The Optimization of Ultrasound-Assisted Extraction for Bioactive Compounds from Flourensia cernua and Jatropha dioica and the Evaluation of Their Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents
2.3. Taguchi L9 Design
2.4. Extraction Process of Polyphenolic Compounds
2.5. Preparation of Samples
2.6. Total Flavonoids Determination
2.7. Antioxidant Activity
2.7.1. ABTS•+ Radical Scavenging Assay and IC50 Determination
2.7.2. Ferric Reducing Power (FRAP)
2.7.3. Hydroxyl Radical (OH•) Scavenging Activity
2.8. Enzyme Inhibition Assays
Inhibition of α-Amylase Assay
2.9. Ex Vivo Assay
Anti-Hemolytic Activity
2.10. Fourier-Transform Infrared Spectroscopy (FT-IR)-ATR Assay
3. Results and Discussion
3.1. Extraction Process Optimization
3.1.1. Effect of Individual Impact on Extraction Factors
3.1.2. Effect of Particle Size
3.1.3. Effect of Temperature
3.1.4. Effect of Solvent Concentration
3.1.5. Effect of Time
3.2. Total Flavonoids
3.3. Antioxidant Activity
3.3.1. ABTS•+ Radical Inhibition and IC50 Determination
3.3.2. Ferric Reducing Antioxidant Power (FRAP)
3.3.3. Hydroxyl Radical (OH•) Scavenging Activity
3.4. In Vitro and Ex Vivo Assays
3.4.1. Inhibition of α-Amylase Assay
3.4.2. Anti-Hemolytic Activity Assay
3.5. FTIR-ATR Assay
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Bin Dukhyil, A.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front. Pharmacol. 2022, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Belojević, G. Effects of polyphenols on human health. Galen. Med. J. 2023, 2, 46–52. [Google Scholar] [CrossRef]
- Agustina, R.-M.; Dealmy, D.-G.; Verónica, B.-R.; Jolanta, E.M.; Hady, K.; Ansoumane, K.; Sergio, A.R.G.; Jesús, R.R.A.; José, C.T.-C. Jatropha dioica, an Aztec plant with promising pharmacological properties: A systematic review. Afr. J. Pharm. Pharmacol. 2020, 14, 169–178. [Google Scholar] [CrossRef]
- Palomo-Ligas, L.; Flores, S.D.N.; García-Ortiz, J.D.; Pérez-Juárez, C.M.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R.; Cruz-Requena, M. Molecular Effects of Bioactive Compounds from Semi-Desert Plants and Their Uses as Potential Ingredient in Food Products. Mol. Mech. Funct. Food 2022, 1, 142–192. [Google Scholar] [CrossRef]
- De Rodríguez, D.J.; Torres-Moreno, H.; López-Romero, J.C.; Vidal-Gutiérrez, M.; Villarreal-Quintanilla, J.; Carrillo-Lomelí, D.A.; Robles-Zepeda, R.E.; Vilegas, W. Antioxidant, anti-inflammatory, and antiproliferative activities of Flourensia spp. Biocatal. Agric. Biotechnol. 2023, 47, 102552. [Google Scholar] [CrossRef]
- Ganchev, D. Antisporulation Action of Tarbush Plant (Flourensia Cernua) Towards Conidiospores of Plant Pathogens. Malays. J. Sustain. Agric. 2022, 6, 81–84. [Google Scholar] [CrossRef]
- Aranda-Ledesma, N.E.; González-Hernández, M.D.; Rojas, R.; Paz-González, A.D.; Rivera, G.; Luna-Sosa, B.; Martínez-Ávila, G.C.G. Essential Oil and Polyphenolic Compounds of Flourensia cernua Leaves: Chemical Profiling and Functional Properties. Agronomy 2022, 12, 2274. [Google Scholar] [CrossRef]
- García-Carmona, E.L.; Tijerina-Márquez, R.; Torres-González, L.; Moreno-Peña, D.; Rodríguez-Rodríguez, D.R.; Espíndola-Vela, P.; Muñoz-Espinosa, L.E.; Pérez-Rodríguez, E.; Zapata-Chavira, H.; Cordero-Pérez, P. Evaluation of the hepatoprotective effect of Flourensia cernua against the damage induced ischemia-reperfusion in Wistar rats. Ann. Hepatol. 2022, 29, 101417. [Google Scholar] [CrossRef]
- Gutiérrez-Tlahque, J.; Aguirre-Mancilla, C.L.; López-Palestina, C.; Sánchez-Fernández, R.E.; Hernández-Fuentes, A.D.; Torres-Valencia, J.M. Constituents, antioxidant and antifungal properties of Jatropha dioica var. dioica. Nat. Prod. Commun. 2019, 14, 1–5. [Google Scholar] [CrossRef]
- Ramírez-Moreno, A.; García Garza, R.; Pedroza Escobar, D.; Soto Dominguez, A.; Flores-Loyola, E.; Castillo Maldonado, I.; Keita, H.; Sharara Núñez, I.; Keita, H.; Delgadillo Guzmán, D. Antioxidant Effect of Jatropha dioica Extract on Immunoreactivity of Claudin 2 in the Kidney of Rats with Induced Diabetes. Nat. Prod. Commun. 2023, 18, 1–8. [Google Scholar] [CrossRef]
- Tijerina-Márquez, R.; Mendoza-Hernández, O.H.; Espinosa-Cantú, C.B.; Rivas-Galindo, V.M.; Moreno-Peña, D.; Torres-González, L.; Muñoz-Espinosa, L.E.; Pérez-Rodríguez, E.; Cura-Esquivel, I.A.; Cordero-Pérez, P. Evaluation of the hepatoprotective effect of an hydroalcoholic extract of Jatropha dioica against the damage induced by valproic acid in Wistar rats. Ann. Hepatol. 2024, 29, 101416. [Google Scholar] [CrossRef]
- Paz, J.E.W.; Márquez, D.B.M.; Ávila, G.C.M.; Cerda, R.E.B.; Aguilar, C.N. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason. Sonochem. 2015, 22, 474–481. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Muraglia, M.; Corbo, F. Ultrasound assisted extraction of polyphenols from ripe carob pods (Ceratonia siliqua L.): Combined designs for screening and optimizing the processing parameters. Foods 2022, 11, 284. [Google Scholar] [CrossRef]
- Gutiérrez-Sánchez, M.d.C.; Aguilar-Zárate, P.; Michel-Michel, M.R.; Ascacio-Valdés, J.A.; Reyes-Munguía, A. The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker (Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. Molecules 2022, 27, 8845. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.R.; Aguilar-Zárate, M.; Rojas, R.; Martínez-Ávila, G.C.G.; Aguilar-Zárate, P. The Insecticidal Activity of Azadirachta indica Leaf Extract: Optimization of the Microencapsulation Process by Complex Coacervation. Plants 2023, 12, 1318. [Google Scholar] [CrossRef] [PubMed]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.; Martínez-Hernández, J.L.; Rodríguez-Herrera, R.; Aguilar, C.N. Euphorbia antisyphilitica residues as a new source of ellagic acid. Chem. Pap. 2010, 64, 528–532. [Google Scholar] [CrossRef]
- Zadeh, N.S.; Zeppa, G. Recovery and concentration of polyphenols from roasted hazelnut skin extract using macroporous resins. Foods 2022, 11, 1969. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, P.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- De la Rosa, L.A.; Vazquez-Flores, A.A.; Alvarez-Parrilla, E.; Rodrigo-García, J.; Medina-Campos, O.N.; Ávila-Nava, A.; González-Reyes, S.; Pedraza-Chaverri, J. Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. J. Funct. Foods. 2014, 7, 219–228. [Google Scholar] [CrossRef]
- Van den Berg, R.; Haenen, G.R.M.M.; Van den Berg, H.; Bast, A.A.L.T. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis, and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef] [PubMed]
- Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, P.; Oyón-Ardoiz, M.; García-Estévez, I.; Ayala-Zavala, J.F.; Morán-Martínez, J.; Viveros-Valdez, E. Phenolic profiles and biological activities of extracts from edible wild fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Navidad-Murrieta, M.S.; Pérez-Larios, A.; Sanchéz-Burgos, J.A.; Ragazzo-Sánchez, J.A.; Luna-Bárcenas, G.; Sáyago-Ayerdi, S.G. Use of a taguchi design in Hibiscus sabdariffa extracts encapsulated by spray-drying. Foods 2020, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.P.G.; Barzegar, M.; Sahari, M.A.; Gavlighi, H.A. Optimization of the enzyme-assisted aqueous extraction of phenolic compounds from pistachio green hull. Food Sci. Nutr. 2019, 7, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Bindes, M.M.M.; Cardoso, V.L.; Reis, M.H.M.; Boffito, D.C. Maximisation of the polyphenol’s extraction yield from green tea leaves and sequential clarification. J. Food Eng. 2019, 241, 97–104. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Salacheep, S.; Kasemsiri, P.; Pongsa, U.; Okhawilai, M.; Chindaprasirt, P.; Hiziroglu, S. Optimization of ultrasound-assisted extraction of anthocyanins and bioactive compounds from butterfly pea petals using Taguchi method and Grey relational analysis. J. Food Sci. Technol. 2020, 57, 3720–3730. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Nishad, J.; Saha, S.; Kaur, C. Enzyme-and ultrasound-assisted extractions of polyphenols from Citrus sinensis (cv. Malta) peel: A comparative study. J. Food Process. Preserv. 2019, 43, e14046. [Google Scholar] [CrossRef]
- Aranda Ledesma, N.E. Caracterización Avanzada de Candelilla y Otras Plantas del Semi-Desierto Mexicano. Master’s Thesis, Universidad Autónoma de Nuevo León, Monterrey, Mexico, 2022. [Google Scholar]
- Khound, P.; Sarma, H.; Sarma, P.P.; Jana, U.K.; Devi, R. Ultrasound-Assisted Extraction of Verbascoside from Clerodendrum glandulosum Leaves for Analysis of Antioxidant and Antidiabetic Activities. ACS Omega 2023, 8, 20360–20369. [Google Scholar] [CrossRef] [PubMed]
- Terrazas-Hernández, J.; Santos-López, E.M.; Cariño-Cortés, R.; Jiménez-Alvarado, R.; López-Palestina, C.U.; Hernández-Fuentes, A.D. Effects of Sterilization on Bioactives of Jatropha dioica and Opuntia oligacantha Extracts, and on Antimicrobial Capacity against Streptococcus mutans. Appl. Sci. 2018, 8, 2516. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rosas, N.A.; García-Zebadúa, J.C.; Hernández-Delgado, N.; Torres-Castillo, S.; Figueroa-Arredondo, P.; Mora-Escobedo, R. Perfil de polifenoles, capacidad antioxidante y efecto citotóxico in vitro en líneas celulares humanas de un extracto hidroalcohólico de pétalos de Calendula officinalis L. TIP Rev. Espec. En Cienc. Quím.-Biol. 2019, 21 (Suppl. S1), S54–S64. [Google Scholar] [CrossRef]
- Hmidani, A.; Bouhlali, E.D.T.; Ajebli, M.; Khouya, T.; Benlyas, M.; Alem, C. In vitro investigation of antioxidant and antihemolytic activities of three Lamiaceae species from Morocco. Beni-Suef Univ. J. Basic Appl. Sci. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Alvarez-Pérez, O.B.; Ventura-Sobrevilla, J.M.; Ascacio-Valdés, J.A.; Rojas, R.; Verma, D.K.; Aguilar, C.N. Valorization of Flourensia cernua DC as source of antioxidants and antifungal bioactives. Ind. Crops Prod. 2020, 152, 112422. [Google Scholar] [CrossRef]
- Abramovič, H.; Grobin, B.; Ulrih, N.P.; Cigić, B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. J. Chem. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced research on the antioxidant activity and mechanism of polyphenols from Hippophae species—A review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.A. Approach to optimization of FRAP methodology for studies based on selected monoterpenes. Molecules 2020, 25, 5267. [Google Scholar] [CrossRef]
- Leon-Bejarano, M.; Ovando-Martínez, M.; Molina-Domínguez, C.C.; Trasviña-Mendoza, R.A.; Medina-Juárez, L. Identificación y Actividad Antioxidante de los Compuestos Fenólicos de Jatropha cardiophylla (Torr.) Müll. Arg. TIP Rev. Espec. Cienc. Quím.-Biol. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Benzie, I.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 77–106. [Google Scholar] [CrossRef]
- Gutiérrez-Del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell Longev. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ikram, S.; Zhang, H.; Ming, H.; Wang, J. Recovery of major phenolic acids and antioxidant activity of highland barley brewer’s spent grains extracts. J. Food Process. Preserv. 2020, 44, e14308. [Google Scholar] [CrossRef]
- Treml, J.; Šmejkal, K. Flavonoids as potent scavengers of hydroxyl radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, Y.; Wang, Y.; Shi, T.; Zhang, L.; Chen, Y.; Xie, M. Comparison of (poly) phenolic compounds and antioxidant properties of pomace extracts from kiwi and grape juice. Food Chem. 2019, 271, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.; Khan, M.R.; Saeed, N. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves. BMC Complement. Altern. Med. 2013, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Adame-Miranda, S.J.; Granados-Guzmán, G.; Silva-Mares, D.A.; Acevedo-Fernández, J.J.; Waksman-Minsky, N.; Salazar-Aranda, R. Evaluation of antihyperglycemic activity of plants in northeast Mexico. Cell. Mol. Biol. 2021, 67, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Mushtaq, S.; Khan, A.; Islam, A.; Khan, H.; Malik, Z.A.; Younas, F.; Khan, S.; Shah, A.A.; Badshah, M. Evaluation of phytochemical, bioactive, and antifungal potential of Jatropha curcas seed oil and de-oiled seed cake extracts against phytopathogenic fungi. Plant Pathol. J. 2021, 103, 863–873. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Miao, M. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci. 2020, 104, 190–207. [Google Scholar] [CrossRef]
- Ćorković, I.; Gašo-Sokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; Miraldi, E. Polyphenols: From theory to practice. Foods 2021, 10, 2595. [Google Scholar] [CrossRef] [PubMed]
- Saffidine, K.; Zerargui, F.; Guemmaz, T.; Baghiani, A. Evaluation of Antioxidant, Antihemolytic Activity, Analgesic and Anti-Inflammatory Potential of Aristolochia clematitis Extracts. Trop. J. Nat. Prod. Res. 2023, 7, 2996–3001. [Google Scholar] [CrossRef]
- Dima, J.; Raghda, L.; Jalil, G.A. Evaluation of hemolytic and anti-hemolytic activity of the aerial parts of Sonchus oleraceus extracts. Int. J. Pharm. Sci. Nanotechnol. 2017, 10, 3745–3751. [Google Scholar] [CrossRef]
- Estell, R.E.; Fredrickson, E.L.; Havstad, K.M. Chemical composition of Flourensia cernua at four growth stages. Grass Forage Sci. 1996, 51, 434–441. [Google Scholar] [CrossRef]
- Ventura-Sobrevilla, J.; Gutiérrez-Sánchez, G.; Bergmann, C.; Azadi, P.; Boone-Villa, D.; Rodriguez-Herrera, R.; Aguilar, C.N. Glycosylation of polyphenols in tannin-rich extracts from Euphorbia antisyphilitica, Jatropha dioica, and Larrea tridentata. In Green Chemistry and Biodiversity; Apple Academic Press: Williston, VT, USA, 2019; pp. 81–96. [Google Scholar] [CrossRef]
- Azantsa, B.G.K.; Mbong, M.-A.A.; Takuissu, G.R.; Matsinkou, R.S.; Djuikoo, I.L.N.; Youovop, J.F.; Ngondi, J.L.; Oben, J.E. Anti-hemolytic, anti-lipid peroxidation and antioxidant properties of three plants locally used to treat metabolic disorders: Allium sativum, Persea americana and Citrus sinensis. J. Food Res. 2019, 8, 89–100. [Google Scholar] [CrossRef]
- De La Cruz-Jiménez, L.; Hernández-Torres, M.A.; Monroy-García, I.N.; Rivas-Morales, C.; Verde-Star, M.J.; Gonzalez-Villasana, V.; Viveros-Valdez, E. Biological activities of seven medicinal plants used in Chiapas, Mexico. Plants 2022, 11, 1790. [Google Scholar] [CrossRef]
- Fernandes, S.; Ribeiro, C.; Paiva-Martins, F.; Catarino, C.; Santos-Silva, A. Protective effect of olive oil polyphenol phase II sulfate conjugates on erythrocyte oxidative-induced hemolysis. Food Funct. 2020, 11, 8670–8679. [Google Scholar] [CrossRef] [PubMed]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharm. 2014, 1, 35–40. [Google Scholar]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR characteristics, phenolic profiles, and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef]
- Rajhard, S.; Hladnik, L.; Vicente, F.A.; Srčič, S.; Grilc, M.; Likozar, B. Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying FTIR/HPLC. Processes 2021, 9, 1952. [Google Scholar] [CrossRef]
Levels | Factors | |||
---|---|---|---|---|
Particle Size (mm) | Temperature (°C) | Concentration Ethanol-Water (%) | Time (min) | |
L1 | 0.42 | 40 | 30 | 5 |
L2 | 0.30 | 50 | 50 | 15 |
L3 | 0.25 | 60 | 70 | 30 |
Run | Particle | Temperature | Concentration | Time | J. dioica Yield (mg·g−1) | F. cernua Yield (mg·g−1) |
---|---|---|---|---|---|---|
8 | 3 | 2 | 1 | 3 | 10.3 ± 2.0 | 117.6 ± 10.6 |
5 | 2 | 2 | 3 | 1 | 11.3 ± 3.1 | 41.9 ± 9.4 |
6 | 2 | 3 | 1 | 2 | 11.9 ± 0.2 | 84.1 ± 3.7 |
1 | 1 | 1 | 1 | 1 | 10.5 ± 1.6 | 72.5 ± 18.4 |
2 | 1 | 2 | 2 | 2 | 11.8 ± 2.8 | 115.1 ± 6.6 |
9 | 3 | 3 | 2 | 1 | 13.8 ± 0.6 | 101.3 ± 4.3 |
7 | 3 | 1 | 3 | 2 | 11.6 ± 1.5 | 107.2 ± 20.7 |
4 | 2 | 1 | 2 | 3 | 12.8 ± 1.5 | 91.0 ± 11.2 |
3 | 1 | 3 | 3 | 3 | 11.0 ± 3.5 | 108.2 ± 10.3 |
Factors | SS | df | MS | F | p | Contribution (%) |
---|---|---|---|---|---|---|
Particle size | 6331.96 | 2 | 3165.98 | 22.38 | 0.000013 | 37.97 |
Temperature | 301.59 | 2 | 150.79 | 1.06 | 0.365248 | 1.80 |
Solvent concentration | 1301.55 | 2 | 650.77 | 4.60 | 0.024354 | 7.80 |
Time | 6193.86 | 2 | 3096.93 | 21.89 | 0.000015 | 37.14 |
Particle size by time | 1603.13 | 4 | 400.78 | 5.95 | 0.005188 | 9.61 |
Error | 943.83 | 14 | 67.42 | 5.66 | ||
Total | 16,675.91 | 26 | 100 |
Factors | SS | df | MS | F | p | Contribution (%) |
---|---|---|---|---|---|---|
Particle size | 4.44 | 2 | 2.22 | 0.55 | 0.584827 | 4.14 |
Temperature | 5.33 | 2 | 2.66 | 0.66 | 0.527751 | 4.97 |
Solvent concentration | 17.58 | 2 | 8.79 | 2.20 | 0.146677 | 16.40 |
Time | 1.21 | 2 | 0.60 | 0.15 | 0.860186 | 1.13 |
Particle size by temperature | 18.80 | 4 | 4.69 | 1.09 | 0.395095 | 17.53 |
Particle size by time | 22.91 | 4 | 5.72 | 1.43 | 0.272815 | 21.37 |
Temperature by time | 22.02 | 4 | 5.50 | 1.36 | 0.296846 | 20.54 |
Error | 14.91 | 6 | 2.48 | 13.91 | ||
Total | 107.21 | 26 | 100 |
Sample | Particle Size (mm) | Temperature (°C) | Concentration (%) | Time (min) | Theoretical Yields (mg·g−1) | Actual Yield (mg·g−1) | CE Yield (mg·g−1) |
---|---|---|---|---|---|---|---|
F. cernua | 0.25 | 60 | 50 | 30 | 134.99 | 132.75 ± 1.91 | 41.36 ± 3.61 |
J. dioica | 0.30 | 60 | 50 | 5 | 13.87 | 13.14 ± 0.32 | 8.30 ± 1.23 |
Sample | Flavonoids (QE µg·mL−1) | ABTS•+ IC50 (TE µg·mL−1) | FRAP (GAE µg·mL−1) | Hydroxyl Radicals (Inhibition %) |
---|---|---|---|---|
F. cernua | 61.33 ± 2.25 a | 547.04 ± 4.58 a | 22.90 ± 0.25 a | 38.32 ± 0.91 a |
J. dioica | 36.16 ± 1.5 b | 355.61 ± 11.81 b | 15.28 ± 2.25 b | 39.75 ± 3.39 a |
Sample | In Vitro | Ex Vivo |
---|---|---|
α-Amylase | Hemolysis | |
Inhibition (%) | Inhibition (%) | |
F. cernua | 72.07 (4.26) a | 33.21 (1.56) b |
J. dioica | 49.73 (5.90) b | 56.04 (2.90) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda-Ledesma, N.E.; Aguilar-Zárate, P.; Bautista-Hernández, I.; Rojas, R.; Robledo-Jiménez, C.L.; Martínez-Ávila, G.C.G. The Optimization of Ultrasound-Assisted Extraction for Bioactive Compounds from Flourensia cernua and Jatropha dioica and the Evaluation of Their Functional Properties. Horticulturae 2024, 10, 709. https://doi.org/10.3390/horticulturae10070709
Aranda-Ledesma NE, Aguilar-Zárate P, Bautista-Hernández I, Rojas R, Robledo-Jiménez CL, Martínez-Ávila GCG. The Optimization of Ultrasound-Assisted Extraction for Bioactive Compounds from Flourensia cernua and Jatropha dioica and the Evaluation of Their Functional Properties. Horticulturae. 2024; 10(7):709. https://doi.org/10.3390/horticulturae10070709
Chicago/Turabian StyleAranda-Ledesma, Nestor Everardo, Pedro Aguilar-Zárate, Israel Bautista-Hernández, Romeo Rojas, Claudia Lizeth Robledo-Jiménez, and Guillermo Cristian Guadalupe Martínez-Ávila. 2024. "The Optimization of Ultrasound-Assisted Extraction for Bioactive Compounds from Flourensia cernua and Jatropha dioica and the Evaluation of Their Functional Properties" Horticulturae 10, no. 7: 709. https://doi.org/10.3390/horticulturae10070709
APA StyleAranda-Ledesma, N. E., Aguilar-Zárate, P., Bautista-Hernández, I., Rojas, R., Robledo-Jiménez, C. L., & Martínez-Ávila, G. C. G. (2024). The Optimization of Ultrasound-Assisted Extraction for Bioactive Compounds from Flourensia cernua and Jatropha dioica and the Evaluation of Their Functional Properties. Horticulturae, 10(7), 709. https://doi.org/10.3390/horticulturae10070709