The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus × domestica Borkh.)
Abstract
:1. Introduction
2. Physiological Processes during Fruit Drop
2.1. Physiology of Abscission
- Early development of cells that will form the AZ in the future. In the early stages of development, AZ cells are described as relatively small, localised regions that lack large vacuoles and any differentiation. They are arranged transversely to the axis of the pedicel, petiole, or long axis of floral organs [42,43].
- AZ layer cells gain competence to receive an abscission signal. The abscission process is often associated with stress and senescence. In general, it is thought that the distal organ perceives stress signals (drought, salinity, extreme temperature, low irradiance, or pathogen attack) and passes into senescence. This abscission signal is transmitted to the AZ, causing abscission. Phytohormones mediate the signal and, primarily, the changes in the auxin and ethylene concentrations involved in the activation of AZ cells [42,43,44].
- Separation is where the degradation of the cell wall in the AZ is a result of hydrolytic enzymes’ activity. In this process, the hydrolytic enzymes causing changes in the cells and resulting in shedding have a major role, namely endo-ß-1,4-glucanase (EG) and polygalacturonase (PG) [40,45,46,47]. In the past years, several genes, whose expression is increased during abscission, have been discovered [48,49,50], some of which are also responsible for the synthesising of hydrolytic enzymes. A multigene family controls PG. For Arabidopsis thaliana there are at least 66 genes linked to the PG enzyme [35,51].
- The protection layer is formed on the wound surface. Organ abscission creates a situation whereby formerly internal tissues are exposed directly to the external environment. The new exterior surface must adopt the critical functions of the epidermis, including providing a barrier to water loss and pathogen infection. The protective layer forms basal to the separation layers and is continuous with the periderm of the stem. In most cases observed, the development of the protective layer involves transverse cell division, which may produce daughter cells with epidermal identity [52,53].
2.1.1. Role of Seeds in Regulation of Abscission
2.1.2. Role of Leaves in Regulation of Abscission
2.2. Phytohormones and Their Role in Fruit-Drop Process
2.3. Competition for Carbohydrates in Generative Organs
3. Genetic Regulation of Fruit Drop
3.1. Ethylene Pathway Genes Participating in Abscission
3.2. Abscission Hormone Abscisic Acid
3.3. Auxin Pathway Genes in Abscission
3.4. Transcription Factors in Abscission Regulation
3.5. Abscission Zone Cell Remodelling Genetics
4. Interplay of Phytohormones and Gene Expression in Abscission
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Juhnevica-Radenkova, K.; Radenkovs, V.; Seglina, D. Effect of storage technology on structure and physical attributes of apples (Malus × domestica Borkh.). Am.-Eurasian J. Sustain. Agric. 2017, 11, 8–22. [Google Scholar]
- FAOSTAT, 2024. Food and Agriculture Organization of the United Nations Statistics. Available online: https://www.fao.org/faostat/en/#compare (accessed on 24 June 2024).
- Greene, D.W.; Krupa, J.; Autio, W. Factors influencing preharvest drop of apples. Acta Hortic. 2014, 1042, 231–236. [Google Scholar] [CrossRef]
- Arseneault, M.H.; Cline, J.A. A review of apple preharvest fruit drop and practices for horticultural management. Sci. Hortic. 2016, 211, 40–52. [Google Scholar] [CrossRef]
- Orlova, Y.; Linker, R.; Spektor, B. Forecasting the potential of apple fruitlet drop by in-situ vis-nir spectroscopy. Comput. Electron. Agric. 2020, 169, 105225. [Google Scholar] [CrossRef]
- Kviklienė, N. The influence of chemical bud thinning on the quality of ‘Lodel’ apple fruits (in Lithuanian). Sodininkystė ir Daržininkystė 2008, 2, 22–28. [Google Scholar]
- Din, S.; Wani, R.A.; Wani, A.W.; Nisar, F.; Farwah, S.; Rizvi, S.; Wani, T.F.; Nisar, S. Fruit set and development: Pre-requisites and enhancement in temperate fruit crops. Int. J. Pharmacogn. Phytochem. Res. 2019, 8, 1203–1216. [Google Scholar]
- Kon, T.M.; Schupp, J.R. Apple Crop Load Management with Special Focus on Early Thinning Strategies. Hortic. Rev. 2018, 46, 255–298. [Google Scholar]
- Fioravanco, J.; Czermainski, A.B. Biennial bearing in apple cultivars. Revista Ceres. 2018, 65, 144–149. [Google Scholar] [CrossRef]
- Campbell, T.; Kalcsits, L. Strategies to overcome biennial bearing in apple—A review. Eur. J. Agron. 2024, 158, 127231. [Google Scholar] [CrossRef]
- Smith, H.M.; Samach, A. Constraints to obtaining consistent annual yields in perennial tree crops. I: Heavy fruit load dominates over vegetative growth. Plant Sci. 2013, 207, 158–167. [Google Scholar] [CrossRef]
- Starkus, A.; Frercks, B.; Gelvonauskiene, D.; Mazeikiene, I.; Rugienius, R.; Bendokas, V.; Stanys, V. Potential Markers for Selecting Self-Eliminating Apple Genotypes. Plants 2021, 10, 1612. [Google Scholar] [CrossRef] [PubMed]
- Elsysy, M.A.; Mickelbart, M.V.; Hirst, P.M. Effect of Fruiting and Biennial Bearing Potential on Spur Quality and Leaf Gas Exchange in Apple. J. Am. Soc. Hortic. Sci. 2019, 144, 31–37. [Google Scholar] [CrossRef]
- Milyaev, A.; Tandron-Moya, Y.A.; von Wirén, N.; Neuwald, D.; Flachowsky, H.; Wünsche, J.N. What else don’t we know about biennial bearing? Phytohormone profile of seeds and seed number per fruit differ between a biennial and a non-biennial apple cultivar. Acta Hortic. 2022, 1342, 7–14. [Google Scholar] [CrossRef]
- Jarvis, M.C.; Briggs, S.P.H.; Knox, J.P. Intercellular adhesion and cell separation in plants. Plant Cell Environ. 2003, 26, 977–989. [Google Scholar] [CrossRef]
- Sundaresan, S.; Riov, S.H.; Belausov, E.; Kochanek, B.; Tucker, M.L.; Meir, S. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells. J. Exp. Bot. 2015, 66, 1355–1368. [Google Scholar] [CrossRef]
- Verjans, W.; Schoofs, H.; Deckers, T.; Bylemans, D.; Remy, S. Early induction of pear drop using ethephon. Acta Hortic. 2021, 1303, 243–250. [Google Scholar] [CrossRef]
- Hapuarachchi, N.S.; Kämper, W.; Hosseini Bai, S.; Ogbourne, S.M.; Nichols, J.; Wallace, H.M.; Trueman, S.J. Selective Retention of Cross-Fertilised Fruitlets during Premature Fruit Drop of Hass Avocado. Horticulturae 2024, 10, 591. [Google Scholar] [CrossRef]
- Racskó, J.; Nagy, J.; Soltész, M.; Nyéki, J.; Szabó, Z. Fruit drop: I. Biological background of flower and fruit drop. Int. J. Hortic. Sci. 2006, 12, 103–108. [Google Scholar] [CrossRef]
- Starkus, A.; Gelvonauskienė, D.; Frercks, B.; Bendokas, V.; Sasnauskas, A.; Stanys, V. Relation between apple-tree yield self-regulation and meteorological conditions during fruit set. In Proceedings of the 8th International Scientific Conference Rural Development, Akademija, Lithuania, 23–24 November 2017; pp. 128–133. [Google Scholar]
- Ackerman, M.; Samach, A. Daubts regarding carbohydrates shortage as a trigger toward abscission af specific Apple (Malus domestica) freuitlets. New Negatives. Plant Sci. 2015, 1–2, 46–52. [Google Scholar]
- Celton, J.M.; Kelner, J.J.; Martinez, S.; Bechti, A.; Touhami, A.K.; James, M.J.; Durel, C.E.; Laurens, F.; Costes, E. Fruit Self-Thinning: A Trait to Consider for Genetic Improvement of Apple Tree. PLoS ONE 2013, 9, e91016. [Google Scholar] [CrossRef]
- Untiedt, R.; Blanke, M. Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul. 2001, 35, 1–9. [Google Scholar] [CrossRef]
- Racskó, J.; Leite, G.B.; Petri, J.L.; Zhongfu, S.; Wang, Y.; Szabó, Z.; Soltész, M.; Nyéki, J. Fruit drop: The role of inner agents and environmental factors in the drop of flowers and fruits. Hort Sci. 2007, 13, 13–23. [Google Scholar] [CrossRef]
- Tromp, J.; Webster, A.D.; Wertheim, S.J. Fundamentals of Temperate Zone Fruit Tree Production; Bachuys Publishers: Leiden, The Netherlands, 2005; p. 400. [Google Scholar]
- Kolarič, J. Abscission of young apple fruits (Malus domestica Borkh.). Agriculture 2010, 7, 31–36. [Google Scholar]
- Lauri, P.E.; Terouanne, E.; Lespinasse, J.M. Quantitative analysis of relationships between inflorescence size, bearing-axis size and fruit-set. An apple tree case study. Ann. Bot. 1996, 77, 277–286. [Google Scholar] [CrossRef]
- Costa, G.; Blanke, M.M.; Widmer, A. Principles of thinning in fruit tree crops—Needs and novelties. Acta. Hortic. 2013, 998, 17–26. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Defraeye, T.; Ketelaere, B.; Herremans, E.; Hertog, M.L.; Saeys, W.; Torricelli, A.; Vandendriessche, T.; Verboven, P. Nondestructive measurement of fruit and vegetable quality. Annu. Rev. Food Sci. Technol. 2014, 5, 285–312. [Google Scholar] [CrossRef]
- Win, N.M.; Song, Y.Y.; Nam, J.C.; Yoo, J.; Kang, I.K.; Cho, Y.S.; Yang, S.J.; Park, J. Influence of Mechanical Flower Thinning on Fruit Set and Quality of ‘Arisoo’ and ‘Fuji’ Apples. Int. J. Plant Biol. 2023, 14, 503–511. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-099801_1-Apr-95.pdf (accessed on 27 July 2024).
- United States Environmental Protection Agency. Available online: https://www.epa.gov/sites/default/files/2014-09/documents/health_effects_support_document_for_terbacil.pdf (accessed on 27 July 2024).
- Gonzalez, L.; Torres, E.; Àvila, G.; Carbó, J.; Bonany, J.; Alegre, S.; Asin, L. Effect of thinning with metamitron, NAA, BA and naphthenic acids on apple (Malus domestica) trees. Plant Growth Regul. 2024, 102, 39–50. [Google Scholar] [CrossRef]
- Rahul, O.; Patharkar, J.; Walker, C. Advances in abscission signalling. J. Exp. Bot. 2018, 69, 733–740. [Google Scholar]
- Roberts, J.A.; Elliot, K.A.; Carranza, G. Abscission, dehiscence and other cell separation processes. Annu. Rev. Plant. Biol. 2002, 53, 131–158. [Google Scholar] [CrossRef]
- Pickersgill, B. Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics. Ann. Bot. 2007, 100, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Addicott, F.T. Abscission; University of California Press: Oakland, CA, USA, 1982; 369p. [Google Scholar]
- Addicott, F.T. Environmental factors in the physiology of abscission. Plant Physiol. 1968, 43, 1471–1479. [Google Scholar] [PubMed]
- Faeth, S.H.; Connor, E.F.; Simberloff, D. Early leaf abscission: A neglected source of mortality for folivores. Am. Nat. 1981, 117, 409–415. [Google Scholar] [CrossRef]
- Van Nocker, S. Development of the abscission zone. Stewart Postharvest Rev. 2009, 5, 1–6. [Google Scholar] [CrossRef]
- Arteca, R.N. Seed Germination and Seedling Growth. In Plant Growth Substances; Springer: Boston, MA, USA, 1996; pp. 104–126. [Google Scholar]
- Lobato, P.M.; Jimenez, G. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J. Exp. Bot. 2011, 62, 4447–4465. [Google Scholar] [CrossRef]
- Yu, Y.L.P.; Tavares, R.L.; Kellogg, E.A. The anatomy of abscission zones is diverse among grass species. Am. J. Bot. 2020, 107, 549–561. [Google Scholar] [CrossRef]
- Taylor, J.E.; Whitelaw, C.A. Signals in abscission. New Phytol. 2001, 151, 323–339. [Google Scholar] [CrossRef]
- Lewis, M.W.; Leslie, M.E.; Liljegren, S.J. Plant separation: 50 ways to leave your mother. Curr. Opin. Plant Biol. 2006, 9, 59–65. [Google Scholar] [CrossRef]
- Cho, S.K.; Larue, C.T.; Chevalier, D.; Wang, H.C.; Jinn, T.L.; Zhang, S.Q.; Walker, J.C. Regulation of floral organ abscission in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA 2008, 105, 15629–15634. [Google Scholar] [CrossRef]
- McKim, S.M.; Stenvik, G.E.; Butenko, M.A.; Kristiansen, W.; Cho, S.K.; Hepworth, S.R.; Aalen, R.B.; Haughn, G.W. The blade-on-petiole genes are essential for abscission zone formation in Arabidopsis. Developments 2008, 135, 1537–1546. [Google Scholar]
- Cai, S.Q.; Lashbrook, C.C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: Enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol. 2008, 146, 1305–1321. [Google Scholar] [CrossRef] [PubMed]
- Agustí, J.; Gimeno, J.; Merelo, P.; Serrano, R.; Cercos, M.; Conesa, A.; Talon, M.; Tadeo, F.R. Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: Involvement of CitbHLH1. J. Exp. Bot. 2012, 63, 6079–6091. [Google Scholar] [CrossRef] [PubMed]
- Meir, S.; Hunter, D.A.; Chen, J.; Halaly, V.; Reid, M.S. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol. 2006, 141, 1604–1616. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.B.; Sexton, R.; Tucker, M.L. Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol. 2000, 123, 869–881. [Google Scholar] [CrossRef]
- Leslie, M.E.; Lewis, M.W.; Liljegren, S.J. Organ abscission. In Plant Cell Separation and Adhesion; Blackwell: Oxford, UK, 2007; Volume 26, pp. 977–989. [Google Scholar]
- Estornell, L.H.; Agusti, J.; Merelo, P.; Talon, M.; Tadeo, F.R. Elucidating mechanisms underlying organ abscission. Plant Sci. 2013, 199–200, 48–60. [Google Scholar] [CrossRef]
- Janssen, B.J.; Thodey, K.; Schaffer, R.J.; Alba, R.; Balakrishnan, L.; Bishop, R. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 2008, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.T.; Hall, A.J.; Gandar, P.W.; Warrington, I.J.; Fulton, T.A.; Alligan, E.A. A compartment model of the effect of early-season temperatures in potential size and growth of ‘Delicious’ apple fruits. Ann. Bot. 1999, 83, 129–143. [Google Scholar] [CrossRef]
- Al-hinai, Y.K.; Roper, T.R. Rootstock effects on growth, cell number, and cell size of ‘Gala’ apples. J. Am. Soc. Hortic. Sci. 2004, 129, 37–41. [Google Scholar] [CrossRef]
- Gillaspy, G.; David, B.H.; Gruissemet, W. Fruits: A developmental perspective. Plant Cell 1993, 5, 1439–1451. [Google Scholar] [CrossRef]
- Buccheri, M.; Di Vaio, C. Relationship Among Seed Number, Quality, and Calcium Content in Apple Fruits. J. Plant Nutr. 2005, 27, 1735–1746. [Google Scholar] [CrossRef]
- Eccher, G.; Ferrero, S.; Populin, F.; Colombo, L.; Botton, A. Apple (Malus domestica L. borkh) as an emerging model for fruit development. Plant Biosyst. 2014, 148, 157–168. [Google Scholar]
- Luckwill, L.C.; Weaver, P.; MacMillan, J. Gibberellins and other growth hormones in apple seeds. J. Hortic. Sci. 1969, 44, 413–424. [Google Scholar] [CrossRef]
- Guo, L.; Luo, X.; Li, M. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nat. Commun. 2022, 13, 3985. [Google Scholar] [CrossRef] [PubMed]
- Luckwill, L.C. The Hormone Content of the Seed in Relation to Endosperm Development and Fruit Drop in the Apple. J. Hortic. Sci. 1948, 24, 32–44. [Google Scholar] [CrossRef]
- Dražeta, L.; Lang, A.; Hall, A.; Volz, R.; Jameson, P. Modelling the influence of seed set on fruit shape in apple. J. Hortic. Sci. Biotech. 2004, 79, 241–245. [Google Scholar] [CrossRef]
- Stösser, R. Zur Befruchtungsbiologie der Zwetschensorte ‘Valjevka’. Erwerbsobstbau 2002, 44, 71–75. [Google Scholar]
- Ward, D.L.; Marini, R.P.; Byers, R.E. Relationships Among Day of Year of Drop, Seed Number, and Weight of Mature Apple Fruit. Hortic. Sci. 2001, 36, 45–48. [Google Scholar] [CrossRef]
- Teskey, B.J.; Shoemaker, S. Apples; Springer: Boston, MA, USA, 1978; pp. 1–126. [Google Scholar]
- Yao, J.L.; Dong, Y.H.; Kvarnheden, A.; Morris, B. Seven MADS-box genes in apple are expressed in different parts of the fruit. Am. Soc. Hortic. Sci. 1999, 124, 8–13. [Google Scholar] [CrossRef]
- Sung, S.K.; Yu, G.H.; Nam, J.; Jeong, D.H.; An, G. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta 2000, 210, 519–528. [Google Scholar] [CrossRef]
- Nosarzewski, M.; Archbold, D.D. Tissue-specific expression of SORBITOL DEHYDROGENASE in apple fruit during early development. J. Exp. Bot. 2007, 58, 1863–1872. [Google Scholar] [CrossRef]
- Li, M.; Feng, F.; Cheng, L. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 2012, 7, 33055. [Google Scholar] [CrossRef]
- Hassan, I.; Wani, A.W.; Dar, S.; Wani, Q.M.; Sofi, J.A.; Baba, T.R.; Parray, E.; Rasool, A. Physiology of Fruit Set and Development in Apple under Temperate conditions: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 618–638. [Google Scholar] [CrossRef]
- Bangerth, F. Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Reg. 2000, 31, 43–59. [Google Scholar] [CrossRef]
- Papp, J.; Porpáczy, A. Life Cycle of Agricultural Plants (in Hungarian); Mezôgazdsola Kiadó: Budapest, Hungary, 1999; p. 246. [Google Scholar]
- Szalay, L. Comparison of flower bud development in almond, apricot and peach genotypes. Int. J. Hortic. Sci. 2006, 12, 93. [Google Scholar] [CrossRef]
- Ropert, T.R.; Loescher, W.H.; Keller, J.; Rom, C.R. Source of photosynthate for fruit growth in ‘Bing’ sweet cherry. Soc. Hortic. Sci. 1987, 112, 808–812. [Google Scholar]
- Nyéki, J.; Soltész, M. The variation of seed content of fruits in pear varieties, also as different condition of fertilization, as open pollination, natural autogamy and allogamy the variation of seed content of fruits in pear varieties, also as function of different conditions of fertilization, as open pollination, natural autogamy and allogamy. Acta Hortic. 1998, 475, 237–250. [Google Scholar]
- Casero, T.; Benavides, A.; Puy, J.; Recasens, I. Relationships Between Leaf and Fruit Nutrients and Fruit Quality Attributes in Golden Smoothee Apples Using Multivariate Regression Techniques. J. Plant Nutr. 2004, 27, 313–324. [Google Scholar] [CrossRef]
- Feucht, W. Das Obstgehölz—Anatomie und Physiologie des Sprobsystem; Eugen Ulmer: Stuttgart, Germany, 1982; p. 256. [Google Scholar]
- Soltész, M. Integrated Fruit Production; Kiadó: Budapest, Hungary, 2002; p. 843. [Google Scholar]
- Davis, T.D.; Curry, E.A. Chemical regulation of vegetative growth. Critic Rev. Plant Sci. 1991, 10, 151–188. [Google Scholar] [CrossRef]
- Goren, R.; Goldschmidt, E.E. Regulation systems in the developing citrus fruit. The hormonal balance in orange fruit tissues. Physiol. Planta. 1970, 23, 937–947. [Google Scholar] [CrossRef]
- Vob, U.; Bishopp, A.; Farcot, E.; Bennett, M.J. Modelling hormonal response and development. Trends Plant Sci. 2014, 19, 311–319. [Google Scholar]
- Ma, X.; Yuan, Y.; Li, C.; Wu, Q.; He, Z.; Li, J.; Zhao, M. Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in litchi. Hortic. Res. 2021, 8, 105. [Google Scholar] [CrossRef]
- Vriezen, W.H.; Feron, R.; Maretto, F.; Keijman, J.; Mariani, C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008, 177, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Basu, M.M.; Carranza, G.Z.H.; Ali, A.S.; Tang, S.; Shahid, A.A.; Roberts, J.A. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signalling is a prerequisite for organ shedding. Plant Physiol. 2013, 162, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.L.; Yunche, C.; Guangzhen, Z.; Meng, L. Phytohormones and candidate genes synergistically regulate fruitlet abscission in Areca catechu. BMC Plant Biol. 2023, 23, 537. [Google Scholar]
- Stutte, G.W.; Gage, J.W. Gibberellin inhibits fruit abscission following seed abortion in peach. J. Am. Soc. Hortic. Sci. 1990, 115, 107–110. [Google Scholar] [CrossRef]
- Moualem, B.D.; Gusev, L.; Dvir, O.; Pesis, E.; Meir, S.; Lichter, A. The effects of ethylene, methyl jasmonate and 1-MCP on abscission of cherry tomatoes from the bunch and expression of endo-1,4-β-glucanases. Plant Sci. 2004, 167, 499–507. [Google Scholar] [CrossRef]
- Cin, V.D.; Boschetti, A.; Dorigoni, A.; Ramina, A. Benzyl aminopurine application on two different apple cultivars (Malus domestica) displays new and unexpected fruitlet abscission features. Ann. Bot. 2007, 99, 1195–1202. [Google Scholar] [CrossRef]
- Eccher, G.; Begheldo, M.; Boschetti, A.; Ruperti, B.; Botton, A. Roles of ethylene production and ethylene receptor expression in regulating apple fruitlet abscission. Plant Physiol. 2015, 169, 125–137. [Google Scholar] [CrossRef]
- Klee, H.J. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 2004, 135, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Meir, S.; Hadas, S.; Sundaresan, S.; Selvaraj, K.S.; Burd, S.; Ophir, R.; Kochanek, B.; Reid, M.S.; Jiang, C.Z.; Lers, A. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol. 2010, 154, 1929–1956. [Google Scholar] [CrossRef]
- Li, J.; Zhu, H.; Yuan, R. Profiling the Expression of Genes Related to Ethylene Biosynthesis, Ethylene Perception, and Cell Wall Degradation during Fruit Abscission and Fruit Ripening in Apple. J. Am. Soc. Hortic. Sci. 2010, 135, 391–401. [Google Scholar] [CrossRef]
- Greene, D.W. Chemicals, timing, and environmental factors involved in thinner efficiacy on apple. Hortic. Sci. 2002, 37, 77–81. [Google Scholar]
- Pethő, M. Mezögazdasági Növények Élettlana; Akadémiai Kiadó: Budapest, Hungary, 1993; pp. 232–254. [Google Scholar]
- Bubán, T. Hormonal Aspects of Flower and Fruit Set; Akadémiai Kiadó: Budapest, Hungary, 2003; pp. 3–24. [Google Scholar]
- Priestley, A.C. Carbohydrate Reserves in Deciduous Fruit Trees. Hortic. Rev. 1988, 10, 403–430. [Google Scholar]
- Kandiah, S. Turnover of carbohydrates in relation to growth in apple trees. Seasonal variation of growth and carbohydrate reserves. Ann. Bot. 1979, 44, 175–183. [Google Scholar] [CrossRef]
- Tromp, J. Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant Soil. 1983, 71, 401–413. [Google Scholar] [CrossRef]
- Tustin, D.S.; Lai, R. Source-sink dynamics in developing fruiting spurs of apple. In Proceedings of the XXIII International Horticultural Congress, Florence, Italy, 27 August–1 September 1990; p. 611. [Google Scholar]
- Grappadelli, C.L.; Magnanini, E.A. Whole-tree sytem for gas-exchange studies. Hortic. Sci. 1993, 28, 41–45. [Google Scholar]
- Archbold, D.D.; Nosarzewski, M.; Wu, B.; Vuppalapati, P. Does availability of soluble carbohydrate reserves determine apple fruit set? Acta Hortic. 2011, 903, 795–801. [Google Scholar] [CrossRef]
- Lakso, A.N.; Wünsche, J.N.; Palmer, J.W.; Grappadelli, L.C. Measurement and modeling of carbon balance of the apple tree. Hortic. Sci. 1993, 4, 1040–1047. [Google Scholar] [CrossRef]
- Greene, D.W.; Krupa, J.; Vezina, M.; Lakso, A.N.; Robinson, T.L. A method to predict chemical thinner response on apples. Fruit Notes 2005, 70, 12–17. [Google Scholar]
- Lakso, A.N.; Greene, D.W.; Palmer, J.W. Improvements on an apple carbon balance model. Acta Hortic. 2006, 707, 57–61. [Google Scholar] [CrossRef]
- Costa, G.; Botton, A.; Vizzotto, G. Fruit Thinning: Advances and Trends. Hortic. Rev. 2018, 46, 185–226. [Google Scholar]
- Shi, Y.; Song, B.; Liang, Q.; Su, D.; Lu, W.; Liu, Y.; Li, Z. Molecular regulatory events of flower and fruit abscission in horticultural plants. Hortic. Plant J. 2023, 9, 867–883. [Google Scholar] [CrossRef]
- Brummell, D.A.; Hall, B.D.; Bennett, A.B. Antisense suppression of tomato endo- 1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol. 1999, 40, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Sriskantharajah, K.; Kayal, E.W.; Torkamaneh, D.; Ayyanath, M.M.; Saxena, P.K.; Sullivan, A.J.; Paliyath, G.; Subramanian, J. Transcriptomics of Improved Fruit Retention by Hexanal in ‘Honeycrisp’ Reveals Hormonal Crosstalk and Reduced Cell Wall Degradation in the Fruit Abscission Zone. Int. J. Mol. Sci. 2021, 22, 8830. [Google Scholar] [CrossRef] [PubMed]
- Gil-Amado, J.A.; Gomez-Jimenez, M.C. Transcriptome Analysis of Mature Fruit Abscission Control in Olive. Plant Cell Physiol. 2013, 54, 244–269. [Google Scholar] [CrossRef]
- Pattyn, J.; Hirsch, V.J.; Mezõgazdasági, V.; Poel, B. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. New Phytol. 2021, 229, 770–782. [Google Scholar] [CrossRef]
- Harada, T.; Sunako, T.; Wakasa, Y.; Soejima, J.; Satoh, T.; Niizeki, M. An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor. Appl. Genet. 2000, 101, 742–746. [Google Scholar] [CrossRef]
- Kunihisa, M.; Moriya, S.; Abe, K.; Okada, K.; Haji, T.; Hayashi, T.; Kim, H.; Nishitani, C.; Terakami, S.; Yamamotom, T. Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci. 2014, 64, 240–251. [Google Scholar] [CrossRef]
- Sun, L.; Bukovac, J.M.; Forsline, P.L. Natural variation in fruit abscission-related traits in apple (Malus). Euphytica 2009, 165, 55–67. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yan, S.; Xuan, S.; Sun, X.; Liu, H.; Cheng, B.; Xu, X.; Wei, Z. A multifaceted comparison between the fruit-abscission and fruit-retention cultivars in ornamental crabapple. Front. Plant Sci. 2022, 13, 1013263. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Wei, Y.; Xu, Y.; Liu, W.; Li, H.; Yang, G.; Wang, A.; Wang, X. Comparative transcriptome analysis of the climacteric of apple fruit uncovers the involvement of transcription factors affecting ethylene biosynthesis. Hortic. Plant. 2023, 9, 659–669. [Google Scholar] [CrossRef]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 29, 7710–7725. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, S.; Paulet, C.L.; Mendes, M.A.; Botton, A.; Eccher, G. Transcriptomic Signatures in Seeds of Apple (Malus domestica L. Borkh) during Fruitlet. PLoS ONE 2015, 10, 0120503. [Google Scholar] [CrossRef] [PubMed]
- Cin, D.V.; Botton, D.M. Ethylene and preharvest drop: The effect of AVG and NAA on fruit abscission in apple (Malus domestica L. Borkh). Plant Growth Regul. 2008, 56, 317–325. [Google Scholar]
- Eccher, G.; Botton, A.; Dimauro, M.; Boschetti, A.; Ruperti, B.; Angelo, R. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Physiol. 2013, 161, 1952–1969. [Google Scholar]
- Zhu, H.; Dardick, C.D.; Beers, E.P. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol. 2011, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Devoghalaere, F.; Doucen, T.; Guitton, B. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol. 2012, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Botton, A.; Eccher, G.; Forcato, C.; Ferrarini, C.; Begheldo, M.; Zermiani, M.; Moscatello, S.; Battistelli, A.; Velasco, R.P.; Ruperti, B.; et al. Signaling Pathways Mediating the Induction of Apple Fruitlet Abscission. Plant Physiol. 2011, 155, 185–208. [Google Scholar] [CrossRef]
- Celton, J.M.; Dheilly, E.; Guillou, M.C.; Simonneau, F.; Juchaux, M.; Costes, E.; Laurens, F.; Renou, J.P. Additional Amphivasal Bundles in Pedicel Pith Exacerbate Central Fruit Dominance and Induce Self-Thinning of Lateral Fruitlets in Apple. Plant Physiol. 2014, 164, 1930–1951. [Google Scholar] [CrossRef]
- Meir, S.; Sundaresan, S.; Riov, J.; Agarwal, I.; Philosoph-Hadas, S. Role of auxin depletion in abscission control. Stewart Postharvest Rev. 2015, 11, 1–15. [Google Scholar]
- Xie, R.; Dong, C.; Ma, Y.; Deng, L.; He, S.; Yi, S.; Lv, Q.; Zheng, Y. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A. Funct. Integr. Genom. 2015, 15, 729–740. [Google Scholar] [CrossRef]
- Hou, Q.D.; Hong, Y.; Wen, Z.; Shang, C.Q.; Li, Z.C.; Cai, X.W.; Qiao, G.; Wen, X.P. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission. J. Integr. Agric. 2023, 22, 1720–1739. [Google Scholar] [CrossRef]
- Wang, P.; Lu, S.; Xie, M.; Wu, M.; Ding, S.; Khaliq, A.; Ma, Z.; Mao, J.; Chen, B. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in apple by inducing of auxin. Gene 2020, 750, 144725. [Google Scholar] [CrossRef] [PubMed]
- Botton, A.; Ruperti, B. The Yes and No of the Ethylene Involvement in Abscission. Plants 2019, 8, 187. [Google Scholar] [CrossRef]
- Liu, D.; Wang, D.; Qin, Z.; Zhang, D.; Yin, L.; Wu, L.; Colasanti, J.; Li, A.; Mao, L. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant. J. 2014, 77, 284–296. [Google Scholar] [CrossRef]
- Schaffer, R.J.; Ireland, H.S.; Ross, J.J.; Ling, T.J.; David, K.M. SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB Plants 2013, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Fujisawa, M.; Shima, Y.; Ito, I. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J. Exp. Bot. 2014, 65, 3111–3119. [Google Scholar] [CrossRef]
- Heo, S.; Chung, Y.S. Validation of MADS-box genes from apple fruit pedicels during early fruit abscission by transcriptome analysis and real-time PCR. Genes Genom. 2019, 41, 1241–1251. [Google Scholar] [CrossRef]
- Lee, Y.; Do, V.G.; Kim, S.; Kweon, H.; McGhie, T.K. Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS ONE 2021, 16, e0249975. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starkus, A.; Morkūnaitė-Haimi, Š.; Gurskas, T.; Misiukevičius, E.; Stanys, V.; Frercks, B. The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus × domestica Borkh.). Horticulturae 2024, 10, 987. https://doi.org/10.3390/horticulturae10090987
Starkus A, Morkūnaitė-Haimi Š, Gurskas T, Misiukevičius E, Stanys V, Frercks B. The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus × domestica Borkh.). Horticulturae. 2024; 10(9):987. https://doi.org/10.3390/horticulturae10090987
Chicago/Turabian StyleStarkus, Aurelijus, Šarūnė Morkūnaitė-Haimi, Tautvydas Gurskas, Edvinas Misiukevičius, Vidmantas Stanys, and Birutė Frercks. 2024. "The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus × domestica Borkh.)" Horticulturae 10, no. 9: 987. https://doi.org/10.3390/horticulturae10090987
APA StyleStarkus, A., Morkūnaitė-Haimi, Š., Gurskas, T., Misiukevičius, E., Stanys, V., & Frercks, B. (2024). The Biological and Genetic Mechanisms of Fruit Drop in Apple Tree (Malus × domestica Borkh.). Horticulturae, 10(9), 987. https://doi.org/10.3390/horticulturae10090987