Antioxidant Potential and Its Changes Caused by Various Factors in Lesser-Known Medicinal and Aromatic Plants
Abstract
:1. Introduction
2. Methods Used to Evaluate the Antioxidant Potential of Plants
3. The Lesser-Known Plant Representatives with Antioxidant Effect of Lamiaceae Family
3.1. Hyssopus officinalis, Its BACs and Antioxidant Potential
Plant | Part of Plant | Extract/Solvent | Phenolic Profile and Other Significant Components | Origin | Ref. |
---|---|---|---|---|---|
Hyssopus officinalis | essential oil | cis-pinocamphone, β-pinene, trans-pinocamphone, β-phellandrene | Bulgaria | [42] | |
essential oil | cis-pinocamphone, 1,8-cineole, trans-pinocamphone, β-pinene, caryophyllene oxide | Kosovo | [43] | ||
essential oil | myrtenyl acetate, camphor, germacrene, spathulenol, β-caryophyllene, cis-sabinol, β-bourbonene, bornyl acetate | Iran | [44] | ||
essential oil | limonene, β-pinene, Z-β-ocimene, α-pinene, sabinene, 1,8-cineole, methyl eugenol, cis-pinocamphone | Montenegro | [45] | ||
aerial parts | hydromethanolic, hydroethanolic extracts | apigenin 7-O-β-d-glucuronide, isoquercitrin, diosmin, rutin, isoquercitrin, quercitrin, luteolin, quercetin | Iran | [44] | |
aerial parts | ethanolic extracts | caftaric acid, gentisic acid, caffeic acid, p-coumaric acid, chlorogenic acid, ferulic acid, rutin, isoquercitrin, quercitrin, luteolin, quercetin | Romania | [32] | |
flowering aerial parts | methanol extracts | syringic acid, chlorogenic acid, rosmarinic acid, feruloylquinic acid, caffeoyl pentoside, quercetin O-hexoside, diosmetin O-deoxyhexosyl-hexoside | Montenegro | [45] | |
aerial parts | ethanol extracts | 5-O-caffeoylquinic acid, feruloylquinic acid, isoquercetrin, isorhamnetin, rutin, 3-O-caffeoyl quinic acid, caffeoyl methylquinic acid, quercetin-3-O-hexoside, dicaffeoylquinic acid | Italy | [44] | |
aerial parts | ethanol extracts | chlorogenic acid, caffeic acid, rutin | Moldova | [48] | |
Lamium album | stems, leaves, flowers | ethanol extracts | verbascoside, isoverbascoside, isoscutellarein-7-O-allosyl(1 → 2)glucoside, isoscutellarein-O-allosyl glucoside, O-methylisoscutellarein-7-O-allosyl(1 → 2)glucoside, luteolin-7-O-glucoside, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, naringenin-7-O-rutinoside | Portugal | [49] |
flowers | methanol extracts | caffeic acid, chlorogenic acid, ferulic acid, gallic acid, p-coumaric acid, protocatechuic acid, syringic acid, gentisic acid, vanillic acid, rutoside, quercetin, isoquercetin | Poland | [50] | |
flowers | methanol extracts | chrysin, pinostrobin, myricetin, trans-3-hydroxycinnamic acid, quercetin, rutin, galangin, apigenin, syringic acid, vanillic acid | Poland | [51] | |
Leonurus cardiaca | essential oil | thymol, germacrene D, borneol, trans-caryophyllene, γ-guaiolacetate, phytol, β-phellandrene. | Iran | [52] | |
essential oil | epicedrol, α-humulene, dehydro-1,8-cineole, germacrene D, spathulenol | Iran | [53] | ||
aerial parts | ethanol extracts | quercetin, rutin, caffeic acid, chlorogenic acid, verbascoside, lavandulifolioside, ursolic acid, caffeoylmalic, trans-ferulic acid, leonurine, harpagide | Poland | [54] | |
aerial parts | ferulic acid, chlorogenic acid, caffeic acid, cichoric acid, rutoside, lavandulifolioside, verbascoside, isoquercitrin, stachydrine | Germany | [55] | ||
aerial parts | ethanolic extracts | lavandolifolioside, verbascoside, leucoseptoside A, leonoside B, quercetin-3-O-glucoside, rutin, quercetin-3-O-sophoroside | Portugal | [56] | |
officinal motherwort tincture | dry extract | chlorogenic and caffeic acids, ellagic acid, catechin, hyperoside, rutin | Ukraine | [57] |
Antioxidant Potential of Hyssopus officinalis
Plant | Part of Plant | Extract/Solvent | TPC | AA | Origin | Ref. |
---|---|---|---|---|---|---|
Hyssopus officinalis | stems, leaves, flowers | ethanolic extracts | stems (374.60 mg GAE/g) > flowers (337.30 mg/g) > leaves (348.0 mg/g) | DPPH: stems (IC50 79.9 μg/mL) > flowers (148.8 μg/mL) > leaves (208.2 μg/mL) | Iran | [59] |
aerial parts | ethanolic extracts | 77.72 mg GAE/g | DPPH: IC50 125.44 μg/mL ABTS: 57.39 µmol TE/mg HAPX: 16.17% | Romania | [32] | |
flowering aerial parts | methanol extracts | 64.1–112.0 mg GAE/g | DPPH: IC50 56.04–199.89 µg/mL FRAP: 0.667–0.959 mmol Fe2+/g | Montenegro | [45] | |
aerial parts with pink, white, and blue flowers | ethanol extracts | blue flowers (12.256 mg GAE/g) > pink flowers (8.114 mg GAE/g) > white flowers (8.012 mg GAE/g), | DPPH: pink flowers (IC50 34.172 mg/mL) > white flowers (34.774 mg/mL) > blue flowers (38.091 mg/mL) | Moldova | [48] | |
aerial parts | n-butanol and ethylacetate extracts | n-butanol (246 mg GAE/g) > ethylacetate (51 mg GAE/g) | DPPH: n-butanol (IC50 25 μg/mL) > ethylacetate (IC50 103 μg/mL) | Iran | [44] | |
aerial parts | methanolic extracts | 80 mg GAE/g | DPPH: I (83%) TRP: 56 mg AAE/g FRAP: 0.73 mmol Fe/g | Serbia | [58] | |
Lamium album | flowering aerial parts, roots | methanolic extracts | aerial parts (242.7 mg GAE/g) > roots (135.0 mg GAE/g) | DPPH: aerial parts (IC50 238.4 μg/mL) > roots (257.0 μg/mL) aerial parts chelating activities (IC50 1.13 mg/mL) > roots (1.32 mg/mL) | Iran | [60] |
aerial parts | n-butanol extracts | 2.9 mg GAE/mL | DPPH: IC50 19.29 mg/mL | Romania | [61] | |
aerial part of in vivo and in vitro | methanolic, ethanolic, and chloroform extracts | 21.45–103.12 mg GAE/g | DPPH: IC50 20.62–274.35 μg/mL ABTS: 0.12–0.65 TEAC | Bulgaria | [62] | |
flowers | methanol extracts | 234.17–650.17 mg GAE/g | DPPH: IC50 20.62–274.35 μg/mL ABTS: 0.12–0.65 TEAC | Poland | [51] | |
Leonurus cardiaca | aerial parts | water extracts | 44.21 mg GAE/g | DPPH: 3.32 mg TE/g ABTS: 5.12 mg TE/g FRAP: 265.92 μM FeSO4/g | Poland | [63] |
aerial parts | ethanol extracts | 500 mg GAE/g | DPPH: IC50 18.3 μg/mL TRP: 94.7 μg/mL | Portugal | [56] | |
aerial parts | ethanol extracts | 66.90–132.73 mg GAE/g | DPPH: 187–471 mg TE/g ABTS: 176–583 mg TE/g CUPRAC: 328–991 mg TE/g | Poland | [54] | |
leaves | ethanol and methanol extracts | 17.5–38.1 mg GAE/g | ABTS: 63.5–403.7 μΜ TE/g | USA | [64] | |
aerial parts | chloroform, ethylacetate, n-butanol, and methanolic–aqueous extracts | buthanolic fraction > methanolic–aqueous > ethylacetate > chloroform 4.9–48.37 mg GAE/g | DPPH and ABTS: buthanolic fraction > methanolic–aqueous > ethylacetate > chloroform DPPH: IC50 53.79–1814.35 μg/mL | Iran | [65] |
3.2. Lamium album, Its BACs and Antioxidant Potential
Antioxidant Potential of Lamium album
3.3. Leonurus cardiaca, Its BACs and Antioxidant Potential
Antioxidant Potential of Leonurus cardiaca
3.4. Scutellaria baicalensis, Its BACs and Antioxidant Potential
Antioxidant potential of Scutellaria baicalensis
4. The Lesser-Known Representatives of Plants with Antioxidant Effect of Rosaceae, Asteraceae, and Myrtaceae Families
4.1. Crataegus laevigata, Its BACs and Antioxidant Potential
Antioxidant Potential of Crataegus laevigata
4.2. Artemisia absinthium, Its BACs and Antioxidant Potential
Antioxidant Potential of Artemisia absinthium
4.3. Pimenta dioica, Its BACs and Antioxidant Potential
Antioxidant Potential of Pimenta dioica
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO Traditional, Complementary and Integrative Medicine. Available online: https://www.who.int/health-topics/traditional-complementary-and-integrative-medicine#tab=tab_1 (accessed on 16 July 2024).
- World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneva, Switzerland, 2019; Available online: https://iris.who.int/handle/10665/312342 (accessed on 24 October 2024).
- Dorni, A.C.; Amalraj, A.; Gopi, S.; Varma, K.; Anjana, S. Novel cosmeceuticals from plants—An industry guided review. J. Appl. Res. Med. Aromat. Plants 2017, 7, 1–26. [Google Scholar] [CrossRef]
- Ulewicz-Magulska, B.; Wesolowski, M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants 2023, 12, 2039. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.R.R.; Ferreira, O.O.; Cruz, J.N.; Franco, C.d.J.P.; dos Anjos, T.O.; Cascaes, M.M.; da Costa, W.A.; Andrade, E.H.d.A.; de Oliveira, M.S. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid.-Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef]
- Campinho, A.; Alves, J.; Martins, R.; Vieira, M.; Grosso, C.; Delerue-Matos, C. Exploring the Antiradical Potential of Species from Lamiaceae Family: Implications for Functional Food Development in the Context of Neurodegenerative and Neuropsychiatric Diseases. Biol. Life Sci. Forum 2023, 26, 33. [Google Scholar] [CrossRef]
- Spréa, R.M.; Caleja, C.; Pinela, J.; Finimundy, T.C.; Calhelha, R.C.; Kostić, M.; Sokovic, M.; Prieto, M.A.; Pereira, E.; Amaral, J.S.; et al. Comparative study on the phenolic composition and in vitro bioactivity of medicinal and aromatic plants from the Lamiaceae family. Food Res. Int. 2022, 161, 111875. [Google Scholar] [CrossRef]
- Ahn, J.; Alford, A.R.; Niemeyer, E.D. Variation in phenolic profiles and antioxidant properties among medicinal and culinary herbs of the Lamiaceae family. J. Food Meas. Charact. 2020, 14, 1720–1732. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ścibisz, I.; Przybył, J.L.; Laudy, A.E.; Majewska, E.; Tarnowska, K.; Małajowicz, J.; Ziarno, M. Antioxidant and antibacterial activity of extracts from selected plant material. Appl. Sci. 2022, 12, 9871. [Google Scholar] [CrossRef]
- Topal, M.; Sarıkaya, S.B.O.; Topal, F. Determination of Angelica archangelica’s antioxidant capacity and mineral content. ChemistrySelect 2021, 6, 7976–7980. [Google Scholar] [CrossRef]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Jawhari, F.Z.; Al Kamaly, O.M.; Imtara, H.; Grafov, A.; Bari, A.; Bousta, D. An Insight into the Anxiolytic and Antidepressant-Like Proprieties of Carum carvi L. and Their Association with Its Antioxidant Activity. Life 2021, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Dhakshayani, G.M.; Alias, P.S.J. A comparative study of phytochemical, antioxidant, anticarcinogenic, and antidiabetic potential of coriander (Coriandrum sativum L.): Microgreen and mature plant. Foods Raw Mater. 2022, 10, 283–294. [Google Scholar] [CrossRef]
- Demir, S.; Korukluoglu, M. A comparative study about antioxidant activity and phenolic composition of cumin (Cuminum cyminum L.) and coriander (Coriandrum sativum L.). Indian J. Tradit. Knowl. 2020, 19, 383–393. [Google Scholar] [CrossRef]
- Wendawi, S.A.A.; Gharb, L.A.; Al Ghrery, R.S. Antioxidant, antibacterial and antibiofilm potentials of anise (Pimpinella anisum) seeds extracted essential oils. Iraqi J. Agric. Sci. 2021, 52, 348–358. [Google Scholar] [CrossRef]
- Jain, S.; Yadav, A.S.; Gothalwal, R. Assessment of total phenolic, flavonoid content and IN vitro antioxidant properties of ALCHEMILLIA vulgaris (LADY’S mantle). J. Adv. Sci. Res. 2021, 12, 205–209. [Google Scholar] [CrossRef]
- Tadić, V.; Krgović, N.; Žugić, A. Lady’s mantle (Alchemilla vulgaris L., Rosaceae): A review of traditional uses, phytochemical profile, and biological properties. Lek. Sirovine 2020, 40, 66–74. [Google Scholar] [CrossRef]
- Griffiths, K.; Aggarwal, B.B.; Singh, R.B.; Buttar, H.S.; Wilson, D.; De Meester, F. Food Antioxidants and Their Anti-Inflammatory Properties: A Potential Role in Cardiovascular Diseases and Cancer Prevention. Diseases 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Bin Dukhyil, A.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y. Association of curry consumption with blood lipids and glucose levels. Nutr. Res. Pract. 2016, 10, 212–220. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Momenan, A.A.; Azizi, F. Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults: A longitudinal follow-up study. J. Hypertens. 2017, 35, 1909–1916. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Luo, M.; Shang, A.; Mao, Q.-Q.; Li, B.-Y.; Gan, R.-Y.; Li, H.-B. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. Oxidative Med. Cell Longev. 2021, 28, 6627355. [Google Scholar] [CrossRef]
- Gamboa-Gómez, C.; Pérez-Ramírez, I.F.; González-Gallardo, A.; Gallegos-Corona, M.A.; Ibarra-Alvarado, C.; Reynoso-Camacho, R. Effect of Citrus paradisi and Ocimum sanctum infusions on blood pressure regulation and its association with renal alterations in obese rats. J. Food Biochem. 2016, 40, 345–357. [Google Scholar] [CrossRef]
- Ding, L.; Jia, C.; Zhang, Y.; Wang, W.; Zhu, W.; Chen, Y.; Zhang, T. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats. Biomed. Pharmacother. 2019, 111, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Maleš, I.; Pedisić, S.; Zorić, Z.; Elez-Garofulić, I.; Repajić, M.; You, L.; Vladimir-Knežević, S.; Butorac, D.; Dragović-Uzelac, V. The medicinal and aromatic plants as ingredients in functional beverage production. J. Funct. Foods 2022, 96. [Google Scholar] [CrossRef]
- Dal, S.; Sigrist, S. The protective effect of antioxidants consumption on diabetes and vascular complications. Diseases 2016, 4, 24. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Marmitt, D.J.; Cheng, Q.; Sun, W. Natural antioxidants of the underutilized and neglected plant species of Asia and South America. Lett. Drug Des. Discov. 2023, 20, 1512–1537. [Google Scholar] [CrossRef]
- Swallah, M.S.; Yu, H.; Piao, C.; Fu, H.; Yakubu, Z.; Sossah, F.L. Synergistic two-way interactions of dietary polyphenols and dietary components on the gut microbial composition: Is there a positive, negative, or neutralizing effect in the prevention and management of metabolic diseases? Curr. Protein Pept. Sci. 2021, 22, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant Secondary Metabolites Produced in Response to Abiotic Stresses Has Potential Application in Pharmaceutical Product Development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Blainski, A.; Lopes, G.C.; De Mello, J.C.P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Moţ, C.A.; Silaghi-Dumitrescu, R.; Tilea, I. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Schaich, K.M. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380–3410. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O. Plant Taxonomy; Tata Mcgraw-Hill Education: New York, NY, USA, 1993; p. 358. [Google Scholar]
- Tahir, M.; Khushtar, M.; Fahad, M.; Rahman, M.A. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). J. Appl. Pharm. Sci. 2018, 8, 132–140. [Google Scholar]
- Venditti, A.; Bianco, A.; Frezza, C.; Conti, F.; Bini, L.M.; Giuliani, C.; Bramucci, M.; Quassinti, L.; Damiano, S.; Lupidi, G.; et al. Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. aristatus (Godr.) Nyman from central Italy. Ind. Crops Prod. 2015, 77, 353–363. [Google Scholar] [CrossRef]
- Salehi, A.; Setorki, M. Effect of Hyssopus officinalis essential oil on chronic stress-induced memory and learning impairment in male mice. Bangladesh J. Pharmacol. 2017, 12, 448–454. [Google Scholar] [CrossRef]
- Păun, G.; Litescu, S.C.; Neagu, E.; Tache, A.; Radu, G.L. Evaluation of Geranium spp., Helleborus spp. and Hyssopus spp. polyphenolic extracts inhibitory activity against urease and α-chymotrypsin. J. Enzym. Inhib. Med. Chem. 2014, 29, 28–34. [Google Scholar] [CrossRef]
- Ma, X.; Ma, X.; Ma, Z.; Sun, Z.; Yu, W.; Wang, J.; Li, F.; Ding, J. The Effects of Uygur Herb Hyssopus officinalis L. on the Process of Airway Remodeling in Asthmatic Mice. Evid. -Based Complement. Altern. Med. 2014, 2014, 710870. [Google Scholar] [CrossRef]
- Hristova, Y.R.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.A.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601. [Google Scholar] [CrossRef]
- Hajdari, A.; Giorgi, A.; Beretta, G.; Gelmini, F.; Buratti, S.; Benedetti, S.; Merkouri, A.; Mala, X.; Kabashi, S.; Pentimalli, D.; et al. Phytochemical and sensorial characterization of Hyssopus officinalis subsp. aristatus (godr.) Nyman (Lamiaceae) by GC–MS, HPLC–UV–DAD, spectrophotometric assays and e-nose with aid of chemometric techniques. Eur. Food Res. Technol. 2018, 244, 1313–1327. [Google Scholar] [CrossRef]
- Fathiazad, F.; Mazandarani, M.; Hamedeyazdan, S. Phytochemical analysis and antioxidant activity of Hyssopus officinalis L. from Iran. Adv. Pharm. Bull. 2011, 1, 63–67. [Google Scholar] [CrossRef]
- Mićović, T.; Topalović, D.; Živković, L.; Spremo-Potparević, B.; Jakovljević, V.; Matić, S.; Popović, S.; Baskić, D.; Stešević, D.; Samardžić, S.; et al. Antioxidant, Antigenotoxic and Cytotoxic Activity of Essential Oils and Methanol Extracts of Hyssopus officinalis L. Subsp. aristatus (Godr.) Nyman (Lamiaceae). Plants 2021, 10, 711. [Google Scholar] [CrossRef]
- Ghanbari-Odivi, A.; Fallah, S.; Carrubba, A. Optimizing Hyssop (Hyssopus officinalis L.) Cultivation: Effects of Different Manures on Plant Growth and Essential Oil Yield. Horticulturae 2024, 10, 894. [Google Scholar] [CrossRef]
- Borrelli, F.; Pagano, E.; Formisano, C.; Piccolella, S.; Fiorentino, A.; Tenore, G.C.; Izzo, A.A.; Rigano, D.; Pacifico, S. Hyssopus officinalis subsp. aristatus: An unexploited wild-growing crop for new disclosed bioactives. Ind. Crops Prod. 2019, 140, 111594. [Google Scholar] [CrossRef]
- Benea, A.; Ciobanu, C.; Ciobanu, N.; Pompus, I.; Cojocaru-Toma, M. Polyphenolic content and antioxidant activity of Hyssopus officinalis L. from the Republic of Moldova. Mold. Med. J. 2022, 65, 41–46. [Google Scholar] [CrossRef]
- Pereira, O.R.; Domingues, M.R.M.; Silva, A.M.S.; Cardoso, S.M. Phenolic constituents of Lamium album: Focus on isoscu-tellarein derivatives. Food Res. Int. 2012, 48, 330–335. [Google Scholar] [CrossRef]
- Sulborska, A.; Konarska, A.; Matysik-Woźniak, A.; Dmitruk, M.; Weryszko-Chmielewska, E.; Skalska-Kamińska, A.; Rejdak, R. Phenolic Constituents of Lamium album L. subsp. album Flowers: Anatomical, Histochemical, and Phytochemical Study. Molecules 2020, 25, 6025. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Gramza-Michałowska, A.; Bryła, M.; Waśkiewicz, A. Antioxidant Activity and Bioactive Compounds of Lamium album Flower Extracts Obtained by Supercritical Fluid Extraction. Appl. Sci. 2021, 11, 7419. [Google Scholar] [CrossRef]
- Mazooji, A.; Salimpour, F.; Danaee, M.; Akhoondi, S. The Quantitative Comparison of Essential Oil Composition of an Iranian Endemic Plant [Leonurus cardiaca L. subsp. persicus (Boiss.) Rech. F.] vs. Previous Studied Population. Ann. Biol. Res. 2011, 3, 1117–1124. [Google Scholar]
- Morteza-Semnani, K.; Saeedi, M.; Akbarzadeh, M. The Essential Oil Composition of Leonurus cardiaca L. J. Essent. Oil Res. 2008, 20, 107–109. [Google Scholar] [CrossRef]
- Angeloni, S.; Spinozzi, E.; Maggi, F.; Sagratini, G.; Caprioli, G.; Borsetta, G.; Ak, G.; Sinan, K.I.; Zengin, G.; Arpini, S.; et al. Phytochemical Profile and Biological Activities of Crude and Purified Leonurus cardiaca Extracts. Plants 2021, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, K.; Ortwein, J.; Savtschenko, A.; Briel, D.; Volk, R.; Rauwald, H. Leonurus cardiaca, L. Japonicus, Leonotis leonurus: Quantitative HPLC and instrumental HPTLC determination of fourteen phenolics. Planta Med. 2012, 78, 1259. [Google Scholar] [CrossRef]
- Pereira, O.R.; Macias, R.I.R.; Domingues, M.R.M.; Marin, J.J.G.; Cardoso, S.M. Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants 2019, 8, 267. [Google Scholar] [CrossRef]
- Koshovyi, O.; Raal, A.; Kireyev, I.; Tryshchuk, N.; Ilina, T.; Romanenko, Y.; Kovalenko, S.M.; Bunyatyan, N. Phytochemical and Psychotropic Research of Motherwort (Leonurus cardiaca L.) Modified Dry Extracts. Plants 2021, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J.; Čomić, L.; Kocić, B.; Bernstein, N. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS Wagening J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Alinezhad, H.; Azimi, R.; Zare, M.; Ebrahimzadeh, M.A.; Eslami, S.; Nabavi, S.F.; Nabavi, S.M. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. angustifolius. Int. J. Food Prop. 2013, 16, 1169–1178. [Google Scholar] [CrossRef]
- Fathi, H.; Gholipur, A.; Ali Ebrahimzadeh, M.; Yasari, E.; Ahanjan, M.; Parsi, B. In vitro evaluation of the antioxidant potential, total phenolic and flavonoid content and antibacterial activity of Lamium album extracts. Int. J. Pharm. Sci. 2018, 9, 4210–4219. [Google Scholar]
- Bubueanu, C.; Gheorghe, C.; Pirvu, L.; Bubueanu, G. Antioxidant activity of butanolic extracts of Romanian native species L. album and L. purpureum. Rom. Biotechnol. Lett. 2013, 18, 7255–7262. [Google Scholar]
- Valyova, M.S.; Dimitrova, M.A.; Ganeva, Y.A.; Kapchina-Toteva, V.M.; Yordanova, Z.P. Evaluation of antioxidant and free radical scavenging potential of Lamium album L. growing in Bulgaria. J. Pharm. Res. 2011, 4, 945–947. [Google Scholar]
- Telichowska, A.; Kucharska, A.; Kobus-Cisowska, J.; Betka, M.; Szulc, P.; Stachowiak, B. Evaluation of antioxidation properties of natural polyphenol water extracts from selected plants in a model system. J. Res. Appl. Agric. Eng. 2021, 66, 25–29. [Google Scholar]
- Yi, W.; Wetzstein, H.Y. Effects of Drying and Extraction Conditions on the Biochemical Activity of Selected Herbs. HortScience 2011, 46, 70–73. [Google Scholar] [CrossRef]
- Jafari, S.; Moradi, A.; Salaritaba, A.; Hadjiakhoo, A.; Khanavi, M. Determination of Total Phenolic and Flavonoid Contents of Leonurus cardiaca L. in Compare with Antioxidant Activity. Res. J. Biol. Sci. 2010, 5, 484–487. [Google Scholar] [CrossRef]
- Kovalyova, A.M.; Goncharov, A.V.; Ochkur, A.V. Research of pharmacological properties of Lamium album L. herb complexes. Ukr. Biopharm. J. 2016, 44, 39–42. [Google Scholar] [CrossRef]
- Czerwińska, M.E.; Świerczewska, A.; Granica, S. Bioactive constituents of Lamium album L. as Inhibitors of cytokine secretion in human neutrophils. Molecules 2018, 23, 2770. [Google Scholar] [CrossRef] [PubMed]
- Paduch, R.; Matysik, G.; Wójciak–Kosior, M.; Kandefer–Szerszeń, M.; Skalska–Kamińska, A.; Nowak–Kryska, M.; Niedziela, P. Lamium Album Extracts Express Free Radical Scavenging and Cytotoxic Activities. Pol. J. Environ. Stud. 2008, 17, 569–580. [Google Scholar]
- Bernatoniene, J.; Kopustinskiene, D.M.; Jakstas, V.; Majiene, D.; Baniene, R.; Kuršvietiene, L.; Masteikova, R.; Savickas, A.; Toleikis, A.; Trumbeckaite, S. The effect of Leonurus cardiaca herb extract and some of its flavonoids on mitochondrial oxidative phosphorylation in the heart. Planta Med. 2014, 80, 525–532. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Fierascu, I.C.; Anuta, V.; Velescu, B.S.; Pituru, S.M.; Dinu-Pirvu, C.E. Leonurus cardiaca L. as a Source of Bioactive Compounds: An Update of the European Medicines Agency Assessment Report (2010). Biomed. Res. Int. 2019, 17, 4303215. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, B.; Micota, B.; Redzynia, M.; Różalski, M. The immunomodulatory potential of Leonurus cardiaca extract in relation to endothelial cells and platelets. J. Endotoxin Res. 2017, 23, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, K.; Volk, R.B.; Rauwald, H.W. Stachydrine in Leonurus cardiaca, Leonurus japonicus, Leonotis leonurus: Detection and quantification by instrumental HPTLC and 1H-qNMR analyses. Pharmazie 2013, 68, 534–540. [Google Scholar]
- Zhogova, A.A.; Perova, I.B.; Samylina, I.A.; Eller, K.I.; Ramenskaya, G.V. Identification and Quantitative Determination of the Main Biologically Active Substances in Motherwort Herb by HPLC–Mass Spectrometry. Pharm. Chem. J. 2014, 48, 461–466. [Google Scholar] [CrossRef]
- Jafari, A.; Hatami, M. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe3O4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L. Environ. Res. 2022, 215, 114254. [Google Scholar] [CrossRef]
- Yin, B.; Li, W.; Qin, H.; Yun, J.; Sun, X. The Use of Chinese Skullcap (Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals 2021, 11, 1039. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-S.; Chen, J.; Tan, H.-Y.; Wang, N.; Chen, Z.; Feng, Y. Scutellaria baicalensis and cancer treatment: Recent progress and perspectives in biomedical and clinical studies. Am. J. Chin. Med. 2018, 46, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.K.; Kim, H.; Shin, H.; Song, J.; Lee, M.K.; Park, B.; Lee, K.Y. Characterization of Anti-Inflammatory and Antioxidant Constituents from Scutellaria baicalensis Using LC-MS Coupled with a Bioassay Method. Molecules 2020, 25, 3617. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, R.; Wang, J.; Yu, P.; Liu, Q.; Zeng, D.; Song, H.; Kuang, Z. Protective effects of baicalin on LPS-induced injury in intestinal epithelial cells and intercellular tight junctions. Can. J. Physiol. Pharmacol. 2015, 93, 233–237. [Google Scholar] [CrossRef]
- Long, H.-L.; Xu, G.-Y.; Deng, A.-J.; Li, Z.-H.; Ma, L.; Lu, Y.; Zhang, Z.-H.; Wu, F.; Qin, H.-L. Two new flavonoids from the roots of Scutellaria baicalensis. J. Asian Nat. Prod. Res. 2015, 17, 756–760. [Google Scholar] [CrossRef]
- Liu, G.; Rajesh, N.; Wang, X.; Zhang, M.; Wu, Q.; Li, S.; Chen, B.; Yao, S. Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, W.; Zhang, S.; Zhao, Y.; Shi, Z.; Wang, D.; Wang, J.; Sun, L.; Zhao, M. Chemical constituents from the leaves of Scutellaria baicalensis Georgi and their chemotaxonomic significance. Biochem. Syst. Ecol. 2024, 116, 104885. [Google Scholar] [CrossRef]
- Tuan, P.A.; Kim, Y.B.; Kim, J.K.; Arasu, M.V.; Al-Dhabi, N.A.; Park, S.U. Molecular characterization of carotenoid biosynthetic genes and carotenoid accumulation in Scutellaria baicalensis Georgi. EXCLI J. 2014, 14, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kim, K.; Kwon, D.Y.; Kim, J.K.; Sathasivam, R.; Park, S.U. Effects of Different Solvents on the Extraction of Phenolic and Flavonoid Compounds, and Antioxidant Activities, in Scutellaria baicalensis Hairy Roots. Horticulturae 2024, 10, 160. [Google Scholar] [CrossRef]
- Lim, M.J.; Gu, Y.R.; Hong, J.-H. Extraction solvent-dependent antioxidant activities and cancer cell growth inhibitory effects of Scutellaria baicalensis extracts. Korean J. Food Preserv. 2019, 26, 566–575. [Google Scholar] [CrossRef]
- Vergun, O.; Svydenko, L.; Grygorieva, O.; Shymanska, O.; Rakhmetov, D.; Brindza, J.; Ivanišová, E. Antioxidant capacity of plant raw material of Scutellaria baicalensis Georgi. Potravin. Slovak J. Food Sci. 2019, 13, 614–621. [Google Scholar] [CrossRef]
- Li, W.; Sun, H.; Zhou, J.; Zhang, Y.; Liu, L.; Gao, Y. Antibacterial activities, antioxidant contents and antioxidant properties of three traditional Chinese medicinal extracts. Bangladesh J. Pharmacol. 2015, 10, 131–137. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Hamza, A.A.; Lashin, F.M.; Gamel, M.; Hassanin, S.O.; Abdalla, Y.; Amin, A. Hawthorn Herbal Preparation from Crataegus oxyacantha Attenuates In Vivo Carbon Tetrachloride -Induced Hepatic Fibrosis via Modulating Oxidative Stress and Inflammation. Antioxidants 2020, 9, 1173. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, M.A.; Adamyan, N.Y.; Shushanyan, R.A.; Karapetyan, A.F. Antioxidant Effects of Crataegus laevigata on Rat’s Brain under Hypobaric Hypoxia-Induced Oxygen Deficiency. Neurochem. J. 2023, 17, 477–481. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zhang, L.-F.; Xu, J.-G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci. Rep. 2020, 10, 8876. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, A.; Ahmadi, N.; Salehi, P.; Sonboli, A.; Alirezalu, K.; Khaneghah, A.M.; Barba, F.J.; Munekata, P.E.; Lorenzo, J.M. Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn (Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods 2020, 9, 436. [Google Scholar] [CrossRef]
- Liu, P.; Kallio, H.; Lü, D.; Zhou, C.; Yang, B. Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography–electrospray ionisation mass spectrometry. Food Chem. 2011, 127, 1370–1377. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Jin, H.; Liu, S.; Fang, S.; Wang, C.; Xia, C. Separation of vitexin-4″-O-glucoside and vitexin-2″-O-rhamnoside from hawthorn leaves extracts using macroporous resins. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1007, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, A.; Salehi, P.; Ahmadi, N.; Sonboli, A.; Aceto, S.; Maleki, H.H.; Ayyari, M. Flavonoids profile and antioxidant activity in flowers and leaves of hawthorn species (Crataegus spp.) from different regions of Iran. Int. J. Food Prop. 2018, 21, 452–470. [Google Scholar] [CrossRef]
- Rezaei-Golmisheh, A.; Malekinejad, H.; Asri-Rezaei, S.; Farshid, A.A.; Akbari, P. Hawthorn ethanolic extracts with triterpenoids and flavonoids exert hepatoprotective effects and suppress the hypercholesterolemia-induced oxidative stress in rats. Iran. J. Basic Med. Sci. 2015, 18, 691–699. [Google Scholar]
- Özyürek, M.; Bener, M.; Güçlü, K.; Dönmez, A.A.; Süzgeç-Selçuk, S.; Pırıldar, S.; Meriçli, A.H.; Apak, R. Evaluation of Antioxidant Activity of Crataegus Species Collected from Different Regions of Turkey. Rec. Nat. Prod. 2012, 6, 263–277. [Google Scholar]
- Batiha, G.E.-S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A.; et al. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Naimi, I.; Zefzoufi, M.; Bouamama, H.; M’hamed, T.B. Chemical composition and repellent effects of powders and essential oils of Artemisia absinthium, Melia azedarach, Trigonella foenum-graecum, and Peganum harmala on Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Ind. Crops Prod. 2022, 182, 114817. [Google Scholar] [CrossRef]
- Ksibi, N.; Saada, M.; Yeddes, W.; Limam, H.; Tammar, S.; Wannes, W.A.; Labidi, N.; Hessini, K.; Dakhlaoui, S.; Frouja, O.; et al. Phytochemical profile, antioxidant and antibacterial activities of Artemisia absinthium L. collected from Tunisian regions. J. Mex. Chem. Soc. 2022, 66, 312–329. [Google Scholar] [CrossRef]
- Goud, B.J.; Poornima, D. Preliminary Qualitative Phytochemical Screening and Fluorescence Analysis of Methanolic Leaf Extract of Artemisia Absinthium. Eur. J. Biomed. 2018, 5, 412–417. [Google Scholar]
- Mohammed, H.A. Phytochemical Analysis, Antioxidant Potential, and Cytotoxicity Evaluation of Traditionally Used Artemisia absinthium L. (Wormwood) Growing in the Central Region of Saudi Arabia. Plants 2022, 11, 1028. [Google Scholar] [CrossRef]
- Saunoriūtė, S.; Ragažinskienė, O.; Ivanauskas, L.; Marksa, M.; Laužikė, K.; Raudonė, L. Phenolic diversity and antioxidant Activity of Artemisia abrotanum L. and Artemisia absinthium L. during vegetation stages. Separations 2023, 10, 545. [Google Scholar] [CrossRef]
- Moacă, E.-A.; Pavel, I.Z.; Danciu, C.; Crăiniceanu, Z.; Minda, D.; Ardelean, F.; Antal, D.S.; Ghiulai, R.; Cioca, A.; Derban, M.; et al. Romanian Wormwood (Artemisia absinthium L.): Physicochemical and Nutraceutical Screening. Molecules 2019, 24, 3087. [Google Scholar] [CrossRef]
- Hbika, A.; Daoudi, N.E.; Bouyanzer, A.; Bouhrim, M.; Mohti, H.; Loukili, E.H.; Mechchate, H.; Al-Salahi, R.; Nasr, F.A.; Bnouham, M.; et al. Artemisia absinthium L. Aqueous and ethyl acetate extracts: Antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and in-testinal α-glucosidase. Pharmaceutics 2022, 14, 481. [Google Scholar] [CrossRef] [PubMed]
- Honorato-Salazar, A.; de Jesús Mario Ramírez-González, J.; Pérez-Santacruz, J. Morphometric and oil content variation of allspice (Pimenta dioica (L.) Merr.) fruits in Mexico Variação morfométrica e do teor de óleo de frutos de pimenta da Jamaica (Pimenta dioica (L.) Merr.) no México. Braz. J. Anim. Environ. Res. 2022, 5, 3441–3454. [Google Scholar]
- Zhang, L.; Lokeshwar, B.L. Medicinal Properties of the Jamaican Pepper Plant Pimenta dioica and Allspice. Curr. Drug Targets 2012, 13, 1900–1906. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Leal, A.C.; Palou, E.; López-Malo, A.; Bach, H. Antimicrobial, cytotoxic, and anti-inflammatory activities of Pimenta dioica and Rosmarinus officinalis essential oils. BioMed Res. Int. 2019, 2019, 1639726. [Google Scholar] [CrossRef] [PubMed]
- Padmakumari, K.; Sasidharan, I.; Sreekumar, M. Composition and antioxidant activity of essential oil of pimento (Pimenta dioica(L) Merr.) from Jamaica. Nat. Prod. Res. 2011, 25, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Mérida-Reyes, M.S.; Muñoz-Wug, M.A.; Oliva-Hernández, B.E.; Gaitán-Fernández, I.C.; Simas, D.L.R.; da Silva, A.J.R.; Pérez-Sabino, J.F. Composition and Antibacterial Activity of the Essential Oil from Pimenta dioica (L.) Merr. from Guatemala. Medicines 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Zarate, A.; Hernández-Gallegos, M.A.; Carrera-Lanestosa, A.; López-Martínez, S.; Chay-Canul, A.J.; Esparza-Rivera, J.R.; Velázquez-Martínez, J.R. Antioxidant and antibacterial activity of aqueous, ethanolic and acetonic ex-tracts of Pimenta dioica L. leaves. Int. Food Res. J. 2020, 27, 51. [Google Scholar]
- Murali, V.; Devi, V.M.; Parvathy, P.; Murugan, M. Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn. Mater. Today Proc. 2020, 45, 2166–2170. [Google Scholar] [CrossRef]
- De Soysa, E.J.S.; Abeysinghe, D.C.; Dharmadasa, R.M. Comparison of phytochemicals antioxidant activity and essential oil content of Pimenta dioica (L.) Merr. (Myrtaceae) with four selected spice crop species. World J. Agric. Res. 2016, 4, 158–161. [Google Scholar]
- Onwasigwe, E.N.; Verghese, M.; Sunkara, R.; Shackelford, L.; Walker, L.T. In Vitro Analysis of the Antioxidant Effect of Allspice. Food Nutr. Sci. 2017, 8, 778–792. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrovankova, S.; Mlcek, J. Antioxidant Potential and Its Changes Caused by Various Factors in Lesser-Known Medicinal and Aromatic Plants. Horticulturae 2025, 11, 104. https://doi.org/10.3390/horticulturae11010104
Skrovankova S, Mlcek J. Antioxidant Potential and Its Changes Caused by Various Factors in Lesser-Known Medicinal and Aromatic Plants. Horticulturae. 2025; 11(1):104. https://doi.org/10.3390/horticulturae11010104
Chicago/Turabian StyleSkrovankova, Sona, and Jiri Mlcek. 2025. "Antioxidant Potential and Its Changes Caused by Various Factors in Lesser-Known Medicinal and Aromatic Plants" Horticulturae 11, no. 1: 104. https://doi.org/10.3390/horticulturae11010104
APA StyleSkrovankova, S., & Mlcek, J. (2025). Antioxidant Potential and Its Changes Caused by Various Factors in Lesser-Known Medicinal and Aromatic Plants. Horticulturae, 11(1), 104. https://doi.org/10.3390/horticulturae11010104