, 793. [Google Scholar] [CrossRef]
- Khodadadi, F.; Ahmadi, F.S.; Talebi, M.; Moshtaghi, N.; Matkowski, A.; Szumny, A.; Rahimmalek, M. Essential oil composition, physiological and morphological variation in Salvia abrotanoides and S. yangii under drought stress and chitosan treatments. Ind. Crops Prod. 2022, 187, 115429. [Google Scholar] [CrossRef]
- Razavizadeh, R.; Adabavazeh, F.; Komatsu, S. Chitosan effects on the elevation of essential oils and antioxidant activity of Carum copticum L. seedlings and callus cultures under in vitro salt stress. J. Plant Biochem. Biotechnol. 2020, 29, 473–483. [Google Scholar] [CrossRef]
- Vosoughi, N.; Gomarian, M.; Pirbalouti, A.G.; Khaghani, S.; Malekpoor, F. Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Ind. Crops Prod. 2018, 117, 366–374. [Google Scholar] [CrossRef]
- Momeni, M.; Pirbalouti, A.G.; Mousavi, A.; Badi, H.N. Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. J. Essen. Oil Bearing Plants 2020, 23, 1142–1153. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Esmaielpour, B.; Gohari, G.; Haghighi, M.; Jafari, H.; Farhadi, H.; Kulak, M.; Kalisz, A. Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules 2021, 26, 4090. [Google Scholar] [CrossRef]
- Handa, N.; Kohli, S.; Sharma, A.; Thukral, A.; Bhardwaj, R.; Alyemeni, M.; Wijaya, L.; Ahmad, P. Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. S. Afr. J. Bot. 2018, 119, 1–10. [Google Scholar] [CrossRef]
- Yang, S.; Ulhassan, Z.; Shah, A.M.; Khan, A.R.; Azhar, W.; Hamid, Y.; Hussain, S.; Sheteiwy, M.S.; Salam, A.; Zhou, W. Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiol. Biochem. 2021, 166, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Askari, S.H.; Ashraf, M.A.; Ali, S.; Rizwan, M.; Rasheed, R. Menadione sodium bisulfite alleviated chromium effects on wheat by regulating oxidative defense, chromium speciation, and ion homeostasis. Environ. Sci. Pollut. Res. 2021, 28, 36205–36225. [Google Scholar] [CrossRef] [PubMed]
- Nayek, S.; Gupta, S.; Saha, R. Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater. J. Hazard. Mater. 2010, 178, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Afshan, S.; Ali, S.; Bharwana, S.A.; Rizwan, M.; Farid, M.; Abbas, F.; Ibrahim, M.; Mehmood, M.A.; Abbasi, G.H. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res. 2015, 22, 11679–11689. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Chaudhary, A.; Rizwan, M.; Anwar, H.T.; Adrees, M.; Farid, M.; Irshad, M.K.; Hayat, T.; Anjum, S.A. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2015, 22, 10669–10678. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Malekpoor, F.; Salimi, A.; Golparvar, A. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci. Horticult. 2017, 217, 114–122. [Google Scholar] [CrossRef]
- Agri, U.; Chaudhary, P.; Sharma, A.; Kukreti, B. Physiological response of maize plants and its rhizospheric microbiome under the influence of potential bioinoculants and nanochitosan. Plant Soil 2022, 474, 451–468. [Google Scholar] [CrossRef]
- Alizadeh, A.; Moghaddam, M.; Asgharzade, A.; Sourestani, M.M. Phytochemical and physiological response of Satureja hortensis L. to different irrigation regimes and chitosan application. Ind. Crops Prod. 2020, 158, 112990. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Ikram, M.; Imtiaz, M.; Mahmood, S.; Tu, S.; Chen, D. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants 2020, 9, 1173. [Google Scholar] [CrossRef]
- Alharby, H.F.; Ali, S. Combined role of Fe nanoparticles (Fe NPs) and Staphylococcus aureus L. in the alleviation of chromium stress in rice plants. Life 2022, 12, 338. [Google Scholar] [CrossRef]
- Sinam, G.; Sinha, S.; Mallick, S. Effect of chromium on accumulation and antioxidants in Cucumis utillissimus L.: Response under enhanced bioavailability condition. J. Environ. Sci. 2011, 23, 506–512. [Google Scholar] [CrossRef]
- Rai, V.; Vajpayee, P.; Singh, S.N.; Mehrotra, S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 2004, 167, 1159–1169. [Google Scholar] [CrossRef]
- Subrahmanyam, D. Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 2008, 46, 339–345. [Google Scholar] [CrossRef]
Soil Texture | Sand (%) | Silt (%) | Clay (%) | Organic Matter (g kg−1) | EC (ds m−1) | pH | Field Capacity (%) | Permanent Wilting Point (%) | Exchangeable Potassium (mg kg−1) | Cation Exchange Capacity (Cmolc kg−1) | Available Phosphorus (mg kg−1) | Total Nitrogen (g kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
clay–loam | 27 | 20 | 53 | 8.1 | 1.17 | 7.43 | 27.1 | 13.7 | 563.85 | 26.5 | 9.7 | 0.87 |
S.O.V. | df | Shoot Fresh Weight | Shoot Dry Weight | Essential Oil Content | Essential Oil Yield | Total Soluble Protein | Total Soluble Carbohydrate |
---|---|---|---|---|---|---|---|
chromium | 4 | ** | ** | * | ** | ** | * |
CS-NPs | 4 | ** | ** | * | ** | * | * |
Cr × CS-NPs | 16 | ** | ** | * | ** | ** | * |
LSD | 2.48 | 4.60 | 0.048 | 0.022 | 0.186 | 0.465 |
CS-NPs (%) | Cr (mg kg−1) | Chl a (mg g−1 FW) | Chl b (mg g−1 FW) | Chl T (a + b) (mg g−1 FW) | CARS (mg g−1 FW) | F0 | Fm | Fv/Fm | Fv | F0/ Fv |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 36.96 e–h | 21.74 efg | 58.70 gh | 21.25 def | 0.651 kl | 3.14 gh | 0.792 c | 2.49 f | 0.261 h |
10 | 33.43 ij | 21.03 fgh | 54.46 i | 20.55 efg | 0.728 h | 3.08 hi | 0.763 e | 2.35 g | 0.309 f | |
20 | 32.33 jk | 20.36 gh | 52.69 ij | 19.32 h | 0.638 lm | 2.88 k | 0.724 h | 2.08 i | 0.381 c | |
40 | 31.36 k | 19.96 h | 51.32 j | 18.65 h | 0.897 a | 2.92 k | 0.692 i | 2.02 i | 0.444 a | |
0.05 | 0 | 39.62 bc | 24.26 bc | 63.89 bc | 22.62 bcd | 0.643 lm | 3.35 e | 0.808 b | 2.71 e | 0.237 i |
10 | 38.09 c–f | 22.36 def | 60.46 def | 22.22 b–e | 0.703 i | 3.19 g | 0.779 d | 2.49 f | 0.282 g | |
20 | 37.09 e–g | 21.83 ef | 58.89 efg | 21.92 cde | 0.674 j | 2.99 j | 0.741 g | 3.22 h | 0.349 d | |
40 | 35.46 gh | 21.43 fg | 56.89 h | 21.65 c-f | 0.859 b | 3.04 ji | 0.717 h | 2.18 h | 0.394 b | |
0.1 | 0 | 41.86 a | 26 a | 67.86 a | 24.72 a | 0.795 e | 3.64 a | 0.824 a | 3 a | 0.212 j |
10 | 40.69 ab | 24.86 ab | 65.56 ab | 23.95 bc | 0.775 f | 3.53 c | 0.809 b | 2.85 cd | 0.236 i | |
20 | 38.36 c–f | 23 cde | 61.36 de | 23.12 abc | 0.759 g | 3.44 d | 0.800 d | 2.68 e | 0.282 g | |
40 | 38.86 b–e | 22.16 def | 61.02 def | 22.78 bcd | 0.827 c | 3.15 g | 0.737 g | 2.32 g | 0.356 d | |
0.2 | 0 | 39.16 bcd | 23.43 cd | 62.59 cd | 21.02 d–g | 0.636 m | 3.54 bc | 0.820 a | 2.91 bc | 0.218 j |
10 | 37.42 d–g | 22.24 def | 59.66 efg | 20.68 efg | 0.661 jk | 3.63 ab | 0.817 a | 2.96 ab | 0.222 j | |
20 | 36.52 fgh | 21.13 fgh | 57.66 gh | 20.42 e–h | 0.740 h | 3.57 bc | 0.792 c | 2.83 d | 0.261 h | |
40 | 35.32 hi | 21.81 ef | 57.12 h | 20.05 fgh | 0.809 d | 3.27 f | 0.752 f | 2.46 f | 0.329 e | |
LSD | 2.01 | 1.39 | 2.34 | 1.18 | 0.014 | 0.065 | 0.007 | 0.072 | 0.013 | |
Significance levels | ||||||||||
Cr | ** | ** | ** | * | * | * | ** | ** | ** | |
CS-NPs | * | ** | ** | ** | * | ** | ** | ** | * | |
Cr × CS-NPs | * | ** | ** | ** | * | ** | ** | ** | ** |
CS-NPs (%) | Cr (mg kg−1 Soil) | Soil Cr Content after Harvest (mg kg−1 Soil) | Root Cr Content (mg kg−1 DW) | Shoot Cr Content (mg kg−1 DW) |
---|---|---|---|---|
0 | 0 | 1.53 j | 0.76 hi | 1.23 hi |
10 | 8.52 g | 1.89 e | 2.53 de | |
20 | 17.41 e | 2.37 b | 2.9 bc | |
40 | 36.23 a | 2.54 a | 3.31 a | |
0.05 | 0 | 1.483 j | 0.71 ij | 1.19 hij |
10 | 5.48 hi | 1.17 g | 1.68 g | |
20 | 15.72 e | 2.07 d | 2.64 cde | |
40 | 24.63 c | 2.32 bc | 3.08 ab | |
0.1 | 0 | 1.01 j | 0.58 j | 0.86 j |
10 | 4.35 i | 0.88 h | 1.59 g | |
20 | 11.89 f | 1.52 f | 2.34 ef | |
40 | 21.25 d | 2.18 cd | 2.72 cd | |
0.2 | 0 | 1.19 j | 0.63 ij | 1.08 ij |
10 | 7.22 gh | 1.07 g | 1.48 gh | |
20 | 12.98 f | 1.66 f | 2.07 f | |
40 | 29.88 b | 2.26 bc | 2.73 cd | |
LSD | 2.40 | 0.15 | 0.33 | |
Significance levels | ||||
Cr | ** | ** | ** | |
CS-NPs | ** | ** | ** | |
Cr × CS-NPs | ** | ** | ** |
CS-NPs (%) | Cr (mg kg−1) | Shoot N (%) | Root N (%) | Shoot P (%) | Root P (%) | Shoot K (%) | Root K (%) | Shoot Fe mg g−1 DM | Root Fe mg g−1 DM | Shoot Zn mg g−1 DM | Root Zn mg g−1 DM | Shoot Mn mg g−1 DM | Root Mn mg g−1 DM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 2.34 cde | 2.66 def | 0.606 g–i | 0.891 b–f | 1.326 ef | 1.334 cd | 0.339 gh | 0.691 e–i | 0.230 d–g | 0.258 fg | 0.124 def | 0.137 fg |
10 | 2.21 efg | 2.28 hi | 0.546 jk | 0.643 gh | 1.227 gh | 1.083 ef | 0.320 ij | 0.600 ijk | 0.211 ij | 0.240 hi | 0.118 efg | 0.124 hi | |
20 | 2.06 gh | 2.31 hi | 0.536 k | 0.626 gh | 1.146 ij | 1.033 f | 0.310 jk | 0.547 jk | 0.198 k | 0.232 i | 0.104 hi | 0.117 ij | |
40 | 1.88 i | 2.11 i | 0.476 L | 0.611 h | 1.123 j | 1.031 f | 0.301 k | 0.497 k | 0.191 k | 0.212 j | 0.098 i | 0.111 j | |
0.05 | 0 | 2.51 bc | 3.06 bc | 0.756 b | 1.01 bc | 1.473 bc | 1.467 bc | 0.384 bc | 0.841 abc | 0.245 bc | 0.280 abc | 0.143 b | 0.157 bc |
10 | 2.33 cde | 2.71 de | 0.661 def | 0.901 b–e | 1.36 de | 1.396 bcd | 0.367 de | 0.757 c–g | 0.234 def | 0.273 cde | 0.129 cde | 0.141 def | |
20 | 2.26 def | 2.56 efg | 0.593 g–j | 0.749 e–h | 1.301 efg | 1.303 cd | 0.351 fg | 0.701 d–i | 0.223 gh | 0.266 def | 0.121 efg | 0.134 fg | |
40 | 2.11 fgh | 2.43 fgh | 0.556 ijk | 0.861 c–f | 0.121 hi | 1.251 de | 0.342 gh | 0.634 hij | 0.219 hgi | 0.249 gh | 0.113 fgh | 0.130 gh | |
0.1 | 0 | 2.71 a | 3.45 a | 0.813 a | 1.18 a | 1.566 a | 1.701 a | 0.410 a | 0.903 a | 0.258 a | 0.291 a | 0.159 a | 0.172 a |
10 | 2.53 b | 3.21 b | 0.710 bcd | 1.04 ab | 1.517 ab | 1.556 ab | 0.396 ab | 0.884 ab | 0.251 ab | 0.285 ab | 0.145 ab | 0.159 b | |
20 | 2.42 bcd | 2.96 bc | 0.673 cde | 0.851 e–f | 1.431 cd | 1.471 bc | 0.374 cd | 0.789 b–e | 0.237 cde | 0.278 bcd | 0.134 bcd | 0.148 cde | |
40 | 2.30 de | 2.71 de | 0.683 cde | 0.933 bcd | 1.316 ef | 1.384 bcd | 0.358 ef | 0.776 b–f | 0.228 efg | 0.271 cde | 0.128 cde | 0.143 def | |
0.2 | 0 | 2.32 de | 2.85 cd | 0.726 bc | 1.03 bc | 1.426 cd | 1.426 bcd | 0.369 de | 0.810 bcd | 0.242 bcd | 0.274 b-e | 0.137 bc | 0.151 bcd |
10 | 2.25 def | 2.51 e-h | 0.641 efg | 0.832 def | 1.341 ef | 1.350 cd | 0.361 def | 0.724 d–h | 0.225 fgh | 0.265 ef | 0.125 c–f | 0.139 efg | |
20 | 2.17 efg | 2.41 gh | 0.613 fgh | 0.783 d-g | 1.269 fgh | 1.267 d | 0.349 fg | 0.654 g–i | 0.215 hi | 0.259 fg | 0.123 def | 0.135 fg | |
40 | 1.97 hi | 2.45 fgh | 0.571 h–k | 0.730 fgh | 1.231 gh | 1.276 d | 0.334 hi | 0.667 f–i | 0.201 jk | 0.252 gh | 0.110 ghi | 0.131 gh | |
LSD | 0.174 | 0.241 | 0.053 | 0.165 | 0.078 | 0.183 | 0.014 | 0.111 | 0.011 | 0.12 | 0.013 | 0.010 | |
Cr | ** | ** | * | * | * | ** | ** | ** | ** | * | * | ** | |
CS-NPs | ** | ** | ** | ** | * | * | ** | ** | * | ** | * | ** | |
Cr × CS-NPs | ** | ** | ** | ** | * | ** | ** | ** | * | ** | * | ** |
CS-NPs (%) | Cr (mg kg−1) | CAT (µmol min−1 mg−1 of Protein) | APX (µmol min−1 mg−1 of Protein) | GR (µmol min−1 mg−1 of Protein) | POX (µmol min−1 mg−1 of Protein) | MDA (nmol g−1 FW) | EL (%) |
---|---|---|---|---|---|---|---|
0 | 0 | 1.34 l | 0.503 l | 0.391 i | 0.383 k | 2.49 jk | 25.08 ij |
10 | 2.45 fg | 0.851 fg | 0.623 de | 0.507 i | 3.24 fg | 28.58 gf | |
20 | 3.17 cd | 1.01 cd | 0.670 bc | 0.788 cd | 4.03 cd | 30.55 de | |
40 | 1.92 ij | 0.750 hi | 0.503 h | 0.677 ef | 4.92 a | 35.10 a | |
0.05 | 0 | 1.63 k | 0.590 k | 0.443 i | 0.395 k | 2.17 k | 20.06 l |
10 | 3.06 de | 0.926 de | 0.646 cd | 0.576 h | 2.94 ghi | 26.48 hi | |
20 | 3.46 ab | 1.06 bc | 0.679 ab | 0.837 b | 3.82 de | 30 def | |
40 | 2.28 gh | 0.794 gh | 0.601 e | 0.658 ef | 4.66 ab | 32.23 bc | |
0.1 | 0 | 1.78 jk | 0.636 jk | 0.412 i | 0.448 j | 2.43 jk | 22.98 k |
10 | 2.89 e | 0.933 e | 0.629 de | 0.642 fg | 2.74 hij | 25.80 ij | |
20 | 3.64 a | 1.21 a | 0.708 a | 0.886 a | 3.25 fg | 29.28 efg | |
40 | 2.14 hi | 0.824 fgh | 0.571 f | 0.720 e | 4.29 bc | 31.36 cd | |
0.2 | 0 | 1.59 kl | 0.684 ij | 0.468 h | 0.413 jk | 2.62 ij | 24.22 jk |
10 | 2.59 f | 0.886 ef | 0.638 d | 0.603 gh | 3.09 gh | 27.87 gh | |
20 | 3.34 bc | 1.10 b | 0.691 ab | 0.821 bc | 3.51 ef | 29.62 ef | |
40 | 2.02 hij | 0.715 i | 0.541 f | 0.756 d | 4.48 b | 33.23 b | |
LSD | 0.268 | 0.076 | 0.029 | 0.045 | 0.407 | 1.64 | |
Significance | Significance levels | ||||||
Cr | ** | * | ** | ** | ** | * | |
CS-NPs | ** | ** | * | * | ** | * | |
Cr × CS-NPs | ** | ** | ** | ** | ** | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghaninia, M.; Rasouli, F.; Javanmard, A.; Mahdavinia, G.; Azizi, S.; Nicoletti, R.; Murariu, O.C.; Tallarita, A.V.; Caruso, G. Improvement of Physiological Features and Essential Oil Content of Thymus vulgaris after Soil Amendment with Chitosan Nanoparticles under Chromium Toxicity. Horticulturae 2024, 10, 659. https://doi.org/10.3390/horticulturae10060659
Haghaninia M, Rasouli F, Javanmard A, Mahdavinia G, Azizi S, Nicoletti R, Murariu OC, Tallarita AV, Caruso G. Improvement of Physiological Features and Essential Oil Content of Thymus vulgaris after Soil Amendment with Chitosan Nanoparticles under Chromium Toxicity. Horticulturae. 2024; 10(6):659. https://doi.org/10.3390/horticulturae10060659
Chicago/Turabian StyleHaghaninia, Mohammad, Farzad Rasouli, Abdollah Javanmard, Gholamreza Mahdavinia, Sahar Azizi, Rosario Nicoletti, Otilia Cristina Murariu, Alessio Vincenzo Tallarita, and Gianluca Caruso. 2024. "Improvement of Physiological Features and Essential Oil Content of Thymus vulgaris after Soil Amendment with Chitosan Nanoparticles under Chromium Toxicity" Horticulturae 10, no. 6: 659. https://doi.org/10.3390/horticulturae10060659
APA StyleHaghaninia, M., Rasouli, F., Javanmard, A., Mahdavinia, G., Azizi, S., Nicoletti, R., Murariu, O. C., Tallarita, A. V., & Caruso, G. (2024). Improvement of Physiological Features and Essential Oil Content of Thymus vulgaris after Soil Amendment with Chitosan Nanoparticles under Chromium Toxicity. Horticulturae, 10(6), 659. https://doi.org/10.3390/horticulturae10060659