Intraspecific Chemical Variability and Antioxidant Capacity of Siparuna guianensis Aubl. Essential Oil from Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Essential Oils and Yield
2.3. Essential Oils Chemical Composition Analysis
2.4. DPPH Antiradical Capacity
2.5. Lipid Peroxidation Capacity
2.6. Statistical Analyses and Bibliographic Search Criteria
3. Results
3.1. Yield and Chemical Composition of Essential Oils
3.2. Intraspecific Chemical Variability and Occurrence
3.3. Antioxidant Capacity
3.3.1. DPPH Anti-Radical Evaluation
3.3.2. Lipid Peroxidation Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample Code | Occurrence | Plant Part/ Extraction Type | Primary Components (>5%) | Major Classes | Oil Yield (%) | Ref. |
---|---|---|---|---|---|---|
SG-1 | Outeiro, Pará, Brazil | Leaves (HD) | Spathulenol (41.77%), drimenol (6.44%), | SO: 68.4%, SH: 27.9% | 0.89% | * |
SG-2 | Outeiro, Pará, Brazil | Leaves (HD) | Spathulenol (13.85%), curzerenone (9.60%), | SO: 53.4%, SH: 24.0%, O: 6.6% | 1.13% | * |
SG-3 | Outeiro, Pará, Brazil | Leaves (HD) | Elemol (30.30%), mustakone (16.52%), spathulenol (9.81%) | SO: 74.1%, SH: 12.4% | 0.89% | * |
SG-4 | Outeiro, Pará, Brazil | Leaves (HD) | Spathulenol (33.25%), elemol (11.47%), caryophyllene oxide (8.69%) | SO: 66.2%, SH: 18.5% | 0.81% | * |
SG-5 | Outeiro, Pará, Brazil | Leaves (HD) | Spathulenol (43.31%), epi-longipinanol (36.08%) | SO: 94.1% | 0.91% | * |
SG-6 | Salva terra, Pará, Brazil | Leaves (HD) | Curzerenone (23. 92%), drimenol (15. 72%), spathulenol (11. 52%) | SO: 76.7%, SH: 5.6% | 1.21% | * |
SG-7 | Moju, Pará, Brazil | Leaves (HD) | epi-α-Bisabolol (25.10%), spathulenol (15.70%), α-pinene (6.30%) | SO: 58.2%, SH: 35.1%, MH: 10.6% | 0.20% | [15] |
SG-8 | Rio Branco, Acre, Brazil | Leaves (HD) | Spathulenol (22.00%), selin-11-en-4α-ol (19.40%), elemol (10.00%), β-eudesmol (10.00%) | SO: 76.7%, SH: 13.8% | 0.1% | [15] |
SG-9 | Belém, Pará, Brazil | Leaves (HD) | Atractylone (31.40%), germacrone (23.20%) | SO: 58.2%, SH: 35.1%, MH: 4.8% | 0.3% | [15] |
SG-10 | Porto Velho, Rondônia, Brazil | Leaves (SD) | (E)-Nerolidol (99.30%) | SO: 99.3% | 0.5% | [16] |
SG-11 | Porto Velho, Rondônia, Brazil | Leaves (SD) | γ-Cadinene (47.80%), γ-elemene (12.60%) | SH: 74.7%, SO: 8.4% | 0.5% | [16] |
SG-12 | Porto Velho, Rondônia, Brazil | Leaves (SD) | Valencene (27.50%), E-caryophyllene (21.60%), zingiberene (13.00%) | SH: 68.9%, MH: 15.7% | 0.5% | [16] |
SG-13 | Porto Velho, Rondônia, Brazil | Leaves (SD) | α-Pinene (27.60%), 1,8-cineole (22.60%), β-cymene (9.80%) | MH: 59.3%. MO: 30.0% | 0.5% | [16] |
SG-14 | Macapá, Amapá, Brazil | Leaves (SD) | α-Muurolol (33.20%), terpinolene (17.20%) | SO: 38.9%, MH: 27.4%, SH: 14.2% | 1.50% | [17] |
SG-15 | Mogi-Guaçu, São Paulo, Brazil | Leaves (SD) | Decanoic acid (46.60%), 2-undecanone (31.70%) | MO: 83.1%, SO: 5.7% | 0.49% | [18] |
SG-16 | Porto Nacional, Tocantins, Brazil | Leaves (HD) | β-Myrcene (45.62%), 2-undecanone (17.83%) | MH: 50.5%, MO: 23.7%, SH: 17.5% | ND | [19] |
SG-17 | Lavras, Minas Gerais, Brazil | Leaves (HD) | β-Myrcene (13.14%), germacrene D (8.68%), spathulenol (4.16%), τ-muurolol (4.14%), α-bisabolol (3.53%) | SH: 38.0%, SO: 21.6%, MH: 17.9% | ND | [20] |
SG-18 | Belém, Pará, Brazil | Leaves (HD) | Atractylone (18.65%), trans-β-elemenone (11.78%), germacrene D (7.61%), curzerene (7.10%), γ-elemene (7.04%) | SO: 59.0%, SH: 38.6% | 1.42% | [21] |
SG-19 | Porto Nacional, Tocantins, Brazil | Leaves (HD) | β-Myrcene (39.67%), epi-curzerenone (18.16%), germacrene D (14.34%) | MH: 39.7%. SH: 25.5% | ND | [4] |
Appendix B
Sample | Inhibition (%) * | TEAC |
---|---|---|
SG1 | 6.9 a | 77.8 ± 9.0 |
SG2 | 9.3 b.d | 103.9 ± 13. |
SG3 | 3.7 c | 41.3 ± 3.1 |
SG4 | 9.6 d | 108.1 ± 11.5 |
SG5 | 8.3 a,b,d | 93.0 ± 6.9 |
SG6 | 7.2 a,b | 80.9 ± 2.1 |
Appendix C
Sample | Inhibition (%) * |
---|---|
SG1 | 2.1 ± 0.8 a |
SG2 | 5.4 ± 1 a.b |
SG3 | 8.7 ± 1.6 b |
SG4 | 8.3 ± 1.7 b |
SG5 | 8.2 ± 0.6 b |
SG6 | 9.1 ± 1.7 b |
Trolox | 80.5 ± 0.3 d |
Appendix D
References
- Conegundes, J.L.M.; da Silva, J.M.; de Freitas Mendes, R.; Fernandes, M.F.; de Castro Campos Pinto, N.; de Almeida, M.A.; Dib, P.R.B.; de Oliveira Andrade, R.; Rodrigues, M.N.; Castañon, M.C.M.N.; et al. Anti-Inflammatory and Antinociceptive Activity of Siparuna guianensis Aublet, an Amazonian Plant Traditionally Used by Indigenous Communities. J. Ethnopharmacol. 2021, 265, 113344. [Google Scholar] [CrossRef]
- Peixoto, A.L.; Lirio, E.J.; Pignal, M. Siparunaceae in Flora e Funga Do Brasil. Available online: https://floradobrasil.jbrj.gov.br/FB223 (accessed on 14 May 2024).
- Viana Barbosa, L.G.; Silva de Jesus, E.N.; Botelho Jerônimo, L.; Silva da Costa, J.; Cunha Silva, R.; Setzer, W.N.; R. da Silva, J.K.; da Silva Freitas, J.J.; B. Figueiredo, P.L. Siparuna guianensis Essential Oil Antitumoral Activity on Ehrlich Model and Its Effect on Oxidative Stress. Chem. Biodivers. 2023, 20, e202301120. [Google Scholar] [CrossRef]
- Moura, W.d.S.; de Souza, S.R.; Campos, F.S.; Sander Rodrigues Cangussu, A.; Macedo Sobrinho Santos, E.; Silva Andrade, B.; Borges Gomes, C.H.; Fernandes Viana, K.; Haddi, K.; Oliveira, E.E.; et al. Antibacterial Activity of Siparuna guianensis Essential Oil Mediated by Impairment of Membrane Permeability and Replication of Pathogenic Bacteria. Ind. Crops Prod. 2020, 146, 112142. [Google Scholar] [CrossRef]
- Baier Krepsky, P.; Suellen Caires Neves, D.; Nunes Santana, G. Variação Intraespecífica Na Composição e Teor Do Óleo Essencial de Lippia Thymoides. Rev. Fitos 2021, 15, 192–203. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Plantas Medicinais: Fatores de Influência No Conteúdo de Metabólitos Secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Juliani, H.R.; Koroch, A.R.; Juliani, H.R.; Trippi, V.S.; Zygadlo, J.A. Intraespecific Variation in Leaf Oils of Lippia junelliana (Mold.) Tronc. Biochem. Syst. Ecol. 2002, 30, 163–170. [Google Scholar] [CrossRef]
- Santos, P.V.L.; da Cruz, E.d.N.S.; Nunes, J.d.A.; Mourão, R.H.V.; do Nascimento, W.M.O.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal Influence on Volatile Composition of Psidium Friedrichsthalianum Leaves, Sampled in the Brazilian Amazon. Horticulturae 2023, 9, 768. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4.1 ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2017; ISBN 9781932633214. [Google Scholar]
- Mondello, L. FFNSC 2: Flavors and Fragrances of Natural and Synthetic Compounds, Mass Spectral Database; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011; ISBN 1118145836. [Google Scholar]
- Guimarães, B.d.A.; Silva, R.C.; Andrade, E.H.d.A.; Setzer, W.N.; da Silva, J.K.; Figueiredo, P.L.B. Seasonality, Composition, and Antioxidant Capacity of Limonene/δ-3-Carene/(E)-Caryophyllene Schinus Terebinthifolia Essential Oil Chemotype from the Brazilian Amazon: A Chemometric Approach. Plants 2023, 12, 2497. [Google Scholar] [CrossRef]
- dos Santos, E.L.; Xavier, J.K.A.M.; Galvão, P.L.N.; Carneiro, A.R.; Alegria, O.V.C.; Moreira, E.C.; Maia, J.G.S.; Setzer, W.N.; Figueiredo, P.L.B.; Da Silva, J.K. Volatile Profiles and DNA Barcodes of Myrtaceae Species with Occurrence in the Brazilian Amazon. Chem. Biodivers. 2024. [Google Scholar] [CrossRef]
- Silva, R.C.e.; Costa, J.S.d.; Figueiredo, R.O.d.; Setzer, W.N.; Silva, J.K.R.d.; Maia, J.G.S.; Figueiredo, P.L.B. Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules 2021, 26, 965. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gás Chromatography/Mass Spectrometry, 4.0 ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Zoghbi, M.d.G.B.; Andrade, E.H.A.; Santos, A.S.; Silva, M.H.L.; Maia, J.G.S. Essential Oils of Siparuna guianensis Aubl. J. Essent. Oil Res. 1998, 10, 543–546. [Google Scholar] [CrossRef]
- Machado, S.M.F.; Ribeiro, V.A.F.A.; Militão, J.S.L.T.; de Morais, S.M.; Machado, M.I.L. Seasonal Variation of (E)-Verolidol in Siparuna guianensis Aublet and 13 C-NMR Spectral Assignments of (E)- and (Z)-Nerolidol. J. Essent. Oil Res. 2001, 13, 130–131. [Google Scholar] [CrossRef]
- Viana, F.A.; Andrade-Neto, M.; Pouliquen, Y.B.M.; Uchoa, D.E.A.; Sobral, M.M.S.Z.; de Morais, S.M. Essential Oil of Siparuna guianensis Aublet from the Amazon Region of Brazil. J. Essent. Oil Res. 2002, 14, 60–62. [Google Scholar] [CrossRef]
- Fischer, D.C.H.; Limberger, R.P.; Henriques, A.T.; Moreno, P.R.H. Essential Oils from Fruits and Leaves of Siparuna guianensis (Aubl.) Tulasne from Southeastern Brazil. J. Essent. Oil Res. 2005, 17, 101–102. [Google Scholar] [CrossRef]
- Ferreira, T.P.; Oliveira, E.E.; Tschoeke, P.H.; Pinheiro, R.G.; Maia, A.M.S.; Aguiar, R.W.S. Potential Use of Negramina (Siparuna guianensis Aubl.) Essential Oil to Control Wax Moths and Its Selectivity in Relation to Honey Bees. Ind. Crops Prod. 2017, 109, 151–157. [Google Scholar] [CrossRef]
- Andrade, M.; das Graças Cardoso, M.; de Andrade, J.; Silva, L.; Teixeira, M.; Valério Resende, J.; da Silva Figueiredo, A.; Barroso, J. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet. Antioxidants 2013, 2, 384–397. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; da Cruz, J.N.; Almeida da Costa, W.; Silva, S.G.; Brito, M.d.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of Its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef]
- Solazzo, G.; Seidelmann, K.; Moritz, R.F.A.; Settele, J. Tetracosane on the Cuticle of the Parasitic Butterfly P Hengaris (M Aculinea) Nausithous Triggers the First Contact in the Adoption Process by M Yrmica Rubra Foragers. Physiol. Entomol. 2015, 40, 10–17. [Google Scholar] [CrossRef]
- Uddin, S.J.; Grice, D.; Tiralongo, E. Evaluation of Cytotoxic Activity of Patriscabratine, Tetracosane and Various Flavonoids Isolated from the Bangladeshi Medicinal Plant Acrostichum Aureum. Pharm. Biol. 2012, 50, 1276–1280. [Google Scholar] [CrossRef]
- Mendonça, J.d.S.; Guimarães, R.d.C.A.; Zorgetto-Pinheiro, V.A.; Fernandes, C.D.P.; Marcelino, G.; Bogo, D.; Freitas, K.d.C.; Hiane, P.A.; de Pádua Melo, E.S.; Vilela, M.L.B.; et al. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022, 27, 3563. [Google Scholar] [CrossRef]
- Moon, J.-K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and Antiacetylcholinesterase Activities of Five Plants Used as Portuguese Food Spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Alves, C.Q.; David, J.M.; David, J.P.; Bahia, M.V.; Aguiar, R.M. Métodos Para Determinação de Atividade Antioxidante in Vitro Em Substratos Orgânicos. Quim. Nova 2010, 33, 2202–2210. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps. J. Agric. Food Chem. 2005, 53, 2928–2935. [Google Scholar] [CrossRef]
Sample * | Collection Site | Voucher | Coordinates |
---|---|---|---|
SG-1 | Outeiro, Pará, Brazil | MFS010318 | 1°15′42.26″ S. 48°28′3.17″ W |
SG-2 | Outeiro, Pará, Brazil | MFS010604 | 1°15′48.42″ S. 48°28′7.98″ W |
SG-3 | Outeiro, Pará, Brazil | MFS010605 | 1°15′53.73″ S. 48°28′11.84″ W |
SG-4 | Outeiro, Pará, Brazil | MFS010606 | 1°15′52.12″ S. 48°28′10.89″ W |
SG-5 | Outeiro, Pará, Brazil | MFS001082 | 1°15′57.94″ S. 48°28′16.49″ W |
SG-6 | Salva terra, Pará, Brazil | MG246279 | 0°45′45.02″ S. 48°30′58.47″ W |
RIC | RIL | Constituents | SG-1 | SG-2 | SG-3 | SG-4 | SG-5 | SG-6 | Compounds Classes |
---|---|---|---|---|---|---|---|---|---|
934 | 924 a | α-Thujene | 0.1 | 0.1 | MH | ||||
934 | 932 a | α-Pinene | 0.4 | 0.1 | 0.3 | MH | |||
973 | 969 a | Sabinene | tr | tr | MH | ||||
977 | 974 a | β-Pinene | tr | MH | |||||
1028 | 1024 a | Limonene | 0.1 | tr | MH | ||||
1337 | 1335 a | δ-Elemene | 0.2 | 0.2 | 0.2 | SH | |||
1350 | 1345 a | α-Cubebene | 1.5 | 2.4 | 0.3 | SH | |||
1377 | 1374 a | α-Copaene | 3.6 | 2.5 | 0.2 | 2.1 | 0.2 | 0.1 | SH |
1381 | 1387 a | β-Bourbonene | 3.9 | 2.6 | 0.4 | 3.8 | 0.4 | 1.3 | SH |
1387 | 1389 a | β-Elemene | 3.9 | 4.8 | 1.1 | 3.4 | 0.4 | SH | |
1391 | 1387 a | β-Cubebene | 3.3 | SH | |||||
1417 | 1410 a | β-Longipinene | 1.6 | SH | |||||
1420 | 1417 a | E-Caryophyllene | 2.4 | 2.0 | 0.4 | 1.5 | SH | ||
1439 | 1437 a | α-Guaiene | 0.3 | SH | |||||
1446 | 1436 a | β-Copaene | 0.2 | SH | |||||
1454 | 1452 a | α-Humulene | 0.3 | 0.4 | 0.1 | SH | |||
1461 | 1464 a | 9-epi-E- Caryophyllene | 0.3 | 1.7 | SH | ||||
1472 | 1482 a | γ-Amorphene | 1.0 | 0.5 | 0.8 | 0.8 | SH | ||
1478 | 1488 a | Germacrene D | 0.9 | SH | |||||
1487 | 1486 a | β-Selinene | 0.3 | SH | |||||
1477 | 1478 a | γ-Muurolene | 0.2 | 0.2 | 0.1 | SH | |||
1486 | 1492 a | β-Selinene | 0.6 | SH | |||||
1489 | 1486 a | Dauca-5,8-diene | 0.6 | SH | |||||
1491 | 1494 a | Curzerene | 2.7 | 0.9 | SO | ||||
1495 | 1501 a | Epizonarene | 0.4 | SH | |||||
1496 | 1486 a | α-Amorphene | 0.3 | 0.2 | SH | ||||
1496 | 1495 a | δ-Amorphene | 1.3 | SH | |||||
1498 | 1500 a | Bicyclogermacrene | 1.4 | 0.4 | SH | ||||
1500 | 1500 a | α-Muurolene | 0.2 | 0.6 | 0.1 | SH | |||
1513 | 1514 a | Cubebol | 1.3 | 2.7 | 0.9 | SO | |||
1516 | 1513 a | γ-Cadinene | 1.3 | 0.5 | 0.6 | SH | |||
1517 | 1522 a | δ-Cadinene | 3.2 | 2.9 | 0.3 | 5.0 | 1.1 | SH | |
1658 | 1651 a | Pogostol | 2.2 | SO | |||||
1538 | 1544 a | α-Calacorene | 0.1 | 0.5 | SH | ||||
1547 | 1548 a | Elemol | 0.5 | 4.4 | 30.3 | 11.5 | SO | ||
1559 | 1559 a | Germacrene B | 7.0 | 1.6 | SH | ||||
1567 | 1562 a | epi-Longipinanol | 2.1 | 36.1 | SO | ||||
1573 | 1582 a | Viridiflorol | 0.2 | SO | |||||
1576 | 1574 b | Ledol | 0.3 | SO | |||||
1579 | 1582 a | Caryophyllene oxide | 2.8 | 3.4 | 8.7 | 0.9 | 0.4 | SO | |
1585 | 1577 a | Spathulenol | 41.8 | 13.9 | 9.8 | 33.3 | 43.3 | 11.5 | SO |
1588 | 1596 a | Fokienol | 4.6 | 4.4 | SO | ||||
1592 | 1592 a | Viridiflorol | 1.6 | SO | |||||
1598 | 1605 a | Curzerenone | 9.6 | 23.9 | SO | ||||
1614 | 1604 a | Khusimone | 0.2 | 1.4 | SO | ||||
1617 | 1608 a | β-Atlantol | 0.3 | SO | |||||
1630 | 1627 a | epi-Cubenol | 0.4 | 1.5 | 1.0 | 0.6 | SO | ||
1639 | 1643 a | 2-epi-β-Cedren-3-one | 4.7 | 2.1 | SO | ||||
1640 | 1646 a | Agarospirol | 3.7 | SO | |||||
1641 | 1645 b | τ-Muurolol | 0.4 | SO | |||||
1644 | 1645 a | Cubenol | 1.2 | 3.1 | 2.4 | 0.8 | SO | ||
1648 | 1644 a | α-Muurolol | 2.4 | 0.3 | 2.5 | SO | |||
1650 | 1640 a | β-Eudesmol | 4.3 | SO | |||||
1652 | 1649 a | α-Eudesmol | 5.4 | SO | |||||
1653 | 1652 a | Himachalol | 2.6 | SO | |||||
1658 | 1651 a | Pogostol | 2.2 | SH | |||||
1652 | 1644 b | Aromadendrene | 1.1 | 0.8 | SH | ||||
1653 | 1661 a | allo-Himachalol | 0.3 | SO | |||||
1656 | 1676 a | Mustakone | 0.3 | 0.7 | 16.5 | 1.2 | SO | ||
1657 | 1659 a | Cadin-4-en-10-ol | 1.0 | SO | |||||
1683 | 1684 a | epi-α-Bisabolol | 0.3 | SO | |||||
1683 | 1688 a | Eudesma-4(15)-dien-1β-ol | 7.8 | SO | |||||
1690 | 1692 a | Junicedranol | 0.4 | SO | |||||
1688 | 1693 a | Germacrone | 0.1 | SO | |||||
1729 | 1734 a | Eremofilone | 1.3 | SO | |||||
1728 | 1733 a | iso-Bicyclogermacrenal | 0.1 | SO | |||||
1765 | 1766 a | Drimenol | 6.4 | 4.3 | 6.1 | 5.6 | 15.7 | SO | |
1775 | 1773 a | α-Costol | 0.2 | SO | |||||
1879 | 1884 b | n-Hexadecanol | 0.2 | O | |||||
1943 | 1941 a | Drimenin | 7.0 | SO | |||||
2019 | 2026 a | E,E-Geranyllinalool | 0.5 | O | |||||
2101 | 2100 a | Heneicosane | 0.3 | O | |||||
2603 | 2600 a | n-Tetracosane | 5.6 | 0.9 | O | ||||
Monoterpene hydrocarbons | 0.4 | 0.0 | 0.2 | 0.0 | 0.0 | 0.5 | |||
Oxygenated monoterpenoids | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |||
Sesquiterpene hydrocarbons | 27.9 | 24.0 | 12.4 | 18.5 | 4.1 | 5.6 | |||
Oxygenated sesquiterpenoids | 68.5 | 53.4 | 74.1 | 66.2 | 94.1 | 73.7 | |||
Others | 0.0 | 6.6 | 0.0 | 0.9 | 0.0 | 0.0 | |||
Total identified | 96.7 | 84.1 | 86.7 | 85.7 | 98.2 | 79.8 |
MH | OM | SH | OS | O | TI | Ref. | |
---|---|---|---|---|---|---|---|
SG-1 | 0.4 | 27.9 | 68.5 | 96.7 | * | ||
SG-2 | 24.0 | 53.4 | 6.6 | 84.1 | * | ||
SG-3 | 0.2 | 12.4 | 74.1 | 86.7 | * | ||
SG-4 | 18.5 | 66.2 | 0.9 | 85.7 | * | ||
SG-5 | 4.1 | 94.1 | 98.2 | * | |||
SG-6 | 0.5 | 5.6 | 73.7 | 79.8 | * | ||
SG-7 | 10.6 | 0.3 | 20.1 | 50.7 | 81.7 | [15] | |
SG-8 | 0.4 | 0.2 | 13.8 | 76.7 | 91.1 | [15] | |
SG-9 | 4.8 | 1.0 | 35.1 | 58.2 | 99.1 | [15] | |
SG-10 | 0.1 | 0.4 | 99.3 | 99.8 | [16] | ||
SG-11 | 1.6 | 74.7 | 8.4 | 84.7 | [16] | ||
SG-12 | 15.7 | 1.6 | 68.9 | 86.2 | [16] | ||
SG-13 | 59.3 | 3.0 | 2.9 | 1.3 | 93.5 | [16] | |
SG-14 | 27.4 | 14.2 | 38.9 | 80.5 | [17] | ||
SG-15 | 8.4 | 83.1 | 5.7 | 2.3 | 99.5 | [18] | |
SG-16 | 50.5 | 23.7 | 17.5 | 7.6 | 99.3 | [19] | |
SG-17 | 17.9 | 1.7 | 38.0 | 21.6 | 79.3 | [20] | |
SG-18 | 0.7 | 0.3 | 38.6 | 59.0 | 98.6 | [21] | |
SG-19 | 39.7 | 9.8 | 25.5 | 24.1 | 99.0 | [4] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.B.; de Figueiredo, R.O.; Mourão, R.H.V.; Setzer, W.N.; Silva, J.K.R.d.; Figueiredo, P.L.B. Intraspecific Chemical Variability and Antioxidant Capacity of Siparuna guianensis Aubl. Essential Oil from Brazil. Horticulturae 2024, 10, 690. https://doi.org/10.3390/horticulturae10070690
Santos DB, de Figueiredo RO, Mourão RHV, Setzer WN, Silva JKRd, Figueiredo PLB. Intraspecific Chemical Variability and Antioxidant Capacity of Siparuna guianensis Aubl. Essential Oil from Brazil. Horticulturae. 2024; 10(7):690. https://doi.org/10.3390/horticulturae10070690
Chicago/Turabian StyleSantos, Daniel B., Raphael O. de Figueiredo, Rosa Helena V. Mourão, Willian N. Setzer, Joyce Kelly R. da Silva, and Pablo Luis B. Figueiredo. 2024. "Intraspecific Chemical Variability and Antioxidant Capacity of Siparuna guianensis Aubl. Essential Oil from Brazil" Horticulturae 10, no. 7: 690. https://doi.org/10.3390/horticulturae10070690
APA StyleSantos, D. B., de Figueiredo, R. O., Mourão, R. H. V., Setzer, W. N., Silva, J. K. R. d., & Figueiredo, P. L. B. (2024). Intraspecific Chemical Variability and Antioxidant Capacity of Siparuna guianensis Aubl. Essential Oil from Brazil. Horticulturae, 10(7), 690. https://doi.org/10.3390/horticulturae10070690