Effects of Colchicine and 60Co-γ Radiation Treatments on the Leaf Size and Fruit Quality of Kiwifruit ‘Donghong’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Treatment
2.2. Ploidy Determination
2.3. Traits of Leaf and Fruit Determination
2.4. Simple Sequence Repetition (SSR)
2.5. Data Analysis
3. Results
3.1. Ploidy Identification of Mutagenic Materials
3.2. Measurement of Leaf Morphological Traits
3.3. Fruit Appearance Quality Determined
3.4. Fruit Intrinsic Quality Determined
3.5. Principal Component Analysis
3.6. Simple Sequence Repetition (SSR) Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, H.W. Classification, Resources, Domestication, and Cultivation of Actinidia; Science Press: Beijing, China, 2013. [Google Scholar]
- Liao, G.L.; Xu, Q.; Allan, A.C.; Xu, X.B. L-Ascorbic acid metabolism and regulation in fruit crops. Plant Physiol. 2023, 192, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.R. Kiwifruit: The wild and the cultivated plants. Adv. Food Nutr. Res. 2013, 68, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.H.; Han, F.; Li, D.W.; Liu, X.L.; Zhang, Q.; Jiang, Z.W.; Huang, H.W. Breeding of red-fleshed kiwifruit cultivar ‘Donghong’. J. Fruit Sci. 2016, 33, 1596–1599. [Google Scholar] [CrossRef]
- Chen, S.S.; Zhong, R.; Huang, C.H.; Xu, X.B.; Jia, D.F.; Tao, J.J. Effects of different concentrations of chlorfenuron on fruit quality of ’Donghong’ kiwifruit. Acta Agric. Univ. Jiangxiensis 2022, 44, 549–559. [Google Scholar] [CrossRef]
- Asadi, M.; Ghasemnezhad, M.; Bakhshipour, A.; Olfati, J.; Atak, A. Breeding of new kiwifruit (Actinidia chinensis) cultivars with yellow (golden) fleshed and superior characteristics. BMC Plant Biol. 2024, 24, 1045. [Google Scholar] [CrossRef] [PubMed]
- Campa, M.; Miranda, S.; Licciardello, C.; Lashbrooke, J.G.; Costa, L.D.; Guan, Q.; Spök, A.; Malnoy, M. Application of new breeding techniques in fruit trees. Plant Physiol. 2024, 194, 1304–1322. [Google Scholar] [CrossRef]
- Wu, X.; Qi, K.J.; Yin, H.; Zhang, S.L. Applying of the induced mutation techniques in the breeding of deciduous fruit tree varieties. Acta Hortic. Sin. 2016, 43, 1633–1652. [Google Scholar] [CrossRef]
- Li, Z.; Yi, H.L.; Wu, J.X. The application of 60Co-γ radiation mutation in fruit tree plant breeding in China. China Fruits 2022, 5, 21–27. [Google Scholar] [CrossRef]
- Wu, J.H.; Ferguson, A.R.; Murray, B.G. Manipulation of ploidy for kiwifruit breeding: In vitro chromosome doubling in diploid Actinidia chinensis Planch. Plant Cell Tissue Organ Cult. 2011, 106, 503–511. [Google Scholar] [CrossRef]
- Wu, J.H.; Ferguson, A.R.; Murray, B.G.; Jia, Y.L.; Datson, P.M.; Zhang, J.L. Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann. Bot. 2012, 109, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.L.; Chen, L.; Zhong, M.; Huang, C.H.; Tao, J.J.; Qu, X.Y.; Xu, X.B. An analysis of ploidy in eighty-eight Actinidia cultivars (strains) and their wild relatives. Acta Agric. Univ. Jiangxiensis 2018, 40, 689–698. [Google Scholar] [CrossRef]
- Liao, G.L.; He, Y.Q.; Li, X.S.; Zhong, M.; Huang, C.H.; Yi, S.Y.; Liu, Q.; Xu, X.B. Effects of bagging on fruit flavor quality and related gene expression of AsA synthesis in Actinidia eriantha. Sci. Hortic. 2019, 256, 108511. [Google Scholar] [CrossRef]
- Gao, J.F. Experimental Instruction in Plant Physiology; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Liao, G.L.; Xu, X.B.; Zhong, M.; Huang, C.H.; Tu, G.Q.; Li, B.M.; Tao, J.J.; Qu, X.Y.; Zhao, S.G.; Leng, J.H. A novel mid-maturing cultivar with high dry matter content from seedlings of ‘Jinfeng’ kiwifruit (Actinidia chinensis). Eur. J. Hortic. Sci. 2019, 84, 294–301. [Google Scholar] [CrossRef]
- Liao, G.L.; Xu, X.B.; Huang, C.H.; Qu, X.Y.; Jia, D.F. A novel early maturing kiwifruit (Actinidia eriantha) cultivar. N. Z. J. Crop Hortic. Sci. 2022, 51, 585–593. [Google Scholar] [CrossRef]
- Liao, G.L.; Li, Z.Y.; Huang, C.H.; Zhong, M.; Tao, J.J.; Qu, X.Y.; Chen, L.; Xu, X.B. Genetic diversity of inner quality and SSR association analysis of wild kiwifruit (Actinidia eriantha). Sci. Hortic. 2019, 248, 241–247. [Google Scholar] [CrossRef]
- Liao, G.L.; Xu, X.B.; Huang, C.H.; Zhong, M.; Jia, D.F. Resource evaluation and novel germplasm mining of Actinidia eriantha. Sci. Hortic. 2021, 282, 110037. [Google Scholar] [CrossRef]
- Zhong, M.; Tao, J.j.; Huang, C.h.; Huang, Q.; Zou, L.F.; Liao, G.L.; Chen, L.; Xu, X.B. Analysis of genetic diversity of populations in Actinidia eriantha Benth. based on simple sequence repeat (SSR) markers. J. Nucl. Agric. Sci. 2019, 33, 863–869. [Google Scholar]
- Famiani, F.; Proietti, P.; Pilli, M.; Battistelli, A.; Moscatello, S. Effects of application of thidiazuron (TDZ), gibberellic acid (GA3), and 2,4-dichlorophenoxyacetic acid (2,4-D) on fruit size and quality of Actinidia deliciosa ‘Hayward’. N. Z. J. Crop Hortic. Sci. 2007, 35, 341–347. [Google Scholar] [CrossRef]
- Assar, P.; Eshghi, S.; Tafazoli, E.; Rahemi, M.; Khazaeipoul, Y.G.; Monfared, A.S. Improving fruit quality in ‘Hayward’ kiwifruit using proper leaf to fruit ratios and girdling. Hortic. Environ. Biotechnol. 2009, 50, 481–486. [Google Scholar]
- Liao, G.L.; Xu, X.B.; Liu, Q.; Zhong, M.; Huang, C.H.; Jia, D.F.; Qu, X.Y. A special summer pruning method significantly increases fruit weight, ascorbic acid, and dry matter of kiwifruit (‘Jinyan’, Actinidia eriantha × A. chinensis). HortScience 2020, 55, 1698–1702. [Google Scholar] [CrossRef]
- Qi, X.J.; Guo, D.D.; Wang, R.; Zhong, Y.P.; Fang, J.B. Development status and suggestions on Chinese kiwifruit industry. J. Fruit Sci. 2020, 37, 754–763. [Google Scholar] [CrossRef]
- Shariatpanahi, M.E.; Niazian, M.; Ahmadi, B. Methods for chromosome doubling. Methods Mol. Biol. 2021, 2287, 127–148. [Google Scholar] [CrossRef]
- Wang, L.H.; Wang, L.X.; Ye, T.T.; Zhao, J.; Wang, L.L.; Wei, H.R.; Liu, P.; Liu, M.J. Autotetraploidization alters morphology, photosynthesis, cytological characteristics and fruit quality in sour jujube (Ziziphus acidojujuba Cheng et Liu). Plants 2023, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.W.; Wang, Z.J.; Luo, G.Q.; Tang, C.M. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.). Int. J. Mol. Sci. 2015, 16, 22938–22956. [Google Scholar] [CrossRef] [PubMed]
- Abdolinejad, R.; Shekafandeh, A.; Jowkar, A. In vitro tetraploidy induction creates enhancements in morphological, physiological and phytochemical characteristics in the fig tree (Ficus carica L.). Plant Physiol. Biochem. 2021, 166, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Cheniclet, C.; Rong, W.Y.; Causse, M.; Frangne, N.; Bolling, L.; Carde, J.-P.; Renaudin, J.-P. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol. 2005, 139, 1984–1994. [Google Scholar] [CrossRef]
- Malladi, A.; Hirst, P.M. Increase in fruit size of a spontaneous mutant of ‘Gala’ apple (Malus × domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J. Exp. Bot. 2010, 61, 3003–3013. [Google Scholar] [CrossRef] [PubMed]
- Eng, W.H.; Ho, W.S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Foyer, C.H.; Kyndt, T.; Hancock, R.D. Vitamin C in plants: Novel concepts, new perspectives, and outstanding issues. Antioxid. Redox Signal. 2020, 32, 463–485. [Google Scholar] [CrossRef]
- Oladosua, Y.; Rafii, M.Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H.A.; Miah, G.; Usman, M. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol. Biotechnol. Equip. 2016, 30, 1–16. [Google Scholar] [CrossRef]
- Ma, L.Q.; Kong, F.Q.; Sun, K.; Wang, T.; Guo, T. From classical radiation to modern radiation: Past, present, and future of radiation mutation breeding. Front. Public Health 2021, 9, 768071. [Google Scholar] [CrossRef]
- Chaudhary, J.; Alisha, A.; Bhatt, V.; Chandanshive, S.; Kumar, N.; Mir, Z.; Kumar, A.; Yadav, S.K.; Shivaraj, S.M.; Sonah, H.; et al. Mutation breeding in tomato: Advances, applicability and challenges. Plants 2019, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.J.; Hou, Y.J.; Chen, X.Y.; Huang, X.; Feng, M.J.; Wang, C.X.; Wang, Z.Y.; Yue, Z.; Zhang, Y.; Ma, J.X.; et al. Construction of watermelon mutant library based on 60Co γ-ray irradiation and EMS treatment for germplasm innovation. Horticulturae 2023, 9, 1133. [Google Scholar] [CrossRef]
- Shen, J.C.; Xun, C.F.; Ma, X.F.; Zhang, Y.; Zhang, Z.; He, Z.L.; He, Y.M.; Yang, D.Y.; Lai, H.G.; Wang, R.; et al. Screening 60Co-γ irradiated Camellia oleifera lines for anthracnose-resistant. Horticulturae 2024, 10, 940. [Google Scholar] [CrossRef]
Primer | Sequence 5′-3′ | Annealing Temperature (°C) | Allele Size Range (bp) |
---|---|---|---|
UDK96-019 | F: ATACACTTGAAGCGCCGC R: AAGCAGCCATGTCGATACG | 57 | 100–200 |
UDK96-035 | F: AAGAGCCATAGCTTATTCACCG R: AAGTAAAGCCATTGTCATTGCA | 60 | 100–150 |
UDK96-039 | F: GGTTTGATCGGTCTTCGAAA R: ATAAATGTGTGCCAGTGCGA | 57 | 150–200 |
UDK96-040 | F: TCGAGTTACCTAGCTACTCCGC R: CAAGGGAAGAAAATGTTGAACC | 62 | 100–200 |
UDK96-053 | F: GTAAGGTCATTTTTGCGAAAGG R: TTTGTTGGGAGTAACGTGAGG | 64 | 50–100 |
For13 | F: ACTAACAGACAAAAACTGGGGG R: ATGGAAGGAGATGGCGATG | 58 | 200–250 |
ST-Acd04 | F: CCCTTCCCCTCTCTCTCTC R: CGGAAGATCTGGCCATAGG | 57 | 200–400 |
EST-Ad42 | F: GTTAATTTGATCGGGATGG R: GAGGAGCTTGAGCTGCTAT | 62 | 250–400 |
Sample | Sample ID | Fruit | Ploidy |
---|---|---|---|
Wild type | CK | yes | diploid |
Colchicine concentration (0.05%) | 0.05a | no | diploid |
0.05b | yes | diploid | |
Colchicine concentration (0.1%) | 0.1a | no | diploid |
0.1b | yes | diploid | |
0.1c | yes | diploid | |
0.1d | no | diploid | |
Colchicine concentration (0.2%) | 0.2a | yes | diploid |
0.2b | yes | diploid | |
Colchicine concentration (0.3%) | 0.3a | yes | diploid |
0.3b | no | diploid | |
Colchicine concentration (0.4%) | 0.4a | yes | diploid |
0.4b | yes | diploid | |
0.4c | no | diploid | |
60Co-γ radiation dose (25Gy) | 25a | yes | diploid |
25b | yes | diploid | |
25c | yes | diploid | |
25d | yes | diploid | |
60Co-γ radiation dose (75Gy) | 75a | no | diploid |
60Co-γ radiation dose (100Gy) | 100a | yes | diploid |
Principal Components | Eigenvalue | Variance Contribution % | Cumulative Contribution Rate % |
---|---|---|---|
1 | 3.35 | 37.26 | 37.26 |
2 | 1.66 | 18.40 | 55.66 |
3 | 1.48 | 16.46 | 72.12 |
4 | 1.00 | 11.14 | 83.26 |
5 | 0.83 | 9.20 | 92.47 |
6 | 0.39 | 4.29 | 96.75 |
7 | 0.20 | 2.23 | 98.98 |
8 | 0.08 | 0.93 | 99.91 |
9 | 0.01 | 0.09 | 100.00 |
Quality Index | Principal Components | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Fruit weight | 0.87 | −0.01 | 0.28 | −0.09 | 0.30 |
Flesh firmness | 0.30 | −0.44 | 0.37 | 0.71 | 0.02 |
Mesocarp h* value | 0.08 | 0.68 | −0.63 | 0.27 | 0.13 |
Endocarp h* value | −0.24 | 0.71 | 0.45 | 0.19 | 0.31 |
Dry matter content | 0.62 | −0.49 | −0.45 | 0.05 | −0.03 |
Soluble solids content | 0.72 | 0.02 | −0.46 | −0.13 | 0.40 |
Soluble sugar content | 0.90 | 0.21 | 0.21 | 0.26 | −0.01 |
Titratable acid content | −0.57 | −0.44 | 0.12 | −0.13 | 0.66 |
Ascorbic acid content | 0.65 | 0.16 | 0.45 | −0.53 | −0.13 |
Sample ID | Y1 | Y2 | Y3 | Y4 | Y5 | Ftotal | Ranking |
---|---|---|---|---|---|---|---|
CK | −2.77 | 0.23 | −0.14 | −2.28 | −0.49 | −1.31 | 14 |
0.05b | 0.18 | −1.07 | −1.38 | 0.65 | −0.68 | −0.35 | 10 |
0.1b | −1.13 | 1.88 | −0.22 | 0.53 | −0.15 | −0.07 | 7 |
0.1c | −1.81 | 1.06 | 2.73 | 0.16 | −1.21 | −0.12 | 8 |
0.2a | −0.07 | −1.74 | −0.15 | 0.18 | −0.97 | −0.44 | 12 |
0.2b | −2.35 | −2.43 | 0.84 | −0.22 | 2.03 | −1.02 | 13 |
0.3a | −0.43 | 1.06 | −0.70 | 0.42 | 0.68 | 0.03 | 6 |
0.4a | 0.10 | −0.55 | −1.60 | −0.55 | −0.64 | −0.45 | 11 |
0.4b | 0.11 | −0.16 | −1.52 | 0.47 | −0.54 | −0.24 | 9 |
25a | 0.24 | 0.78 | 0.09 | 1.08 | 1.06 | 0.47 | 5 |
25b | 0.75 | 1.55 | −0.05 | −0.11 | 0.67 | 0.60 | 3 |
25c | 1.12 | −1.13 | 1.40 | 1.59 | −0.53 | 0.57 | 4 |
25d | 4.68 | −0.39 | 1.22 | −1.57 | 0.09 | 1.70 | 1 |
100a | 1.39 | 0.92 | −0.53 | −0.36 | 0.69 | 0.62 | 2 |
Sample | EST-Ad42 | ST-Acd04 | UDK96-019 | UDK96-040 | UDK96-035 | UDK96-053 | UDK96-039 | For13 | Number of Sites Increased | Number of Sites Decreased | Coefficient of Variation (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0110100 | 1111 | 1111 | 000011 | 1111 | 111 | 11111 | 101 | 0 | 0 | 0 |
0.05a | 0110100 | 0001 | 1111 | 111110 | 1111 | 111 | 11111 | 011 | 5 | 5 | 27.78 |
0.05b | 1110100 | 1111 | 1111 | 111110 | 1111 | 111 | 11111 | 111 | 6 | 1 | 19.44 |
0.1a | 1110100 | 1111 | 1111 | 111110 | 1111 | 111 | 11111 | 111 | 6 | 1 | 19.44 |
0.1b | 1110100 | 1111 | 1111 | 111110 | 1011 | 111 | 11111 | 111 | 6 | 2 | 22.22 |
0.1c | 1110100 | 1101 | 1111 | 111110 | 1111 | 111 | 11111 | 101 | 5 | 2 | 19.44 |
0.1d | 0110100 | 0011 | 0010 | 111110 | 1111 | 010 | 11111 | 111 | 5 | 8 | 36.11 |
0.2a | 1110100 | 1111 | 1111 | 011110 | 1111 | 111 | 11111 | 101 | 4 | 1 | 13.89 |
0.2b | 1111111 | 1111 | 1111 | 111110 | 1111 | 111 | 11111 | 101 | 8 | 1 | 25.00 |
0.3a | 0110100 | 0111 | 1100 | 111110 | 1011 | 000 | 00010 | 111 | 5 | 12 | 47.22 |
0.3b | 1110100 | 1111 | 1111 | 011110 | 1111 | 111 | 11111 | 111 | 5 | 1 | 16.67 |
0.4a | 0000100 | 0110 | 1000 | 111110 | 1111 | 010 | 00111 | 111 | 5 | 12 | 47.22 |
0.4b | 0000000 | 0011 | 1010 | 111110 | 1111 | 000 | 00111 | 101 | 4 | 13 | 47.22 |
0.4c | 1110100 | 1111 | 1111 | 000010 | 1111 | 111 | 11111 | 101 | 1 | 1 | 5.56 |
25a | 0000100 | 0111 | 1110 | 111110 | 1111 | 000 | 11111 | 111 | 5 | 8 | 36.11 |
25b | 0111100 | 0111 | 1110 | 011010 | 1111 | 111 | 11111 | 101 | 3 | 3 | 16.67 |
25c | 0110100 | 0111 | 1111 | 111110 | 1111 | 011 | 11111 | 101 | 4 | 3 | 19.44 |
25d | 0111111 | 1111 | 1111 | 111110 | 1111 | 111 | 11111 | 101 | 7 | 1 | 22.22 |
75a | 1111101 | 1111 | 1111 | 111110 | 1111 | 111 | 11111 | 101 | 7 | 1 | 22.22 |
100a | 0010100 | 1111 | 0011 | 111110 | 1001 | 000 | 11111 | 001 | 4 | 10 | 38.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, Q.; Li, X.; Liao, G.; Xu, X. Effects of Colchicine and 60Co-γ Radiation Treatments on the Leaf Size and Fruit Quality of Kiwifruit ‘Donghong’. Horticulturae 2025, 11, 78. https://doi.org/10.3390/horticulturae11010078
Wang L, Liu Q, Li X, Liao G, Xu X. Effects of Colchicine and 60Co-γ Radiation Treatments on the Leaf Size and Fruit Quality of Kiwifruit ‘Donghong’. Horticulturae. 2025; 11(1):78. https://doi.org/10.3390/horticulturae11010078
Chicago/Turabian StyleWang, Limei, Qing Liu, Xishi Li, Guanglian Liao, and Xiaobiao Xu. 2025. "Effects of Colchicine and 60Co-γ Radiation Treatments on the Leaf Size and Fruit Quality of Kiwifruit ‘Donghong’" Horticulturae 11, no. 1: 78. https://doi.org/10.3390/horticulturae11010078
APA StyleWang, L., Liu, Q., Li, X., Liao, G., & Xu, X. (2025). Effects of Colchicine and 60Co-γ Radiation Treatments on the Leaf Size and Fruit Quality of Kiwifruit ‘Donghong’. Horticulturae, 11(1), 78. https://doi.org/10.3390/horticulturae11010078