Effects of Seed Priming with Gamma Radiation on Growth, Photosynthetic Functionality, and Essential Oil and Phytochemical Contents of Savory Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Seed Treatments
2.2. Morphological and Growth Measurements
2.3. Polyphasic Chlorophyll Fluorescence Transient Evaluation
2.4. Photosynthetic Pigments
2.5. Soluble and Storage Carbohydrates
2.6. Total Phenolic, Total Flavonoid Contents, and Antioxidant Capacity
2.7. Extraction and Gas Chromatography–Mass Spectrometry (GC/MS) Analysis of Essential Oil
2.8. Statistical Analysis
3. Results
3.1. Gamma Radiation Causes Changes in Growth and Morphological Traits
3.2. Gamma Radiation Had Negative Impacts on Photosynthesis Functionality
3.3. Negative Effects of Many Doses of Gamma Radiations on Photosynthetic Pigments
3.4. The Effects of Gamma Radiation on the Amount of Soluble and Storage Carbohydrates
3.5. Increase of Total Phenolic and Total Flavonoid Contents under Gamma Radiation Treatment and Lack of Effect of It on Antioxidant Capacity
3.6. The Negative Effect of Gamma Radiation on the Percentage and Yield of Essential Oil and the Change of Yield of Critical oil Components
3.7. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadian, J.; Tabatabaei, S.; Naghavi, M.; Jamzad, Z.; Ramak-Masoumi, T. Genetic diversity of Iranian accessions of Satureja hortensis L. based on horticultural traits and RAPD markers. Sci. Hortic. 2008, 115, 196–202. [Google Scholar] [CrossRef]
- Novak, J.; Bahoo, L.; Mitteregger, U.; Franz, C. Composition of individual essential oil glands of savory (Satureja hortensis L., Lamiaceae) from Syria. Flavour Fragr. J. 2006, 21, 731–734. [Google Scholar] [CrossRef]
- Sefidkon, F.; Abbasi, K.; Khaniki, G.B. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem. 2006, 99, 19–23. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Sadraei, H.; Ghannadi, A.R.; Mohseni, M. Antispasmodic and anti-diarrhoeal effect of Satureja hortensis L. essential oil. J. Ethnopharmacol. 2000, 71, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Sefidkon, F.; Teymouri, M.; Asgari, F.; Sadeghzadeh, L.; Ahmadi, S. Antimicrobial effects of the essential oils of two Satureja species (S. khuzistanica Jamzad and S. bachtiarica Bunge) in two harvesting time. Iran. J. Med. Aromat. Plants 2007, 23, 174–182. [Google Scholar]
- Chkhikvishvili, I.; Sanikidze, T.; Gogia, N.; Mchedlishvili, T.; Enukidze, M.; Machavariani, M.; Vinokur, Y.; Rodov, V. Rosmarinic acid-rich extracts of summer savory (Satureja hortensis L.) protect Jurkat T cells against oxidative stress. Oxid. Med. Cell. Longev. 2013, 2013, 456253. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Khoshkhui, M.; Javidnia, K.; Firuzi, O.; Tafazoli, E.; Khalighi, A. Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J. Med. Plant Res. 2010, 4, 033–040. [Google Scholar]
- Del Bano, M.J.; Lorente, J.; Castillo, J.; Benavente-García, O.; Del Rio, J.A.; Ortuño, A.; Quirin, K.W.; Gerard, D. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. J. Agric. Food Chem. 2003, 51, 4247–4253. [Google Scholar] [CrossRef]
- Al-Rumaih, M.M.; Al-Rumaih, M.M. Influence of Ionizing Radiation on Antioxidant Enzymes in Three Species of Trigonella. Am. J. Environ. Sci. 2008, 4, 151. [Google Scholar] [CrossRef]
- Moghaddam, S.S.; Jaafar, H.; Ibrahim, R.; Rahmat, A.; Aziz, M.A.; Philip, E. Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules 2011, 16, 4994–5007. [Google Scholar] [CrossRef]
- Nagata, T.; Todoriki, S.; Hayashi, T.; Shibata, Y.; Mori, M.; Kanegae, H.; Kikuch, I.S. Gamma-radiation induces leaf trichome formation in Arabidopsis. Plant Physiol. 1999, 120, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Celik, O.; Atak, C. Applications of ionizing radiation in mutation breeding. New Insights Gamma Rays 2017, 6, 111–132. [Google Scholar]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Esnault, M.A.; Legue, F.; Chenal, C. Ionizing radiation: Advances in plant response. Environ. Exp. Bot. 2010, 68, 231–237. [Google Scholar] [CrossRef]
- Singhal, R.; Narayanan, U.; Rudran, K. Interception/deposition of airborne85Sr, 131I, and137Cs by spinach, radish and bean plants in a tropical region during rainfall. J. Radioanal. Nucl. Chem. 1998, 238, 13–20. [Google Scholar] [CrossRef]
- Wi, S.G.; Chung, B.Y.; Kim, J.S.; Kim, J.H.; Baek, M.H.; Lee, J.W.; Kim, Y.S. Effects of gamma irradiation on morphological changes and biological responses in plants. Micron. 2007, 38, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Aly, A. Biosynthesis of phenolic compounds and water-soluble vitamins in Culantro (Eryngium foetidum L.) plantlets as affected by low doses of gamma irradiation. Analele Univ. din Oradea, Fasc. Biol. 2010, 17, 356–361. [Google Scholar]
- Kovacs, E.; Keresztes, A. Effect of gamma and UV-B/C radiation on plant cells. Micron 2002, 33, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Baek, M.H.; Chung, B.Y.; Wi, S.G.; Kim, J.S. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. J. Plant Biol. 2004, 47, 314–321. [Google Scholar] [CrossRef]
- Wi, S.G.; Chung, B.Y.; Kim, J.H.; Baek, M.H.; Yang, D.H.; Lee, J.W.; Kim, J.S. Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradiation. J. Plant Biol. 2005, 48, 195–200. [Google Scholar] [CrossRef]
- Kulandaivelu, G.; Noorudeen, A. Comparative study of the action of ultraviolet-C and ultraviolet-B radiation on photosynthetic electron transport. Physiol. Plant. 1983, 58, 389–394. [Google Scholar] [CrossRef]
- Vardhan, P.V.; Shukla, L.I. Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int. J. Radiat. Biol. 2017, 93, 967–979. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Ahmed, O.K.; El-Desouky, W. Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus culture. Radiat. Phys. Chem. 2011, 80, 968–976. [Google Scholar] [CrossRef]
- Khalil, S.A.; Ahmad, N.; Zamir, R. Gamma radiation induced variation in growth characteristics and production of bioactive compounds during callogenesis in Stevia rebaudiana (Bert.). New Negat. Plant Sci. 2015, 1, 1–5. [Google Scholar] [CrossRef]
- Parchin, R.A.; Ghomi, A.A.N.; Badi, H.N.; Eskandari, A.; Navabpour, S.; Mehrafarin, A. Growth characteristics and phytochemical responses of Iranian fenugreek (Trigonella foenum-graecum L.) exposed to gamma irradiation. Ind Crops Prod. 2019, 139, 111593. [Google Scholar] [CrossRef]
- Shomali, A.; Aliniaeifard, S.; Didaran, F.; Lotfi, M.; Mohammadian, M.; Seif, M.; Strobel, W.R.; Sierka, E.; Kalaji, H.M. Synergistic Effects of Melatonin and Gamma-Aminobutyric Acid on Protection of Photosynthesis System in Response to Multiple Abiotic Stressors. Cells 2021, 10, 1631. [Google Scholar] [CrossRef]
- Sousaraei, N.; Mashayekhi, K.; Mousavizadeh, S.J.; Akbarpour, V.; Medina, J.; Aliniaeifard, S. Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Hortic Environ Biotechnol. 2021, 62, 521–535. [Google Scholar] [CrossRef]
- Ashrostaghi, T.; Aliniaeifard, S.; Shomali, A.; Azizinia, S.; Abbasi Koohpalekani, J.; Moosavi-Nezhad, M.; Gruda, N.S. Light Intensity: The Role Player in Cucumber Response to Cold Stress. Agronomy 2022, 12, 201. [Google Scholar] [CrossRef]
- Esmaeili, S.; Aliniaeifard, S.; Dianati Daylami, S.; Karimi, S.; Shomali, A.; Didaran, F.; Telesiński, A.; Sierka, E.; Kalaji, H.M. Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency. Sci. Rep. 2022, 12, 10002. [Google Scholar] [CrossRef]
- Aliniaeifard, S.; Hajilou, J.; Tabatabaei, S.J. Photosynthetic and growth responses of olive to proline and salicylic acid under salinity condition. Not. Bot. Horti. Agrobot Cluj Napoca. 2016, 44, 579–585. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents; Portland Press Ltd.: London, UK, 1983. [Google Scholar]
- Teng, S.; Keurentjes, J.; Bentsink, L.; Koornneef, M.; Smeekens, S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005, 139, 1840–1852. [Google Scholar] [CrossRef] [PubMed]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- McCready, R.M.; Guggolz, J.; Silviera, V.; Owensm, H.S. Determination of Starch and Amylose in Vegetables. Anal. Chem. 1950, 22, 1156–1158. [Google Scholar] [CrossRef]
- Chen, S.; Shen, X.; Cheng, S.; Li, P.; Du, J.; Chang, Y.; Meng, H. Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS ONE 2013, 8, e79730. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. JFDA 2002, 10, 178–182. [Google Scholar]
- Riviello-Flores, M.D.L.L.; Cadena-Iñiguez, J.; Ruiz-Posadas, L.D.M.; Arevalo-Galarza, M.D.L.; Castillo-Juárez, I.; Soto Hernández, M.; Castillo-Martínez, C.R. Use of Gamma Radiation for the Genetic Improvement of Underutilized Plant Varieties. Plants 2022, 11, 1161. [Google Scholar] [CrossRef]
- Gunckel, J.E.; Sparrow, A.H. Aberrant growth in plants induced by ionizing radiation. Brookhaven Symp Biol. 1954, 6, 252–279. [Google Scholar]
- Kiong, A.L.P.; Lai, A.G.; Hussein, S.; Harun, A.R. Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. Am.-Eurasian J. Sustain. Agric. 2008, 2, 135–149. [Google Scholar]
- Pitirmovae, M.A. Effect of gamma rays and mutagens on barley seeds. Fiziol. Res. 1979, 6, 127–131. [Google Scholar]
- Chandrashekar, K.R.; Somashekarappa, H.M.; Souframanien, J.; Akshatha, S. Effect of gamma irradiation on germination, growth, and biochemical parameters of Terminalia arjuna Roxb. RPE 2013, 36, 38. [Google Scholar] [CrossRef]
- Mohamed, W.; El-Shimi, I. The effect of gamma rays on the pharmaceutical products of essential oils for peppermint (Mentha piperita L.). Int. J. Farming Allied Sci. 2014, 3, 884–894. [Google Scholar]
- Babina, D.; Podobed, M.; Bondarenko, E.; Kazakova, E.; Bitarishvili, S.; Podlutskii, M.; Mitsenyk, A.; Prazyan, A.; Gorbatova, I.; Shesterikova, E. Seed gamma irradiation of Arabidopsis thaliana ABA-mutant lines alters germination and does not inhibit the photosynthetic efficiency of juvenile plants. Dose-Response 2020, 18, 1559325820979249. [Google Scholar] [CrossRef] [PubMed]
- Butler, W.; Kitajima, M. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta. 1975, 376, 116–125. [Google Scholar] [CrossRef]
- Demmig, B.; Winter, K.; Krüger, A.; Czygan, F.C. Photoinhibition and zeaxanthin formation in intact leaves: A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 1987, 84, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Oyetunji, O.J.; Ekanayake, I.J.; Osonub, O. Chlorophyll fluorescence analysis for assessing water deficit and arbuscular mycorrhizal fungi (AMF) inoculation in cassava (Manihot esculenta Crantz). Adv Biol Res. 2007, 1, 108–117. [Google Scholar]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Grzesiak, S.; Hordyńska, N.; Szczyrek, P.; Grzesiak, M.T.; Noga, A.; Szechyńska-Hebda, M. Variation among wheat (Triticum aestivum L.) genotypes in response to drought stress: I—Selection approaches. J. Plant. Interact. 2019, 14, 30–44. [Google Scholar] [CrossRef]
- Mehta, P.; Jajoo, A.; Mathur, S.; Bharti, S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol. Biochem. 2010, 48, 16–20. [Google Scholar] [CrossRef]
- Xue, Z.C.; Gao, H.Y.; Zhang, L.T. Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biol. Plant. 2013, 57, 587–590. [Google Scholar] [CrossRef]
- Hosseini, A.; Mehrjerdi, M.Z.; Aliniaeifard, S.; Seif, M. Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiol. Mol. Biol. Plants 2019, 25, 741–752. [Google Scholar] [CrossRef]
- Gomes, M.T.G.; da Luz, A.C.; dos Santos, M.R.; Batitucci, M.d.C.P.; Silva, D.M.; Falqueto, A.R. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci. Hortic. 2012, 142, 49–56. [Google Scholar] [CrossRef]
- Foyer, C.H.; Neukermans, J.; Queval, G.; Noctor, G.; Harbinson, J. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 2012, 63, 1637–1661. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Vonshak, A. Photoinhibition in outdoor Spirulina platensis cultures assessed by polyphasic chlorophyll fluorescence transients. J. Appl. Phycol. 1999, 11, 355–359. [Google Scholar] [CrossRef]
- Ramalho, J.; Marques, N.; Semedo, J.; Matos, M.; Quartin, V. Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol. 2002, 4, 112–120. [Google Scholar] [CrossRef]
- Jia, C.; Li, A. Effect of gamma radiation on mutant induction of Fagopyrum dibotrys Hara. Photosynthetica 2008, 46, 363. [Google Scholar] [CrossRef]
- Caplin, N.; Willey, N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Front. Plant Sci. 2018, 9, 375099. [Google Scholar] [CrossRef] [PubMed]
- De Micco, V.; Arena, C.; Pignalosa, D.; Durante, M. Effects of sparsely and densely ionizing radiation on plants. Radiat. Environ. Biophys. 2011, 50, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Strid, Å.; Chow, W.; Anderson, J.M. Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochim. Biophys. Acta Bioenerg. 1990, 1020, 260–268. [Google Scholar] [CrossRef]
- Dale, M.; Griffiths, D.; Bain, H.; Goodman, B. The effect of gamma irradiation on glycoalkaloid and chlorophyll synthesis in seven potato cultivars. J. Sci. Food Agric. 1997, 75, 141–147. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, J.B.; Goh, E.J.; Kim, W.J.; Kim, S.H.; Seo, Y.W.; Jang, C.S.; Kang, S.Y. Antioxidant response of Arabidopsis plants to gamma irradiation: Genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J. Plant Physiol. 2011, 168, 1960–1971. [Google Scholar] [CrossRef]
- Sakaki, T.; Kondo, N.; Sugahara, K. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: Role of active oxygens. Physiol. Plant. 1983, 59, 28–34. [Google Scholar] [CrossRef]
- Fukuzawa, K.; Inokami, Y.; Tokumura, A.; Terao, J.; Suzuki, A. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposomes. J. Lipids. 1998, 33, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Aref, I.M.; Khan, P.R.; Al Sahli, A.A.; Husen, A.; Ansari, M.; Iqbal, M. Response of Datura innoxia Linn. To gamma rays and its impact on plant growth and productivity. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2016, 86, 623–629. [Google Scholar] [CrossRef]
- Hajizadeh, H.S.; Mortazavi, S.N.; TohidI, F.; Helvaci, H.; Helvaci, M.; Alas, T.; Okatan, V. Effect of mutation induced by gamma-irradiation in ornamental plant lilium (Lilium longiflorum cv. Tresor). Pak. J. Bot. 2002, 54, 1. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.J.; Kjellbom, P.; Lamb, C.J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response. Cell J. 1992, 70, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Shu-Hsien, H.; Chih-Wen, Y.; Lin, C.H. Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 2005, 46, 1–10. [Google Scholar]
- Mohajer, S.; Mat Taha, R.; Lay, M.; Khorasani Esmaeili, A.; Khalili, M. Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of sainfoin (Onobrychis viciifolia Scop.). Sci. World J. 2014, 854093. [Google Scholar] [CrossRef]
- Kitazuru, E.; Moreira, A.; Mancini-Filho, J.; Delincee, H.; Villavicencio, A.L.C.H. Effects of irradiation on natural antioxidants of cinnamon (Cinnamomum zeylanicum N.). Radiat. Phys. Chem. 2004, 71, 39. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.Z.; Bao, J.; Corke, H. Effect of γ-irradiation on phenolic compounds in rice grain. Food Chem. 2010, 120, 74–77. [Google Scholar] [CrossRef]
- Zulan, M.; Al Zahrani, H. Effect of NaCl on the germination, seedling and some metabolic changes in sweet basil (Ocimum basilicum). Pak. J. Sci. Ind. Res. 1994, 37, 541–543. [Google Scholar]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Rathert, G. Sucrose and starch content of plant parts as a possible indicator for salt tolerance. Funct. Plant Biol. 1984, 11, 491–495. [Google Scholar] [CrossRef]
- Munns, R.; Termaat, A. Whole-plant responses to salinity. Funct. Plant Biol. 1986, 13, 143–160. [Google Scholar] [CrossRef]
- Nassar, A.H.; Hashim, M.; Hassan, N.; Abo-Zaid, H. Effect of gamma irradiation and phosphorus on growth and oil production of chamomile (Chamomilla recutita L. Rauschert). Int. J. Agric. Biol. 2004, 6, 776–780. [Google Scholar]
- Akshatha, C.K.; Chandrashekar, K. Effect of gamma irradiation on germination growth and biochemical parameters of Pterocarpus santalinus, an endangered species of Eastern Ghats. Eur. J. Exp. Biol. 2013, 3, 266–270. [Google Scholar]
- Heijde, M.; Ulm, R. UV-B photoreceptor-mediated signaling in plants. Trends Plant Sci. 2012, 17, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, R.S.; Akladious, S.A. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. J. Genet. Eng. Biotechnol. 2018, 16, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Toivonen, P.M.; Rajkowski, K.T.; Sokorai, K.J. Warm water treatment in combination with modified atmosphere packaging reduces undesirable effects of irradiation on the quality of fresh-cut iceberg lettuce. J. Agric. Food Chem. 2003, 51, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Breitfellner, F.; Solar, S.; Sontag, G. Effect of γ-irradiation on phenolic acids in strawberries. J. Food Sci. 2002, 67, 517–521. [Google Scholar] [CrossRef]
- Gitz III, D.C.; Liu-Gitz, L.; McClure, J.W.; Huerta, A.J. Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.). J. Exp. Bot. 2004, 55, 919–927. [Google Scholar] [CrossRef]
- Espín, J.; Tomas-Barberan, F. Phenolic compounds and related enzymes as determinants of fruits and vegetables quality. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar]
- Harrison, K.; Were, L. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chem. 2007, 102, 932–937. [Google Scholar] [CrossRef]
- Shim, S.L.; Hwang, I.M.; Ryu, K.Y.; Jung, M.S.; Seo, H.Y.; Kim, H.Y.; Song, H.P.; Kim, J.H.; Lee, J.W.; Byun, M.W. Effect of γ-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix. Radiat. Phys. Chem. 2009, 78, 665–669. [Google Scholar] [CrossRef]
- Dhanya, R.; Mishra, B.B.; Khaleel, K.M. Effect of gamma-irradiation on curcuminoids and volatile oils of fresh turmeric (Curcuma longa). Radiat. Phys. Chem. 2011, 80, 1247–1249. [Google Scholar] [CrossRef]
- Yalcin, H.; Ozturk, I.; Tulukcu, E.; Sagdic, O. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.). J. Food Sci. 2011, 76, C1056–C1061. [Google Scholar] [CrossRef] [PubMed]
- Venskutonis, R.; Poll, L.; Larsen, M. Effect of irradiation and storage on the composition of volatile compounds in basil (Ocimum basilicum L.). Flavour Fragr. J. 1996, 11, 117–121. [Google Scholar] [CrossRef]
- Haddad, M.; Herent, M.F.; Tilquin, B.; Quetin-Leclercq, J.L. Effect of gamma and e-beam radiation on the essential oils of Thymus vulgaris thymoliferum, Eucalyptus radiata, and Lavandula angustifolia. J. Agric. Food Chem. 2007, 55, 6082–6086. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, F.; Asri, Y.; Rasooli, I.; Alipoor, S.D.; Shaterloo, M. Chemical composition and antioxidant properties of γ-irradiated Iranian Zataria multiflora extracts. Pharm. Biol. 2012, 50, 232–238. [Google Scholar] [CrossRef]
- Seo, H.Y.; Kim, J.H.; Song, H.P.; Kim, D.H.; Byun, M.W.; Kwon, J.H.; Kim, K.S. Effects of gamma irradiation on the yields of volatile extracts of Angelica gigas Nakai. Radiat. Phys. Chem. 2007, 76, 1869–1874. [Google Scholar] [CrossRef]
- Jafari, M.; Abbaszadeh, B.; Ourei, M.; Azimi, R.; Faramarzi, A. Study on gamma ray drying method and conditions and storage duration effects on essential oil and some physiological traits of Satureja spicigera (C. Koch) Boiss. Iran. J. Med. Aromat. Plants 2022, 38, 200–217. [Google Scholar]
Texture | Sand (%) | Clay (%) | Loam (%) | PH | EC (dsm−1) | N (%) | P (%) | K (%) |
---|---|---|---|---|---|---|---|---|
Sand–loam | 58.2 | 15.2 | 26.6 | 6.1 | 2.8 | 0.08 | 34 | 525 |
Abbreviation | Equation | Definition |
---|---|---|
FV/FM | TR0/ABS = [1 − (F0/FM)] | Relative maximal variable fluorescence |
ABS/RC | M0 (1/VJ) (1/ϕP0) | Light absorbance by PSII antenna chlorophylls based on reaction center |
TR0/RC | M0 (1/VJ) | Trapped energy flux per reaction center |
ET0/RC | M0 (1/VJ) ψ0 | Flux of electron transport on the basis of reaction center |
DI0/RC | (ABS/RC) − (TR0/RC) | Flux of energy dissipated as heat, fluorescence, or transferred to the other systems at time 0 |
PIABS | (RC/ABS) × (ϕP0/(1 − ϕP0)) × (ψ0/(1 − ψ0)) | Performance index per absorbed light |
Gamma Radiation (Gray) | Plant Height (cm) | Number of Branches | Number of Nodes | Number of Leaves | Leaves Length (cm) |
0 | 34.667 ± 0.75 a | 14.667 ± 0.66 d | 29.111 ± 0.66 b | 84.889 ± 0.66 a | 4.694 ± 0.125 a |
50 | 32.583 ± 0.33 b | 18.111 ± 0.66 c | 28.333 ± 0.50 b | 86.444 ± 0.66 a | 4.417 ± 0.20 bc |
100 | 34.111 ± 1.08 ab | 28.111 ± 0.33 b | 33.778 ± 0.66 a | 86.111 ± 0.66 a | 4.250 ± 0.12 c |
200 | 32.778 ± 0.83 b | 33.111 ± 1.33 a | 34.778 ± 0.5 a | 81.778 ± 1.33 b | 4.583 ± 0.08 ab |
300 | 29.833 ± 0.50 c | 19.444 ± 0.16 c | 26.667 ± 1.16 c | 77.778 ± 0.83 c | 4.361 ± 0.04 bc |
** | ** | ** | ** | * | |
Gamma Radiation (Gray) | Stem Diameters (mm) | Root Length (cm) | |||
0 | 1.820 ± 0.06 d | 4.333 ± 0.25 c | |||
50 | 2.100 ± 0.02 bc | 6.500 ± 0.37 a | |||
100 | 1.967 ± 0.15 cd | 6.333 ± 0.25 a | |||
200 | 2.377 ± 0.12 a | 4.667 ± 0.25 bc | |||
300 | 2.217 ± 0.02 ab | 5.167 ± 0.12 b | |||
** | ** |
Gamma Radiation (Gray) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Root Fresh Weight (g) | Root Dry Weight (g) |
---|---|---|---|---|
0 | 17.420 ± 0.79 bc | 3.600 ± 0.28 b | 3.865 ± 0.10 a | 0.325 ± 0.01 a |
50 | 15.313 ± 0.245 d | 2.810 ± 0.15 c | 3.935 ± 0.11 a | 0.320 ± 00 a |
100 | 23.203 ± 1.365 a | 4.563 ± 0.17 a | 2.597 ± 0.14 b | 0.300 ± 0.04 a |
200 | 18.373 ± 0.50 b | 3.937 ± 0.34 b | 2.325 ± 0.04 c | 0.325 ± 0.01 a |
300 | 16.583 ± 0.84 cd | 2.963 ± 0.33 c | 1.515 ± 0.01 d | 0.255 ± 0.02 b |
** | ** | ** | * |
Gamma Radiation (Gray) | Soluble Sugar (mg/gFW) | Starch (mg/gFW) | Total Phenol (mg Galic Acid/gFW) | Total Flavonoid (mg Quercetin/gFW) |
0 | 31.805 ± 3.34 c | 11.550 ± 11.54 c | 2.878 ± 0.07 e | 0.407 ± 0.008 b |
50 | 47.041 ± 3.43 b | 12.166 ± 12.16 c | 3.049 ± 0.07 d | 0.503 ± 0.01 a |
100 | 85.878 ± 10.03 a | 88.609 ± 88.60 a | 3.448 ± 0.07 c | 0.509 ± 0.02 a |
200 | 52.589 ± 7.74 b | 25.465 ± 25.46 b | 3.613 ± 0.07 b | 0.518 ± 0.02 a |
300 | 47.922 ± 2.37 b | 12.255 ± 12.25 c | 4.086 ± 0.07 a | 0.525 ± 0.02 a |
** | ** | ** | ** | |
Gamma Radiation (Gray) | Phenol Yield (mg Galic Acid/Plant) | Flavonoid Yield (mg Quercetin/Plant) | ||
0 | 50.132 ± 1.23 c | 7.093 ± 0.15 d | ||
50 | 46.695 ± 1.08 d | 7.705 ± 0.28 d | ||
100 | 80.002 ± 1.64 a | 11.818 ± 0.51 a | ||
200 | 66.380 ± 1.10 b | 9.485 ± 0.40 b | ||
300 | 67.767 ± 1.17 b | 8.711 ± 0.36 c | ||
** | ** |
RI | Compound | Different Doses of Gamma Radiation (Gray) | ||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 200 | 300 | ||
929 | α-thujene | 1.79 | 1.55 | 1.29 | 1.36 | 0.24 |
937 | α-pinene | 1.03 | 0.85 | 0.74 | 0.77 | 0.15 |
973 | sabinene | 0.13 | _ | _ | _ | _ |
980 | β-pinene | 0.44 | 0.36 | 0.35 | 0.39 | _ |
985 | myrcene | 2.42 | 2.35 | 2.17 | 2.17 | 0.86 |
1011 | α-phellandrene | 0.39 | 0.37 | 0.35 | 0.35 | _ |
1022 | α-terpinene | 4.93 | 4.74 | 4.35 | 4.53 | 1.94 |
1031 | ρ-cymene | 1.78 | 2.07 | 2.93 | 4.27 | 3.21 |
1035 | limonene | 0.36 | 0.36 | 0.37 | 0.40 | _ |
1038 | 1,8-cineole | 0.24 | 0.28 | 0.25 | 0.30 | 0.07 |
1049 | E-B-ocimene | 0.13 | _ | _ | _ | _ |
1067 | γ-terpinene | 45.55 | 44.98 | 45.63 | 49.52 | 28.31 |
1076 | cis-sabinene hydrate | _ | _ | _ | 0.27 | 0.32 |
1105 | linalool | _ | 0.48 | _ | 0.21 | 0.31 |
1164 | borneol | _ | _ | _ | _ | 0.15 |
1169 | terpinene-4-ol | 0.15 | _ | 0.20 | 0.21 | 0.30 |
1257 | carvacrol methyl ether | _ | 0.43 | 0.13 | _ | _ |
1294 | thymol | 0.20 | 0.84 | _ | 0.31 | 1.55 |
1306 | carvacrol | 39.45 | 39.43 | 39.29 | 33.53 | 60.41 |
1354 | carvacrol acetate | 0.23 | 0.28 | 0.23 | 0.26 | 0.38 |
1424 | (E)-caryophyllen | 0.30 | 0.28 | 0.39 | 0.53 | 0.73 |
1499 | bicyclogermacrene | 0.14 | _ | _ | _ | _ |
1506 | β-bisabolene | 0.34 | 0.37 | 0.56 | 0.62 | 1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, V.; Zare Mehrjerdi, M.; Rastogi, A.; Gruda, N.S.; Aliniaeifard, S. Effects of Seed Priming with Gamma Radiation on Growth, Photosynthetic Functionality, and Essential Oil and Phytochemical Contents of Savory Plants. Horticulturae 2024, 10, 677. https://doi.org/10.3390/horticulturae10070677
Mohammadi V, Zare Mehrjerdi M, Rastogi A, Gruda NS, Aliniaeifard S. Effects of Seed Priming with Gamma Radiation on Growth, Photosynthetic Functionality, and Essential Oil and Phytochemical Contents of Savory Plants. Horticulturae. 2024; 10(7):677. https://doi.org/10.3390/horticulturae10070677
Chicago/Turabian StyleMohammadi, Vahideh, Mahboobeh Zare Mehrjerdi, Anshu Rastogi, Nazim S. Gruda, and Sasan Aliniaeifard. 2024. "Effects of Seed Priming with Gamma Radiation on Growth, Photosynthetic Functionality, and Essential Oil and Phytochemical Contents of Savory Plants" Horticulturae 10, no. 7: 677. https://doi.org/10.3390/horticulturae10070677
APA StyleMohammadi, V., Zare Mehrjerdi, M., Rastogi, A., Gruda, N. S., & Aliniaeifard, S. (2024). Effects of Seed Priming with Gamma Radiation on Growth, Photosynthetic Functionality, and Essential Oil and Phytochemical Contents of Savory Plants. Horticulturae, 10(7), 677. https://doi.org/10.3390/horticulturae10070677