The Effects of Planting Density, Training System and Cultivar on Vegetative Growth and Fruit Production in Young Mango (Mangifera indica L.) Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material
2.3. Training Systems
2.4. Tree Management
2.5. Experimental Design
2.6. Data Collection
2.7. Statistical Analyses
3. Results
3.1. Trunk Cross-Sectional Area (TCSA)
3.2. Tree Height
3.3. Canopy Length
3.4. Canopy Width
3.5. Tree Production
3.6. Orchard Yield
4. Discussion
4.1. Vegetative Growth and Production of Young Mango Trees Are Shaped by Complex Interactions between Planting Density, Training System and Cultivar
4.2. Effects of Planting Density, Training System and Cultivar on Changes in Tree Dimensions of Young Mango Trees
4.3. Effects of Planting Density, Training System and Cultivar on Tree Production and Orchard Yield of Young Mango Trees
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bally, I.S.E. Mangoes in Australia. In Mango Cultivation in Different Countries, 1st ed.; Valvi, S.G., Rajmohan, K., Govil, J.N., Peter, K.V., Thottappilly, G., Eds.; Studium Press: Houston, TX, USA, 2012; pp. 314–330. [Google Scholar]
- Kumar, N. High Density Planting in Mango- Prospects and Problems. Adv. Agric. Res. Technol. J. 2019, 3, 47–53. [Google Scholar] [CrossRef]
- Monselise, S.P.; Goldschmidt, E.E. Alternate bearing in fruit trees. Hort. Rev. 1982, 4, 128–173. [Google Scholar] [CrossRef]
- Souza, M.P.; Queiroz, M.A.; de Possídio, E.L.; Pereira, F.A.; Nunes, R.F.M. Study of flowering and alternate bearing of mango varieties in the São Francisco Valley. Acta Hortic. 2004, 645, 353–358. [Google Scholar] [CrossRef]
- Menzel, C.M.; Le Lagadec, M.D. Can the productivity of mango orchards be increased by using high-density plantings? Sci. Hortic. 2017, 219, 222–263. [Google Scholar] [CrossRef]
- Tustin, D.S. Future orchard planting systems—Do we need another revolution? Acta Hortic. 2014, 1058, 27–36. [Google Scholar] [CrossRef]
- Elkins, R.B.; Klonsky, K.; DeMoura, R.; DeJong, T.M. Economic evaluation of high density versus standard orchard configurations; case study using performance data for ‘Golden Russet Bosc’ pears. Acta Hortic. 2008, 800, 739–746. [Google Scholar] [CrossRef]
- Koumanov, K.S.; Staneva, I.N.; Kornov, G.D.; Germanova, D.R. Intensive sweet cherry production on dwarfing rootstocks revisited. Sci. Hortic. 2018, 229, 193–200. [Google Scholar] [CrossRef]
- Connor, D.J.; Gómez-del-Campo, M.; Rousseaux, M.C.; Searles, P.S. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 2014, 169, 71–93. [Google Scholar] [CrossRef]
- Johnson, P.R.; Robinson, D.M. The Tatura trellis system for high density mangoes. Acta Hortic. 2000, 509, 359–363. [Google Scholar] [CrossRef]
- Oosthuyse, S.; Jacobs, G. Relationship between branching frequency, and growth, cropping and structural strength of 2-year-old mango trees. Sci. Hortic. 1995, 64, 85–93. [Google Scholar] [CrossRef]
- Asrey, R.; Patel, V.B.; Barman, K.; Pal, R.K. Pruning affects fruit yield and postharvest quality in mango (Mangifera indica L.) cv. Amrapali. Fruits 2013, 68, 367–380. [Google Scholar] [CrossRef]
- Davenport, T.L. Pruning strategies to maximize tropical mango production from the time of planting to restoration of old orchards. HortScience 2006, 41, 544–548. [Google Scholar] [CrossRef]
- Fivaz, J.; Stassen, P.J.C.; Grove, H.G. Pruning and training strategies for Tommy Atkins and Sensation mango trees in higher density hedgerow systems. S. Afr. Mango Grow. Assoc. Year. 1997, 17, 37–40. [Google Scholar]
- Mizani, A. Managing Vigour, Light, Crop Load and Tree Architecture in Mango to Maximize Productivity and Quality. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2018. [Google Scholar]
- Swaroop, M.; Ram, S.; Singh, C.P.; Shukla, P. Effect of pruning on growth, flowering and fruiting in mango. Indian J. Hortic. 2001, 58, 303–308. [Google Scholar]
- Wilkie, J.D.; Robertson, D.; Olesen, T.; Sedgley, M. The timing of pruning affects flush development and flowering in ‘Honey Gold’ mango. Acta Hortic. 2008, 787, 241–243. [Google Scholar] [CrossRef]
- Scalisi, A.; McClymont, L.; Peavey, M.; Morton, P.; Scheding, S.; Underwood, J.; Goodwin, I. Detecting, mapping and digitising canopy geometry, fruit number and peel colour in pear trees with different architecture. Sci. Hortic. 2024, 326, 112737. [Google Scholar] [CrossRef]
- Jackson, J.E. Light interception and utilization by orchard systems. Hortic. Rev. 1980, 2, 208–267. [Google Scholar] [CrossRef]
- Kishore, K.; Singh, H.S.; Nath, V.; Baig, M.J.; Murthy, D.S.; Acharya, G.C.; Behera, S. Influence of canopy architecture on photosynthetic parameters and fruit quality of mango in tropical region of India. Hortic. Environ. Biotechnol. 2023, 64, 557–569. [Google Scholar] [CrossRef]
- Mahmud, K.; Ibell, P.T.; Wright, C.L.; Monks, D.; Bally, I.S.E. High-density espalier trained mangoes make better use of light. Agronomy 2023, 13, 2557. [Google Scholar] [CrossRef]
- Willaume, M.; Lauri, P.É.; Sinoquet, H. Light interception in apple trees influenced by canopy architecture manipulation. Trees Struct. Funct. 2004, 18, 703–705. [Google Scholar] [CrossRef]
- Brunner, T. Physiological Fruit Tree Training for Intensive Growing; Akadémiai Kiadó: Budapest, Hungary, 1990; 286p. [Google Scholar]
- Costes, E.; Lauri, P.É.; Regnard, J.L. Analyzing fruit tree architecture: Implications for tree management and fruit production. Hortic. Rev. 2006, 32, 1–61. [Google Scholar] [CrossRef]
- Wünsche, J.N.; Lasko, A.N.; Robinson, T.L.; Lenz, F.; Denning, S.S. The bases of productivity in apple production systems: The role of light interception by different shoot types. J. Am. Soc. Hortic. Sci. 1996, 121, 886–893. [Google Scholar] [CrossRef]
- Blaikie, S.J.; Kulkarni, V.J.; Müller, W.J. Effects of morphactin and paclobutrazol flowering treatments on shoot and root phenology in mango cv. Kensington Pride. Sci. Hortic. 2004, 101, 51–68. [Google Scholar] [CrossRef]
- Kulkarni, V.J. Chemical control of tree vigour and the promotion of flowering and fruiting in mango (Mangifera indica L.) using paclobutrazol. J. Hortic. Sci. 1988, 63, 557–566. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance paclobutrazol. Eur. Food Saf. Auth. J. 2010, 8, 1876. [Google Scholar] [CrossRef]
- Lu, P.; Chacko, E.K.; Bithell, S.L.; Schaper, H.; Wiebel, J.; Cole, S.; Müller, W.J. Productivity is negatively related to shoot growth across five mango cultivars in the seasonally wet-dry tropics of northern Australia. Fruits 2013, 68, 279–289. [Google Scholar] [CrossRef]
- Bally, I.S.E.; Johnson, P.J.; Kulkarni, V.J. Mango production in Australia. Acta Hortic. 2000, 509, 59–67. [Google Scholar] [CrossRef]
- Hofman, P.; Whiley, A.W. CalypsoTM Best Practice Guide—From Tree to Taste, 1st ed.; Department of Agriculture and Fisheries: Brisbane, Australia, 2010.
- Silva, A.C.; da Souza, A.P.; de Leonel, S.; Souza, M.E.; de Ramos, D.P.; Tanaka, A.A. Growth and flowering of five mango cultivars under subtropical conditions of Brazil. Am. J. Plant Sci. 2014, 5, 393–402. [Google Scholar] [CrossRef]
- Singh, T.K.; Singh, J.; Singh, D.B. Performance of mango varieties in Kymore plateau of Madhya Pradesh. Prog. Hortic. 2013, 45, 268–272. [Google Scholar]
- Avila-Reséndiz, C.; Pérez-Garcia, E.; Matheis-Toledano, L.; Mosqueda-Vázquez, R. Production efficiency of compact ‘Manila’ mangos grafted onto different interstock-rootstock combinations. Acta Hortic. 1993, 341, 281–287. [Google Scholar] [CrossRef]
- Reddy, Y.T.N.; Kurian, R.M.; Ramachander, P.R.; Singh, G.; Kohli, R.R. Long-term effects of rootstocks on growth and fruit yielding patterns of ‘Alphonso’ mango (Mangifera indica L.). Sci. Hortic. 2003, 97, 95–108. [Google Scholar] [CrossRef]
- Smith, M.W.; Bright, J.D.; Hoult, M.D.; Renfree, R.A.; Maddern, T.; Coombes, N. Field evaluation of 64 rootstocks for growth and yield of ‘Kensington Pride’ mango. HortScience 2008, 43, 1720–1725. [Google Scholar] [CrossRef]
- Enderlin, N.G.; Sinclair, I.S.; Webb, I.G. The Soils and Agricultural Land Suitability of the Mareeba-Dimbulah Irrigation Area (MDIA); Department of Natural Resources, Queensland Government: Woolloongabba, QLD, Australia, 1997.
- Australian Bureau of Meteorology. Available online: http://www.bom.gov.au/climate/data/index.shtml?bookmark=136&zoom=2&lat=-20.7065&lon=147.78&layers=B00000TFFFFFFFTFFFFFFFFFFFFFFFFFFFFTTT&dp=IDC10002-d (accessed on 5 February 2021).
- Knight, R.J.; Campbell, R.J.; Maguire, I. Important mango cultivars and their descriptors. In The Mango Botany, Production and Uses, 2nd ed.; Litz, L., Ed.; CABI International: Cambridge, MA, USA, 2009; pp. 42–66. [Google Scholar] [CrossRef]
- IP Australia. Mangifera indica Mango ‘B74’. Plant Var. J. 2001, 14, 45–46. [Google Scholar]
- HIA (Horticulture Innovation Australia). Australian Horticulture Statistics Handbook, Fruit, 2017/2018; Horticulture Innovation Australia: Sydney, Australia, 2019; 116p. [Google Scholar]
- Bally, I.S.E. New mango hybrids from Australia. Acta Hortic. 2013, 975, 55–61. [Google Scholar] [CrossRef]
- Oosthuyse, S.A. Ideas on pruning of mango trees. S. Afr. Mango Grow. Assoc. Year. 1992, 12, 1–8. [Google Scholar]
- Oosthuyse, S.A. Pruning of mango trees: An update. S. Afr. Mango Grow. Assoc. Year. 1995, 15, 1–8. [Google Scholar]
- Meurant, N.; Holmes, R.; MacLeod, N.; Fullelove, G.; Bally, I.S.E.; Kernot, I. Mango Information Kit. Agrilink, Your Growing Guide to Better Farming Guide. Manual. Agrilink Series QAL9903. Department of Primary Industries, Queensland Horticulture Institute, Brisbane, Queensland. 1999. Available online: https://era.daf.qld.gov.au/id/eprint/1647 (accessed on 5 May 2023).
- Butler, D.G.; Cullis, B.R.; Gilmour, A.R.; Gogel, B.J. Mixed Models for S Language Environments, ASReml-R Reference Manual; Training and Development Series; No QE02001; QLD Department of Primary Industries and Fisheries: Brisbane, Australia, 2009.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: http://www.R-project.org/ (accessed on 26 July 2024).
- Scholefield, P.B.; Oag, D.R.; Sedgley, M. The relationship between vegetative and reproductive development in the mango in Northern Australia. Aust. J. Agric. Res. 1986, 37, 425–433. [Google Scholar] [CrossRef]
- Issarakraisila, M.; Considine, J.A.; Turner, D.W. Vegetative and reproductive growth aspects of mango growing in a Mediterranean climate in Western Australia. Acta Hortic. 1997, 455, 56–63. [Google Scholar] [CrossRef]
- Capelli, M.; Lauri, P.-É.; Normand, F. Deciphering the costs of reproduction in mango—Vegetative growth matters. Front. Plant Sci. 2016, 7, 1531. [Google Scholar] [CrossRef]
- Ibell, P.T.; Normand, F.; Kolala, R.; Wright, C.L.; White, N.; Bally, I.S.E. The effects of cultivar and training system on vegetative growth of mango (Mangifera indica) orchards in Far North Queensland. Acta Hortic. 2018, 1228, 77–83. [Google Scholar] [CrossRef]
- Whiley, A.W.; Rasmussen, T.S.; Saranah, J.B.; Wolstenholme, B.N. Effect of temperature on growth, dry matter production and starch accumulation in ten mango (Mangifera indica L.) cultivars. J. Hort. Sci. 1989, 64, 753–765. [Google Scholar] [CrossRef]
- Oosthuyse, S.A. Pruning of Sensation mango trees to maintain their size and effect uniform and later flowering. S. Afr. Mango Grow. Assoc. 1994, 14, 1–6. [Google Scholar]
- Ramírez, F.; Davenport, T.L.; Fischer, G.; Pinzón, J.C.A. The stem age required for floral induction of synchronized mango trees in the tropics. HortScience 2010, 45, 1453–1458. [Google Scholar] [CrossRef]
- Persello, S.; Grechi, I.; Boudon, F.; Normand, F. Nature abhors a vacuum: Deciphering the vegetative reaction of the mango to tree to pruning. Eur. J. Agron. 2019, 104, 85–96. [Google Scholar] [CrossRef]
- Shaban, A.E.A. Vegetative growth cycles of some mango cultivars in relation to flowering and fruiting. World J. Agric. Sci. 2009, 5, 751–759. [Google Scholar]
- Obeso, J.R. The cost of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef]
- Capelli, M.; Lauri, P.É.; Léchaudel, M.; Normand, F. Hormones and carbohydrates are both involved in the negative effects of reproduction on vegetative bud outgrowth in the mango tree: Consequences for irregular bearing. Tree Physiol. 2021, 41, 2293–2307. [Google Scholar] [CrossRef]
- Enquist, B.J.; Niklas, K.J. Invariant scaling relations across tree-dominated communities. Nature 2001, 410, 655–660. [Google Scholar] [CrossRef]
- Porté, A.; Trichet, P.; Bert, D.; Loustau, D. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait). For. Ecol. Manag. 2002, 158, 71–83. [Google Scholar] [CrossRef]
- Westwood, M.N.; Roberts, A.N. The relationship between trunk cross-sectional area and weight of apple trees. J. Am. Soc. Hortic. Sci. 1970, 95, 28–30. [Google Scholar] [CrossRef]
- Lauri, P.É.; Kelner, J.J.; Trottier, C.; Costes, E. Insights into secondary growth in perennial plants: Its unequal spatial and temporal dynamics in the apple (Malus domestica) is driven by architectural position and fruit load. Ann. Bot. 2010, 105, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Donfack, L.S.; Schall, P.; Mund, M.; Knol, A.; Ammer, C. Effects of competition reduction on intra-annual radial growth of European beech (Fagus sylvatica L.) at stem base and crown base. Trees 2023, 37, 435–447. [Google Scholar] [CrossRef]
- Dambreville, A.; Lauri, P.-É.; Trottier, C.; Guédon, Y.; Normand, F. Deciphering structural and temporal interplays during the architectural development of mango trees. J. Exp. Bot. 2013, 64, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, F.; Davenport, T.L.; Fischer, G. The number of leaves required for floral induction and translocation of the florigenic promoter in mango (Mangifera indica L.) in a tropical climate. Sci. Hortic. 2010, 123, 443–453. [Google Scholar] [CrossRef]
- Ferreira de Souza, C.A.; Gondim Cavalcanti, M.I.L.; Lopes Vasconcelos, L.F.; Umbelino de Sousa, H.; Queiroz Ribeiro, V.; Lopes da Silva, J.A. ‘Tommy Atkins’ mango trees subjected to high density planting in subhumid tropical climate in northeastern Brazil. Pesq. Agropec. Bras. 2012, 47, 36–43. [Google Scholar] [CrossRef]
Model Terms | TCSA | Tree Height | Canopy Length | Canopy Width | Tree Production | Orchard Yield |
---|---|---|---|---|---|---|
Density | 0.001 | 0.056 | 0.001 | <0.001 | <0.001 | <0.001 |
Cultivar | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Density × training | <0.001 | <0.001 | <0.001 | <0.001 | 0.108 | 0.013 |
Density × cultivar | 0.375 | 0.008 | 0.006 | 0.002 | <0.001 | <0.001 |
Density × time | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Cultivar × time | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.045 |
Density × training × cultivar | 0.136 | <0.001 | 0.722 | 0.001 | 0.001 | <0.001 |
Density × training × time | <0.001 | <0.001 | <0.001 | <0.001 | 0.079 | 0.011 |
Density × cultivar × time | 0.260 | 0.953 | <0.001 | 0.106 | 0.118 | 0.232 |
Density × training × cultivar × time | 0.136 | <0.001 | <0.001 | 0.236 | 0.022 | 0.343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibell, P.T.; Normand, F.; Wright, C.L.; Mahmud, K.; Bally, I.S.E. The Effects of Planting Density, Training System and Cultivar on Vegetative Growth and Fruit Production in Young Mango (Mangifera indica L.) Trees. Horticulturae 2024, 10, 937. https://doi.org/10.3390/horticulturae10090937
Ibell PT, Normand F, Wright CL, Mahmud K, Bally ISE. The Effects of Planting Density, Training System and Cultivar on Vegetative Growth and Fruit Production in Young Mango (Mangifera indica L.) Trees. Horticulturae. 2024; 10(9):937. https://doi.org/10.3390/horticulturae10090937
Chicago/Turabian StyleIbell, Paula T., Frédéric Normand, Carole L. Wright, Kare Mahmud, and Ian S. E. Bally. 2024. "The Effects of Planting Density, Training System and Cultivar on Vegetative Growth and Fruit Production in Young Mango (Mangifera indica L.) Trees" Horticulturae 10, no. 9: 937. https://doi.org/10.3390/horticulturae10090937
APA StyleIbell, P. T., Normand, F., Wright, C. L., Mahmud, K., & Bally, I. S. E. (2024). The Effects of Planting Density, Training System and Cultivar on Vegetative Growth and Fruit Production in Young Mango (Mangifera indica L.) Trees. Horticulturae, 10(9), 937. https://doi.org/10.3390/horticulturae10090937