Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Experimental Design
2.3. Quality Parameters of Fruits
2.4. Extraction and Determination of Polyphenols
2.5. Antioxidant Activity (Flesh and Peel)
2.6. Collection and Analysis of Volatile Organic Compounds (VOCs)
2.7. Statistical Analysis
3. Results
3.1. Comparison of Physiological and Physical Attributes across the Four Apple Cultivars
3.2. Profile of VOCs across the Four Cultivars
3.3. Bioactive Parameters of the Fruits
3.4. Discrimination of Cultivars and Clustering by Relative Abundance of Discriminatory VOCs, Polyphenol Content, and Anti-Oxidant Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, J.A. Quality Measurement of Fruits and Vegetables. Postharvest Biol. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Lin, S.; Walsh, C.S. Studies of the “Tree Factor” and Its Role in the Maturation and Ripening of ‘Gala’ and ‘Fuji’ Apples. Postharvest Biol. Technol. 2008, 48, 99–106. [Google Scholar] [CrossRef]
- Wang, A.; Tan, D.; Tatsuki, M.; Kasai, A.; Li, T.; Saito, H.; Harada, T. Molecular Mechanism of Distinct Ripening Profiles in ‘Fuji’ Apple Fruit and Its Early Maturing Sports. Postharvest Biol. Technol. 2009, 52, 38–43. [Google Scholar] [CrossRef]
- Icka, P.; Damo, R. Assessment of harvest time for Red Delicious cv. through harvest indexes in Albania. Bulg. J. Agric. Sci. 2014, 20, 628–632. [Google Scholar]
- Kvikliene, N.; Kviklys, D.; Viskelis, P. Changes in fruit quality during ripening and storage in the apple cultivar ‘Auksis’. J. Fruit Ornam. Plant Res. 2006, 14, 195. [Google Scholar]
- Kays, S.J. Preharvest Factors Affecting Appearance. Postharvest Biol. Technol. 1999, 15, 233–247. [Google Scholar] [CrossRef]
- Yue, C.; Tong, C. Consumer Preferences and Willingness to Pay for Existing and New Apple Varieties: Evidence from Apple Tasting Choice Experiments. HortTechnology 2011, 21, 376–383. [Google Scholar] [CrossRef]
- Kim, K.-B.; Lee, S.; Kim, M.-S.; Cho, B.-K. Determination of Apple Firmness by Nondestructive Ultrasonic Measurement. Postharvest Biol. Technol. 2009, 52, 44–48. [Google Scholar] [CrossRef]
- Iwanami, H.; Moriya-Tanaka, Y.; Honda, C.; Wada, M.; Moriya, S.; Okada, K.; Haji, T.; Abe, K. Relationships among Apple Fruit Abscission, Source Strength, and Cultivar. Sci. Hortic. 2012, 146, 39–44. [Google Scholar] [CrossRef]
- Hampson, C.R.; Quamme, H.A. Use of Preference Testing to Identify Tolerance Limits for Fruit Visual Attributes in Apple Breeding. HortScience 2000, 35, 921–924. [Google Scholar] [CrossRef]
- Hampson, C.R.; Sanford, K.; Cline, J. Preferences of Canadian Consumers for Apple Fruit Size. Can. J. Plant Sci. 2002, 82, 165–167. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Grant, J.E.; Lister, C.E.; Taylor, M.C. Skin Color in Apples—Influence of Copigmentation and Plastid Pigments on Shade and Darkness of Red Color in Five Genotypes. J. Am. Soc. Hortic. Sci. 1994, 119, 63–69. [Google Scholar] [CrossRef]
- Ali Nawaz Ranjha, M.M. A Critical Review on Presence of Polyphenols in Commercial Varieties of Apple Peel, Their Extraction and Health Benefits. J. Biog. Sci. Res. 2020, 6, 18. [Google Scholar] [CrossRef]
- Hwang, S.J.; Kim, Y.-W.; Park, Y.; Lee, H.-J.; Kim, K.-W. Anti-Inflammatory Effects of Chlorogenic Acid in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Inflamm. Res. 2014, 63, 81–90. [Google Scholar] [CrossRef]
- Vasconcelos, P.C.D.P.; Seito, L.N.; Di Stasi, L.C.; Akiko Hiruma-Lima, C.; Pellizzon, C.H. Epicatechin Used in the Treatment of Intestinal Inflammatory Disease: An Analysis by Experimental Models. Evid. Based Complement. Alternat. Med. 2012, 2012, 508902. [Google Scholar] [CrossRef]
- Isemura, M. Catechin in Human Health and Disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef] [PubMed]
- Dasiman, R.; Nor, N.M.; Eshak, Z.; Mutalip, S.S.M.; Suwandi, N.R.; Bidin, H. A review of procyanidin: Updates on current bioactivities and potential health benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar]
- Kader, A.A. Flavour Quality of Fruits and Vegetables. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Yahia, E.M. Apple flavour. In Horticultural Reviews; John Wiley & Sons: New York, NY, USA, 1994; pp. 197–234. [Google Scholar]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of apple aroma: A review. FTB 2016, 54, 375. [Google Scholar] [CrossRef] [PubMed]
- Chitarrini, G.; Dordevic, N.; Guerra, W.; Robatscher, P.; Lozano, L. Aroma investigation of new and standard apple varieties grown at two altitudes using gas chromatography-mass spectrometry combined with sensory analysis. Molecules 2020, 25, 3007. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Jeong, M.C.; Jang, H.W. Determination of volatile compounds by headspace-solid phase microextraction-gas chromatography/mass spectrometry: Quality evaluation of Fuji apple. Anal. Sci. Technol. 2017, 30, 68–74. [Google Scholar] [CrossRef]
- Donadel, J.Z.; Thewes, F.R.; Anese, R.D.O.; Schultz, E.E.; Berghetti, M.R.P.; Ludwig, V.; Klein, B.; Cichoski, A.J.; Barin, J.S.; Both, V.; et al. Key Volatile Compounds of ‘Fuji Kiku’ Apples as Affected by the Storage Conditions and Shelf Life: Correlation between Volatile Emission by Intact Fruit and Juice Extracted from the Fruit. Food Res. Int. 2019, 125, 108625. [Google Scholar] [CrossRef]
- Farneti, B.; Khomenko, I.; Cappellin, L.; Ting, V.; Romano, A.; Biasioli, F.; Costa, G.; Costa, F. Comprehensive VOC Profiling of an Apple Germplasm Collection by PTR-ToF-MS. Metabolomics 2015, 11, 838–850. [Google Scholar] [CrossRef]
- Daillant-Spinnler, B.; MacFie, H.J.H.; Beyts, P.K.; Hedderley, D. Relationships between perceived sensory properties and major preference directions of 12 varieties of apples from the southern hemisphere. Food Qual. 1996, 7, 113–126. [Google Scholar] [CrossRef]
- Harker, F.R.; Gunson, F.A.; Jaeger, S.R. The Case for Fruit Quality: An Interpretive Review of Consumer Attitudes, and Preferences for Apples. Postharvest Biol. Technol. 2003, 28, 333–347. [Google Scholar] [CrossRef]
- Petriccione, M.; Raffone, E.; Rega, P. Post-harvest of the Annurca apples in Campania region. Studies by the Istituto Sperimentale per la Frutticoltura [Malus pumila L.]; Post-raccolta della mela Annurca in Campania. Studi dell’ Istituto Sperimentale per la Frutticoltura di Caserta [Malus pumila L.]. Italus Hortus 2004, 11, 52–54. [Google Scholar]
- Di-Vaio, C.; Cirillo, A.; Cice, D.; El-Nakhel, C.; Rouphael, Y. Biostimulant application improves yield parameters and accentuates fruit color of Annurca apples. Agronomy 2021, 11, 715. [Google Scholar] [CrossRef]
- Graziani, G.; Ritieni, A.; Cirillo, A.; Cice, D.; Di Vaio, C. Effects of Biostimulants on Annurca Fruit Quality and Potential Nutraceutical Compounds at Harvest and during Storage. Plants 2020, 9, 775. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Testoni, A.; Genna, A. ‘Annurca’ Apple Fruit, a Southern Italy Apple Cultivar: Textural Properties and Aroma Composition. Food Chem. 2001, 73, 333–343. [Google Scholar] [CrossRef]
- Mari, A.; Tedesco, I.; Nappo, A.; Russo, G.L.; Malorni, A.; Carbone, V. Phenolic Compound Characterisation and Antiproliferative Activity of “Annurca” Apple, a Southern Italian Cultivar. Food Chem. 2010, 123, 157–164. [Google Scholar] [CrossRef]
- Tenore, G.C.; Campiglia, P.; Stiuso, P.; Ritieni, A.; Novellino, E. Nutraceutical Potential of Polyphenolic Fractions from Annurca Apple (M. Pumila Miller Cv Annurca). Food Chem. 2013, 140, 614–622. [Google Scholar] [CrossRef]
- Cefarelli, G.; D’Abrosca, B.; Fiorentino, A.; Izzo, A.; Mastellone, C.; Pacifico, S.; Piscopo, V. Free-Radical-Scavenging and Antioxidant Activities of Secondary Metabolites from Reddened Cv. Annurca Apple Fruits. J. Agric. Food Chem. 2006, 54, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Ugliano, M.; Pessina, R.; Gambuti, A.; Piombino, P.; Moio, L. Comparison of the aroma compounds in apricot (Prunus armeniaca L. cv. Pellecchiella) and apple (Malus pumila L. cv. Annurca) raw distillates. Ital. J. Food Sci. 2004, 16, 185. [Google Scholar]
- Dabrosca, B.; Pacifico, S.; Cefarelli, G.; Mastellone, C.; Fiorentino, A. ‘Limoncella’ Apple, an Italian Apple Cultivar: Phenolic and Flavonoid Contents and Antioxidant Activity. Food Chem. 2007, 104, 1333–1337. [Google Scholar] [CrossRef]
- Graziani, G.; Gaspari, A.; Di Vaio, C.; Cirillo, A.; Ronca, C.L.; Grosso, M.; Ritieni, A. Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants 2021, 10, 541. [Google Scholar] [CrossRef]
- Panzella, L.; Petriccione, M.; Rega, P.; Scortichini, M.; Napolitano, A. A Reappraisal of Traditional Apple Cultivars from Southern Italy as a Rich Source of Phenols with Superior Antioxidant Activity. Food Chem. 2013, 140, 672–679. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.B.; Mannino, P.; Marini, F. Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 2017, 78, 215–221. [Google Scholar] [CrossRef]
- Smith, R.B.; Lougheed, E.C.; Franklin, E.W.; McMillan, I. The starch iodine test for determining stage of maturation in apples. Can. J. Plant Sci. 1979, 59, 725–735. [Google Scholar] [CrossRef]
- Peirs, A.; Scheerlinck, N.; Touchant, K.; Nicolaï, B.M. PH—Postharvest Technology. Biosyst. Eng. 2002, 81, 305–311. [Google Scholar] [CrossRef]
- Kingston-Smith, A.H.; Foyer, C.H. Bundle Sheath Proteins Are More Sensitive to Oxidative Damage than Those of the Mesophyll in Maize Leaves Exposed to Paraquat or Low Temperatures. J. Exp. Bot. 2000, 51, 123–130. [Google Scholar] [CrossRef]
- Muto, A.; Müller, C.T.; Bruno, L.; McGregor, L.; Ferrante, A.; Chiappetta, A.A.C.; Bitonti, M.B.; Rogers, H.J.; Spadafora, N.D. Fruit Volatilome Profiling through GC × GC-ToF-MS and Gene Expression Analyses Reveal Differences amongst Peach Cultivars in Their Response to Cold Storage. Sci. Rep. 2020, 10, 18333. [Google Scholar] [CrossRef]
- Baldwin, A.; Dhorajiwala, R.; Roberts, C.; Dimitrova, S.; Tu, S.; Jones, S.; Ludlow, R.A.; Cammarisano, L.; Davoli, D.; Andrews, R.; et al. Storage of Halved Strawberry Fruits Affects Aroma, Phytochemical Content and Gene Expression, and Is Affected by Pre-Harvest Factors. Front. Plant Sci. 2023, 14, 1165056. [Google Scholar] [CrossRef]
- Amaro, A.L.; Spadafora, N.D.; Pereira, M.J.; Dhorajiwala, R.; Herbert, R.J.; Müller, C.T.; Rogers, H.J.; Pintado, M. Multitrait Analysis of Fresh-Cut Cantaloupe Melon Enables Discrimination between Storage Times and Temperatures and Identifies Potential Markers for Quality Assessments. Food Chem. 2018, 241, 222–231. [Google Scholar] [CrossRef]
- Hoehn, E.; Gasser, F.; Guggenbühl, B.; Künsch, U. Efficacy of Instrumental Measurements for Determination of Minimum Requirements of Firmness, Soluble Solids, and Acidity of Several Apple Varieties in Comparison to Consumer Expectations. Postharvest Biol. Technol. 2003, 27, 27–37. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical Compositional Characterization of Some Apple Cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Hulme, A.C.; Jones, J.D.; Wooltorton, L.S.C. The respiration climacteric in apple fruits. Proc. R. Soc. London. Ser. B Biol. Sci. 1963, 158, 514–535. [Google Scholar] [CrossRef]
- Karaman, Ş.; Tütem, E.; Başkan, K.S.; Apak, R. Comparison of Antioxidant Capacity and Phenolic Composition of Peel and Flesh of Some Apple Varieties. J. Sci. Food Agric. 2013, 93, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant Activity of Apple Peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Tuszyński, T. Antioxidant activity of apples–An impact of maturity stage and fruit part. Acta Sci. Pol. Technol. 2011, 10, 443–454. [Google Scholar]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which Polyphenolic Compounds Contribute to the Total Antioxidant Activities of Apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Ištuk, J.; Buljeta, I.; Voća, S.; Žlabur, J.Š.; Babojelić, M.S. Traditional, Indigenous Apple Varieties, a Fruit with Potential for Beneficial Effects: Their Quality Traits and Bioactive Polyphenol Contents. Foods 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.A.; De Jager, A.; Van Westing, L.M. Flavonoid and Chlorogenic Acid Levels in Apple Fruit: Characterisation of Variation. Sci. Hortic. 2000, 83, 249–263. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic Profiles in Eight Apple Cultivars Using High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Di Pietro, P.F.; Nunes, E.D.C.; Fett, R. Phenolic Compounds and Antioxidant Activity of the Apple Flesh and Peel of Eleven Cultivars Grown in Brazil. Sci. Hortic. 2011, 128, 261–266. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of Polyphenols in Different Apple Varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bangerth, F. The Effect of Harvest Date on Aroma Compound Production from ‘Golden Delicious’ Apple Fruit and Relationship to Respiration and Ethylene Production. Postharvest Biol. Technol. 1996, 8, 259–269. [Google Scholar] [CrossRef]
- Waghmode, B.; Masoodi, L.; Kushwaha, K.; Mir, J.I.; Sircar, D. Volatile Components Are Non-Invasive Biomarkers to Track Shelf-Life and Nutritional Changes in Apple Cv. ‘Golden Delicious’ during Low-Temperature Postharvest Storage. J. Food Compos. Anal. 2021, 102, 104075. [Google Scholar] [CrossRef]
- Mehinagic, E.; Royer, G.; Symoneaux, R.; Jourjon, F.; Prost, C. Characterization of Odor-Active Volatiles in Apples: Influence of Cultivars and Maturity Stage. J. Agric. Food Chem. 2006, 54, 2678–2687. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.; Spadafora, N.D. Analysis of Apple Flavours: The Use of Volatile Organic Componds to Address Cultivar Differences and the Correlation between Consumer Appreciation and Aroma Profiling. J. Food Qual. 2020, 2020, 8497259. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, X.; Liu, Y.; Zhang, J.; Wang, H.; Sun, L.; Fang, T.; Mao, H.; Hu, J.; Wu, L.; et al. Source Apportionment of VOCs Based on Photochemical Loss in Summer at a Suburban Site in Beijing. Atmos. Environ. 2023, 293, 119459. [Google Scholar] [CrossRef]
- Martínez, A.; Hernández, A.; Moraga, C.; Tejero, P.; de Guía Córdoba, M.; Martín, A. Detection of volatile organic compounds associated with mechanical damage in apple cv. ‘Golden Delicious’ by headspace solid-phase microextraction (HS-SPME) and GC-MS analysis. LWT 2022, 172, 114213. [Google Scholar] [CrossRef]
Cultivars | Firmness Kg cm−2 | Starch Degradation (1–5) * |
---|---|---|
‘Limoncella’ | 7.2 ± 0.63 | 1.5 ± 0.11 |
‘Golden Delicious’ | 6.0 ± 0.50 | 3.0 ± 0.20 |
‘Annurca’ | 7.0 ± 0.46 | 1.8 ± 0.18 |
‘Fuji’ | 6.5 ± 0.49 | 3.5 ± 0.22 |
Cultivars | Limoncella | Golden Delicious | Annurca | Fuji | Significance |
---|---|---|---|---|---|
Firmness (kg cm−2) | 5.35 ± 0.63 a | 4.43 ± 0.50 b | 5.20 ± 0.46a | 5.38 ± 0.49 a | *** |
Thiault index | 212.83 ± 16.56 | 190.23 ± 12.21 | 187.65 ± 16.42 | 200.15 ± 30.01 | ns |
Fruit weight (g) | 119.58 ± 7.85 d | 170.49 ± 12.44 a | 145.12 ± 9.97 c | 160.45 ± 13.21 b | *** |
*L | 78.60 ± 3.57 a | 77.43 ± 3.69 a | 33.40 ± 4.50 c | 52.25 ± 4.18 b | *** |
*a | −20.90± 10.96 c | −14.60 ± 11.61 c | 77.65 ± 11.58 a | 18.18 ± 9.79 b | *** |
*b | 46.13 ± 6.26 b | 56.83 ± 7.78 a | 7.45 ± 4.05 d | 26.35 ± 7.13 c | *** |
pH | 4.01 ± 0.08 a | 4.03 ± 0.05 a | 3.67 ± 0.13 b | 3.98 ± 0.05 a | * |
TSS(°Brix) | 14.25 ± 1.05 a | 13.05 ± 0.42 ab | 12.00 ± 1.10 b | 13.75 ± 0.69 ab | *** |
TA (gL−1 malic acid) | 8.00 ± 0.5a | 7.30 ± 0.30 b | 8.20 ± 1.17 a | 7.40 ± 0.16 b | *** |
Cultivar | FRAP | DPPH | ABTS |
---|---|---|---|
Peel | |||
µmol TE/g DW | |||
Limoncella | 57.93 ± 8.01 ab | 3.09 ± 0.05 | 34.24 ± 0.49 a |
Golden Del. | 46.97 ± 4.43 c | 3.39 ± 0.02 | 34.34 ± 0.27 a |
Fuji | 50.84 ± 4.00b c | 3.50 ± 0.58 | 30.50 ± 3.51 b |
Annurca | 60.99 ± 3.63 a | 3.00 ± 0.00 | 32.75 ± 0.50 ab |
Significance | *** | ns | * |
Flesh | |||
µmol TE/g DW | |||
Limoncella | 50.89 ± 3.48 a | 3.39 ± 0.02 | 34.10 ± 0.7 a |
Golden Del. | 24.46 ± 1.87 c | 3.31 ± 0.05 | 26.24 ± 1.43 b |
Fuji | 25.40 ± 1.52 c | 3.48 ± 0.08 | 11.14 ± 1.72 c |
Annurca | 42.71 ± 0.53 b | 3.29 ± 0.31 | 27.05 ± 3.12 a |
Significance | *** | ns | *** |
Peel | |||||
---|---|---|---|---|---|
mg/g Dry Weight | |||||
Cultivars | Limoncella | Golden Delicious | Annurca | Fuji | Significance |
Chlorogenic acid | 1.26 ± 0.21 a | 0.65 ± 0.05 b | 1.25 ± 0.05 a | 0.77 ± 0.03 b | *** |
Epicatechin | 1.20 ± 0.14 b | 1.21 ± 0.07 b | 1.48 ± 0.10 a | 1.13 ± 0.21 c | * |
Catechin | 0.63 ± 0.01 b | 0.10 ± 0.02 d | 1.19 ± 0.14 a | 0.30 ± 0.06 c | *** |
Procyanidin B1 | 0.42 ± 0.10 a | 0.28 ± 0.02 b | 0.30 ± 0.00 b | 0.06 ± 0.00 c | *** |
Procyanidin B2 | 2.09 ± 0.12 b | 2.35 ± 0.19 a | 1.95 ± 0.19 b | 1.09 ± 0.15 c | *** |
∑polyphenols analysed | 5.60 ± 0.16 b | 4.58 ± 0.22 c | 6.18 ± 0.17 a | 3.35 ± 0.24 d | *** |
Flesh | |||||
mg/g Dry Weight | |||||
Cultivars | Limoncella | Golden Delicious | Annurca | Fuji | Significance |
Chlorogenic acid | 2.39 ± 0.39 a | 0.83 ± 0.05 c | 1.33 ± 0.08 b | 0.93 ± 0.20 c | *** |
Epicatechin | 1.00 ± 0.06 a | 0.67 ± 0.11 b | 1.03 ± 0.16 a | 0.73 ± 0.04 b | ** |
Catechin | 0.95 ± 0.20 a | 0.28 ± 0.17 b | 0.33 ± 0.08 b | 0.11 ± 0.02 b | *** |
Procyanidin B1 | 0.98 ± 0.12 a | 0.22 ± 0.11 c | 0.41 ± 0.10 b | 0.19 ± 0.02 c | *** |
Procyanidin B2 | 0.95 ± 0.10 ab | 1.11 ± 0.08 a | 0.86 ± 0.14 b | 0.90 ± 0.11 b | *** |
∑polyphenols analysed | 6.25 ± 0.66 a | 3.10 ± 0.29 c | 2.88 ± 0.32 c | 3.95 ± 0.53 b | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirillo, A.; Spadafora, N.D.; James-Knight, L.; Ludlow, R.A.; Müller, C.T.; De Luca, L.; Romano, R.; Rogers, H.J.; Di Vaio, C. Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars. Horticulturae 2024, 10, 863. https://doi.org/10.3390/horticulturae10080863
Cirillo A, Spadafora ND, James-Knight L, Ludlow RA, Müller CT, De Luca L, Romano R, Rogers HJ, Di Vaio C. Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars. Horticulturae. 2024; 10(8):863. https://doi.org/10.3390/horticulturae10080863
Chicago/Turabian StyleCirillo, Aurora, Natasha D. Spadafora, Lily James-Knight, Richard A. Ludlow, Carsten T. Müller, Lucia De Luca, Raffaele Romano, Hilary J. Rogers, and Claudio Di Vaio. 2024. "Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars" Horticulturae 10, no. 8: 863. https://doi.org/10.3390/horticulturae10080863
APA StyleCirillo, A., Spadafora, N. D., James-Knight, L., Ludlow, R. A., Müller, C. T., De Luca, L., Romano, R., Rogers, H. J., & Di Vaio, C. (2024). Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars. Horticulturae, 10(8), 863. https://doi.org/10.3390/horticulturae10080863