Developing a Hyperspectral Remote Sensing-Based Algorithm to Diagnose Potato Moisture for Water-Saving Irrigation
Abstract
:1. Introduction
2. Materials and Methodologies
2.1. Plant Materials and Field Experiment under Rainproof Shelters
2.2. Sampling and Measurements
2.3. Hyperspectral Data Processing and Model Construction
2.4. Statistical Analyses
3. Results
3.1. Yield Response to Different Irrigation Amounts
3.2. Leaf Water Content and Aboveground Water Content
3.3. Changes in Hyperspectral Reflectance
3.4. Hyperspectral Feature Parameters in Relation to Changes in Plant Moisture Status
3.5. Moisture Monitoring Models
Partial Least Squares Regression (PLSR)
- (1)
- The regression equation of the spectrum and LWC estimation model is shown as follows:
- (2)
- The regression equation of the spectrum and AGWC estimation model is as follows:
3.6. Support Vector Machine (SVM)
3.7. Back-Propagation Neural Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 21 March 2024).
- Luo, Q.; Gao, M.; Liu, Z.; Lu, H.; Zhang, S. Analysis on the development situation of Chinese potato industry in 2020. In Malingshu Chanye Yu Lvse Fazhan, Proceedings of the 23rd China Potato Conference in 2021, Yulin, Shaanxi, 24 July 2021; Heilongjiang Science and Technology Press: Harbin, China, 2021; (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tang, Y.; Huang, J. Study on hyperspectral remote sensing in agriculture. Remote Sens. Technol. Appl. 2001, 16, 248–251. [Google Scholar]
- Dobrowski, S.; Pushnik, J.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 2005, 97, 403–414. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and secondary effects of water content on the spectral reflectance of leaves. Am. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- Holben, B.N.; Schutt, J.B.; McMurtrey, J., III. Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants. Int. J. Remote Sens. 1983, 4, 289–297. [Google Scholar] [CrossRef]
- Walthall, C.; Dulaney, W.; Anderson, M.; Norman, J.; Fang, H.; Liang, S. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 2004, 92, 465–474. [Google Scholar] [CrossRef]
- Borzuchowski, J.; Schulz, K. Retrieval of leaf area index (LAI) and soil water content (WC) using hyperspectral remote sensing under controlled glass house conditions for spring barley and sugar beet. Remote Sens. 2010, 2, 1702–1721. [Google Scholar] [CrossRef]
- Huo, H.; Zhang, Y.; Chen, L.; Li, C.; Gao, H. Physiological response and evaluation of drought resistance about five desert shrubs under drought stress. J. Arid. Land Resour. Environ. 2011, 25, 185–189. [Google Scholar] [CrossRef]
- Thomas, J.; Namken, L.; Oerther, G.; Brown, R. Estimating leaf water content by reflectance measurements. Agron. J. 1971, 63, 845–847. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, J.; Wang, X.; Wang, R.; Wang, F. Comparison of the characteristics of hyperspectra and red edge in rice, corn and cotton. Sci. Agric. Sin. 2004, 1, 29–35. [Google Scholar] [CrossRef]
- Tian, Q.; Gong, P.; Zhao, C.; Guo, X. The feasibility of using spectral reflectance to diagnose wheat moisture status was analyzed. Chin. Sci. Bull. 2000, 45, 6, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Guo, X.; Tian, Q. Study on the water status of the wheat leaves diagnosed by the spectral reflectance. Sci. Agric. Sin. 2001, 34, 104–107. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Y.; Cao, W.; Dai, T. Relationship between canopy reflectance and plant water status of wheat. Chin. J. Appl. Ecol. 2004, 11, 2072–2076, (In Chinese with English Abstract). [Google Scholar]
- Inoue, Y.; Morinaga, S.; Shibayama, M. Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements. Jpn. J. Crop Sci. 1993, 62, 462–469. [Google Scholar] [CrossRef]
- Yu, G.R.; Miwa, T.; Nakayama, K.; Matsuoka, N.; Kon, H. A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties. Plant Soil 2000, 227, 47–58. [Google Scholar] [CrossRef]
- Danson, F.; Steven, M.; Malthus, T.; Clark, J. High-spectral resolution data for determining leaf water content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Shibayama, M.; Akiyama, T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sens. Environ. 1989, 27, 119–127. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Zhang, C.; Du, S.; Yao, Y.; Wang, Q.; Zhao, S. Estimating and validating wheat leaf water content with three MODIS spectral indexes: A case study in Ningxia Plain. China. J. Agric. Sci. Technol. 2018, 18, 387–398. [Google Scholar]
- Jin, L.; Li, Y.; Xu, D.; Guo, J.; Zhang, B. Spectroscopy diagnostics of water content and greenness features in wheat leaf. Chin. J. Agrometeorol. 2012, 33, 124–128. [Google Scholar] [CrossRef]
- Liu, X.J.; Tian, Y.C.; Yao, X.; Cao, W.X.; Zhu, Y. Monitoring leaf water content based on hyperspectra in rice. Sci. Agric. Sin. 2012, 45, 435–442. [Google Scholar] [CrossRef]
- Su, Y.; Wang, K.; Li, S.; Xiao, C.; Chen, B.; Wang, F.; Tang, Q.; Chen, J.; Jin, X.; Lu, Y.; et al. Monitoring models of the plant water content based on cotton canopy hyperspectral reflectance. Cotton Sci. 2010, 22, 554–560. [Google Scholar]
- Peñuelas, J.; Inoue, Y. Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica 1999, 36, 355–360. [Google Scholar] [CrossRef]
- Song, Y. Analysis on Characteristics of Desert Adult Populus euphratica Leaves Water Content in Spring Using Ground Hyperspectral Data. Master’s Thesis, Xinjiang University, Ürümqi, China, 2015. (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Zhang, X.; Jin, Y.; Gu, X.; Feng, H.; Wang, C. Quantitative retrieval of water content in winter wheat leaves based on continuous wavelet transform. J. Triticeae Crops 2020, 40, 503–509, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Fu, L.; Zhou, X. Near infrared detection of wheat water content based on BP neural network. J. Henan Univ. Technol. 2013, 34, 17–20. [Google Scholar] [CrossRef]
- Cui, Z.; Fan, R.; Li, S.; Zhang, S. Major characteristics and rational utilization of chestnut soil of Inner Mongolia. J. Arid. Land Resour. Environ. 1990, 4, 25–30. [Google Scholar]
- Wang, J.; Yang, J.; Cai, J.; Zhai, G. Experimental study on the influence of working pressure and spraying angle on the single-hole spray characteristics of micro-sprinkling hose. Water Sav. Irrig. 2018, 3, 35–38. [Google Scholar]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- Rab, M.; Chandra, S.; Fisher, P.; Robinson, N.; Kitching, M.; Aumann, C.; Imhof, M. Modelling and prediction of soil water contents at field capacity and permanent wilting point of dryland cropping soils. Soil. Res 2011, 49, 389–407. [Google Scholar] [CrossRef]
- Wang, G.; Ye, H. Principal Component Analysis and Partial Least Squares Method; Tsinghua University Press: Beijing, China, 2012; ISBN 978-7-302-27942-6. [Google Scholar]
- Cheng, J.; Xu, J.; Wang, Y.; Zhang, H.; Li, X. Granary rice temperature prediction model based on BP neural network. Mod. Electron. Tech. 2021, 44, 5, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Qian, F.; Jiang, W.; Che, Z.; Gan, J. Application of PSO-SVM alogrithm in modeling of temperature control system at metro station. Urban Mass Transit Res. 2014, 17, 86–89, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Rahaman, E.H.M.S.; Khan, M.S.A.; Bazzaz, M.M. Plant canopy, tuber yield and growth analysis of potato under moderate and severe drought condition. J. Plant Sci. 2014, 2, 201–208. [Google Scholar] [CrossRef]
- Zhao, H.; Xiong, Y.; Li, F.; Wang, R.; Qiang, S.; Yao, T.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2011, 104, 68–78. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Li, F.; Wang, Z.; Gao, J.; Ba, Y. Effects of regulated drip irrigation at different growth stages on yield, quality and water use efficiency of potato in Oasis Region. Acta Agric. Boreali-Sin. 2019, 34, 145–152. [Google Scholar] [CrossRef]
- Cibula, W.G.; Zetka, E.F.; Rickman, D.L. Response of thematic mapper bands to plant water stress. Int. J. Remote Sens. 1992, 13, 1869–1880. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, J.; Zhang, J. Analysis of correlation and differences between leaf moisture and hyperspectral reflectance among different walnut varieties. For. Res. 2019, 32, 1–6. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens. Environ. 2011, 115, 659–670. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Seelig, H.D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Iii, W.W.A.; Emery, W.J. The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared. Int. J. Remote Sens. 2008, 29, 3701–3713. [Google Scholar] [CrossRef]
Soil Depth (cm) | |||
---|---|---|---|
0–20 | 20–40 | 40–60 | |
Bulk density (g/cm3) | 1.47 | 1.50 | 1.53 |
Water-holding capacity (g/g) | 0.36 | 0.28 | 0.21 |
Spectral Index | Formula |
---|---|
MSI (Moisture Stress Index) | R1599/R819 |
NDII (Normalized Difference Infrared Index) | (R819 − R1649)/(R819 + R1649) |
PSRI (Plant Senescence Reflectance Index) | (R680-R500)/R750 |
EVI (Enhanced Vegetation Index) | 2.5 × (R800 − R680)/(R800 + 6 × R680 − 7.5R450 + 1) |
ρr | The minimum band reflectance within the wavelength range of 650 to 690 nm |
ρg | The maximum band reflectance within the wavelength range of 510 to 560 nm |
SDr/SDy (Red-edge area/yellow-edge area) | (R780 − R680)/(R640 − R560) |
Sample Size | Purpose | |
---|---|---|
Training set | 105 | modeling |
Test set | 45 | verify |
Plant Water Content Index | First Derivative of Reflectance | Correlation Coefficient | Plant Water Content Index | First Derivative of Reflectance | Correlation Coefficient |
---|---|---|---|---|---|
LWC (%) | D521 | 0.4849 ** | AGWC (%) | D564 | −0.5870 ** |
D555 | −0.5731 ** | D566 | −0.5605 ** | ||
D570 | −0.5307 ** | D580 | −0.4638 ** | ||
D707 | 0.5488 ** | D603 | −0.4869 ** | ||
D716 | 0.5953 ** | D712 | 0.5977 ** | ||
D720 | 0.5482 ** | D1437 | −0.6087 ** | ||
D1519 | 0.6823 ** | D1464 | 0.6615 ** | ||
D1550 | 0.6242 ** | D1562 | 0.5755 ** | ||
D1600 | 0.5629 ** | D1600 | 0.5623 ** | ||
D1810 | 0.4531 ** | D1810 | 0.5732 ** | ||
D2104 | 0.4426 ** | D2109 | 0.5116 ** |
Plant Water Content Index | Number of Hidden Nodes | R2 | Plant Water Content Index | Number of Hidden Nodes | R2 |
---|---|---|---|---|---|
LWC (%) | 8 | 0.8499 | AGWC (%) | 8 | 0.7393 |
9 | 0.8395 | 9 | 0.7264 | ||
10 | 0.8707 | 10 | 0.7484 | ||
11 | 0.7620 | 11 | 0.7964 | ||
12 | 0.8926 | 12 | 0.8671 | ||
13 | 0.8466 | 13 | 0.6822 | ||
14 | 0.8453 | 14 | 0.7532 | ||
15 | 0.8338 | 15 | 0.6901 | ||
16 | 0.7959 | 16 | 0.8303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suyala, Q.; Li, Z.; Zhang, Z.; Jia, L.; Fan, M.; Sun, Y.; Xing, H. Developing a Hyperspectral Remote Sensing-Based Algorithm to Diagnose Potato Moisture for Water-Saving Irrigation. Horticulturae 2024, 10, 811. https://doi.org/10.3390/horticulturae10080811
Suyala Q, Li Z, Zhang Z, Jia L, Fan M, Sun Y, Xing H. Developing a Hyperspectral Remote Sensing-Based Algorithm to Diagnose Potato Moisture for Water-Saving Irrigation. Horticulturae. 2024; 10(8):811. https://doi.org/10.3390/horticulturae10080811
Chicago/Turabian StyleSuyala, Qiqige, Zhuoling Li, Zhenxin Zhang, Liguo Jia, Mingshou Fan, Youping Sun, and Haifeng Xing. 2024. "Developing a Hyperspectral Remote Sensing-Based Algorithm to Diagnose Potato Moisture for Water-Saving Irrigation" Horticulturae 10, no. 8: 811. https://doi.org/10.3390/horticulturae10080811
APA StyleSuyala, Q., Li, Z., Zhang, Z., Jia, L., Fan, M., Sun, Y., & Xing, H. (2024). Developing a Hyperspectral Remote Sensing-Based Algorithm to Diagnose Potato Moisture for Water-Saving Irrigation. Horticulturae, 10(8), 811. https://doi.org/10.3390/horticulturae10080811