A Spray Foliar Containing Methylobacterium symbioticum Did Not Increase Nitrogen Concentration in Leaves or Olive Yield Across Three Rainfed Olive Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Experimental Plots
2.2. Experimental Designs and Fertilizing Materials
2.3. Crop Management
2.4. Sampling and Laboratory Analyses
2.5. Data Analysis
3. Results
3.1. Field Trial of Valongo Farm
3.2. Field Trial of Marmelos Prodi
3.3. Field Trial of Marmelos Bio
4. Discussion
4.1. Effect of Mineral Fertilizer on Olive Yield and Nitrogen Nutritional Status of the Trees
4.2. Effect of the Inoculant on Olive Yield and Tree Nutritional Status
4.3. Application of Seaweed Extract
4.4. The Effect of Treatments on the Concentration of Nutrients Other than Nitrogen
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hungria, M.; Nogueira, M.A. Nitrogen fixation. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Elsevier, Ltd.: Chennai, India, 2023; pp. 615–650. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Limited: Edinburg, UK, 2017. [Google Scholar]
- Ohyama, T. The role of legume-rhizobium symbiosis in sustainable agriculture. In Legume Nitrogen Fixation in Soils with Low Phosphorus Availability Adaptation and Regulatory Implication; Sulieman, S., Tran, L.-S.P., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–20. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson, Inc.: Chennai, India, 2017. [Google Scholar]
- Buerkert, A.; Joergensen, R.G.; Schlecht, E. Nutrient and carbon fluxes in terrestrial agroecosystems. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Elsevier, Ltd.: Chennai, India, 2023; pp. 751–774. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Dimande, P.; Pereira, E.; Ferreira, I.Q.; Freitas, S.; Correia, C.M.; Moutinho-Pereira, J.; Arrobas, M. Early maturing annual legumes: An option for cover cropping in rainfed olive orchards. Nutr. Cycl. Agroecosyst. 2015, 103, 153–166. [Google Scholar] [CrossRef]
- Dimande, P.; Arrobas, M.; Rodrigues, M.Â. Intercropped maize and cowpea increased the land equivalent ratio and enhanced crop access to more nitrogen and phosphorus compared to cultivation as sole crops. Sustainability 2024, 16, 1440. [Google Scholar] [CrossRef]
- Chanway, C.P.; Anand, R.; Yang, H. Nitrogen fixation outside and inside plant tissues. In Advances in Biology and Ecology of Nitrogen Fixation; Ohyama, T., Ed.; AvE4EvA MuViMix Records; IntechOpen Limited: London, UK, 2014; pp. 3–21. [Google Scholar] [CrossRef]
- Bhuvaneshwari, K.; Singh, P.K. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop. 3 Biotech 2015, 5, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, M. Gluconobacter. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2020; pp. 521–544. [Google Scholar]
- Padgurschi, M.C.G.; Vieira, S.A.; Stefani, E.J.F.; Nardoto, G.B.; Joly, C.A. Nitrogen input by bamboos in neotropical forest: A new perspective. PeerJ 2018, 6, e6024. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.C.M.; Brum, M.; Almeida, L.C.; Barrera-Berdugo, S.; de Souza, A.A.; de Camargo, P.B.; Oliveira, R.S.; Alves, L.F.; Rosado, B.H.P.; Lambais, M.R. Asymbiotic nitrogen fixation in the phyllosphere of the Amazon Forest: Changing nitrogen cycle paradigms. Sci. Total Environ. 2021, 773, 145066. [Google Scholar] [CrossRef] [PubMed]
- Corteva. BlueN–Bioestimulante. Corteva Biologicals, Agriscience, 2024. Available online: https://www.corteva.pt/content/dam/dpagco/corteva/eu/pt/pt/files/folletos/DOC-BlueN-Folheto-Corteva_EU_PT.pdf (accessed on 12 March 2024).
- Vera, R.T.; García, A.J.B.; Álvarez, F.J.C.; Ruiz, J.M.; Martín, F.F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol. 2024, 69, 121–131. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ros, M.; Martínez, J.; Carmona, F.; Bernabé, A.; Torres, R.; Lucena, T.; Aznar, R.; Arahal, D.R.; Fernández, F. Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum. Curr. Microb. 2020, 77, 2031–2041. [Google Scholar] [CrossRef]
- Abanda-Nkpwatt, D.; Müsch, M.; Tschiersch, J.; Boettner, M.; Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: Growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 2006, 57, 4025–4032. [Google Scholar] [CrossRef]
- Leducq, J.-B.; Sneddon, D.; Santos, M.; Condrain-Morel, D.; Bourret, G.; Martinez-Gomez, N.C.; Lee, J.A.; Foster, J.A.; Stolyar, S.; Shapiro, B.J.; et al. Comprehensive phylogenomics of Methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol. Evol. 2022, 14, evac123. [Google Scholar] [CrossRef]
- Jinal, H.N.; Amaresan, N.; Sankaranarayanan, A. Methylobacterium. In Beneficial Microbes in Agro Ecology: Bacteria and Fungi; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Elsevier: London, UK, 2020; pp. 509–519. [Google Scholar]
- Arrobas, M.; Correia, C.M.; Rodrigues, M.Â. Methylobacterium symbioticum applied as a foliar inoculant was little effective in enhancing nitrogen fixation and lettuce dry matter yield. Sustainability 2024, 16, 4512. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Raimundo, S.; Correia, C.M.; Arrobas, M. Nitrogen fixation and growth of potted olive plants through foliar application of a nitrogen-fixing microorganism. Horticulturae 2024, 10, 604. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Correia, C.M.; Arrobas, M. The application of a foliar spray containing Methylobacterium symbioticum had a limited effect on crop yield and nitrogen recovery in field and pot-grown maize. Plants 2024, 13, 2909. [Google Scholar] [CrossRef] [PubMed]
- Piñar-Fuentes, J.C.; Peña-Martínez, J.; Cano-Ortiz, A. Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education. Agriculture 2024, 14, 2112. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Piñar Fuentes, J.C.; Leiva Gea, F.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Rodrigues Meireles, C.I.; Raposo, M.; Pinto Gomes, C.J.; Spampinato, G.; del Río González, S.; et al. How to reduce the supply of nutrients to the soil, increase water reserves, and mitigate climate chang. In Agroforestry for Carbon and Ecosystem Management; Jhariya, M.K., Meena, R.S., Banerjee, A., Kumar, S., Raj, A., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 223–232. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilizing Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 15 June 2024).
- Du Jardin, P.; Xu, L.; Geelen, D. Agricultural functions and action mechanisms of plant biostimulants (PBs): An introduction. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley: West Sussex, UK, 2020; pp. 3–29. [Google Scholar] [CrossRef]
- Sible, C.N.; Seebauer, J.R.; Below, F.E. Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy 2021, 11, 1297. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef]
- Li, J.; Van Gerrewey, T.; Geelen, D. A meta-analysis of biostimulant yield effectiveness in field trials. Front. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef]
- WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; Technical Paper 9; ISRIC: Wageningen, The Netherlands; FAO of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nahrstoffzustandes der Boden. II. Chemische Extraktionsmethoden zur Phosphorund Kaliumbestimmung. K. Lantbrukshogskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Temminghoff, E.E.; Houba, V.J. Plant Analysis Procedures, 2nd ed.; Temminghoff, E.E., Houba, V.J., Eds.; Kluwer Academic Publishers: London, UK, 2004. [Google Scholar] [CrossRef]
- Sibbett, G.S.; Ferguson, L. Nitrogen, boron, and potassium dynamic in “On” vs “Off” cropped Mansanillo olive trees in California. Acta Hort. 2002, 586, 369–373. [Google Scholar] [CrossRef]
- Martin, G.C.; Ferguson, L.; Sibbett, G.S. Flowering, pollination, fruiting, alternate bearing, and abscission. In Olive Production Manual; Sibbett, G.S., Ferguson, L., Eds.; Publication 3353; University of California: Oakland, CA, USA, 2005; pp. 49–54. [Google Scholar]
- Rosati, A.; Paoletti, A.; Al Hariri, R.; Famiani, F. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive. Tree Physiol. 2018, 8, 1278–1285. [Google Scholar] [CrossRef]
- Jangid, R.; Kumar, A.; Masu, M.; Kanade, N.; Pant, R. Alternate bearing in fruit crops: Causes and control measures. Asian J. Agric. Hortic. Res. 2023, 1, 10–19. [Google Scholar] [CrossRef]
- Lavee, S.; Harshemesh, H.; Avidan, N. Phenolic acids possible involvement in regulating growth and alternate fruiting in olive trees. Acta Hort. 1986, 179, 317–328. [Google Scholar] [CrossRef]
- Haim, D.; Shalom, L.; Simhon, Y.; Shlizerman, L.; Kamara, I.; Morozov, M.; Albacete, A.; Rivero, R.M.; Sadka, A. Alternate bearing in fruit trees: Fruit presence induces polar auxin transport in citrus and olive stem and represses IAA release from the bud. J. Exp. Bot. 2021, 72, 2450–2462. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.G.; Oren, R.; Waring, R.H. Fruiting and sink competition. Tree Physiol. 2018, 38, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Rapoport, H.F.; Rallo, L. Relationship among reproductive processes and fruitlet abscission in ‘Arbequina’ olive. Adv. Hort. Sci. 1995, 9, 92–96. [Google Scholar]
- Lopes, J.I.; Gonçalves, A.; Brito, C.; Martins, S.; Pinto, L.; Moutinho-Pereira, J.; Raimundo, S.; Arrobas, M.; Rodrigues, M.A.; Correia, C.M. Inorganic fertilization at high n rate increased olive yield of a rainfed orchard but reduced soil organic matter in comparison to three organic amendments. Agronomy 2021, 11, 2172. [Google Scholar] [CrossRef]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Hortic. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Bell, R. Diagnosis and prediction of deficiency and toxicity of nutrients. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Elsevier, Ltd.: Chennai, India, 2023; pp. 477–495. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.J., Jr.; Barker, A.V. Plant Analysis Handbook II: A Guide to Sampling, Preparation, Analysis, Interpretation and Use of Results of Agronomic and Horticultural Crop Plant Tissue; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014. [Google Scholar]
- Kirkby, E.A.; Nikolic, M.; White, P.J.; Xu, G. Mineral nutrition, yield, and source-sink relationships. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Elsevier, Ltd.: Chennai, India, 2023; pp. 131–200. [Google Scholar] [CrossRef]
- Stewart, R.A.; Lal, R. The nitrogen dilemma: Food or the environment. J. Soil Water Conserv. 2017, 72, 124A–128A. [Google Scholar] [CrossRef]
- Ojiem, J.; Franke, A.; Vanlauwe, B.; de Ridder, N.; Giller, K.E. Benefits of legume–maize rotations: Assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Res. 2014, 168, 75–85. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Cui, S.; Yang, Q.; Yang, X.; Li, J.; Shen, Y. Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau, a long-term imperative. Field Crops Res. 2018, 222, 164–179. [Google Scholar] [CrossRef]
- Galanopoulou, K.; Lithourgidis, A.S.; Dordas, C.A. Intercropping of faba bean with barley at various spatial arrangements affects dry matter and N yield, nitrogen nutrition index, and interspecific competition. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 1116–1127. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Correia, C.M.; Claro, A.M.; Ferreira, I.Q.; Barbosa, J.C.; Moutinho-Pereira, J.M.; Bacelar, E.A.; Fernandes-Silva, A.A.; Arrobas, M. Soil nitrogen availability in olive orchards after mulching legume cover crop residues. Sci. Hortic. 2013, 156, 45–51. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Pannecoucque, J.; Goormachtigh, S.; Ceusters, N.; Bode, S.; Boeckx, P.; Roldan-Ruiz, I. Soybean response and profitability upon inoculation and nitrogen fertilization in Belgium. Eur. J. Agron. 2022, 132, 126390. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Bobrecka-Jamro, D.; Pikuła, W.; Jańczak-Pieniążek, M. Effect of nitrogen fertilization and inoculation with Bradyrhizobium japonicum on nodulation and yielding of soybean. Agronomy 2023, 13, 1341. [Google Scholar] [CrossRef]
- Russelle, M.P. Biological dinitrogen fixation in agriculture. In Nitrogen in Agricultural Systems; Schepers, J.S., Raun, W.R., Eds.; Agronomy Monograph No. 49; ASA, CSSA, SSSA: Madison, WI, USA, 2008; pp. 281–359. [Google Scholar]
- Srivastava, A.; Dixit, R.; Chand, N.; Kumar, P. Overview of methylotrophic microorganisms in agriculture. Bio Sci. Res. Bull. 2022, 38, 65–71. [Google Scholar] [CrossRef]
- Giller, K.E.; James, E.K.; Ardley, J.; Unkovich, M.J. Science losing its way: Examples from the realm of microbial N2-fixation in cereals and other non-legumes. Plant Soil 2024. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Huo, L.; Li, Y.C.; Li, X.; Xia, L.; Zhou, Z.; Zhang, M.; Li, B. Humic acids derived from Leonardite to improve enzymatic activities and bioavailability of nutrients in a calcareous soil. Int. J. Agric. Biol. Eng. 2020, 13, 200–205. [Google Scholar] [CrossRef]
- Afonso, S.; Arrobas, M.; Rodrigues, M.Â. Response of hops to algae-based and nutrient-rich foliar sprays. Agriculture 2021, 11, 798. [Google Scholar] [CrossRef]
- Di Stasio, E.; Van Oosten, M.J.; Silletti, S.; Raimondi, G.; Dell’Aversana, E.; Carillo, P.; Maggio, A. Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J. Appl. Phycol. 2018, 30, 2675–2686. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar]
- Arrobas, M.; Andrade, M.; Raimundo, S.; Mazaro, S.M.; Rodrigues, M.A. Lettuce response to the application of two commercial leonardites and their effect on soil properties in a growing medium with nitrogen as the main limiting factor. J. Plant Nutr. 2023, 46, 4280–4294. [Google Scholar] [CrossRef]
Soil Properties | Valongo | Marmelos Prodi | Marmelos Bio |
---|---|---|---|
1 Organic carbon (g kg−1) | 6.92 ± 1.14 | 5.94 ± 0.14 | 6.16 ± 0.99 |
2 Total nitrogen (g kg−1) | 0.30 ± 0.04 | 0.29 ± 0.04 | 0.31 ± 0.02 |
3 pH (H2O) | 5.61 ± 0.17 | 5.45 ± 0.15 | 5.48 ± 0.25 |
4 Extract. phosphorus (mg kg−1, P2O5) | 56.05 ± 8.86 | 57.33 ± 3.04 | 63.33 ± 6.81 |
4 Extract. potassium (mg kg−1, K2O) | 115.33 ± 29.09 | 147.67 ± 24.50 | 138.67 ± 21.08 |
5 Exchang. calcium (cmolc kg−1) | 3.49 ± 0.69 | 2.49 ± 0.56 | 2.53 ± 0.40 |
5 Exchang. magnesium (cmolc kg−1) | 0.60 ± 0.18 | 0.43 ± 0.04 | 0.42 ± 0.07 |
5 Exchang. potassium (cmolc kg−1) | 0.26 ± 0.07 | 0.29 ± 0.03 | 0.31 ± 0.02 |
5 Exchang. sodium (cmolc kg−1) | 0.35 ± 0.09 | 0.26 ± 0.02 | 0.24 ± 0.02 |
6 Exchang. acidity (cmolc kg−1) | 0.33 ± 0.06 | 0.30 ± 0.00 | 0.27 ± 0.06 |
7 CEC (cmolc kg−1) | 5.03 ± 0.88 | 3.77 ± 0.57 | 3.76 ± 0.40 |
8 Sand | 78.37 ± 1.92 | 74.87 ± 2.97 | 73.90 ± 3.17 |
8 Silt | 15.37 ± 1.01 | 15.07 ± 2.14 | 15.67 ± 2.00 |
8 Clay | 6.27 ± 0.99 | 10.07 ± 2.10 | 10.43 ± 1.17 |
9 Texture | Loamy sand | Sandy loam | Sandy loam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.Â.; Lopes, J.I.; Martins, S.; Brito, C.; Correia, C.M.; Arrobas, M. A Spray Foliar Containing Methylobacterium symbioticum Did Not Increase Nitrogen Concentration in Leaves or Olive Yield Across Three Rainfed Olive Orchards. Horticulturae 2025, 11, 80. https://doi.org/10.3390/horticulturae11010080
Rodrigues MÂ, Lopes JI, Martins S, Brito C, Correia CM, Arrobas M. A Spray Foliar Containing Methylobacterium symbioticum Did Not Increase Nitrogen Concentration in Leaves or Olive Yield Across Three Rainfed Olive Orchards. Horticulturae. 2025; 11(1):80. https://doi.org/10.3390/horticulturae11010080
Chicago/Turabian StyleRodrigues, Manuel Ângelo, João Ilídio Lopes, Sandra Martins, Cátia Brito, Carlos Manuel Correia, and Margarida Arrobas. 2025. "A Spray Foliar Containing Methylobacterium symbioticum Did Not Increase Nitrogen Concentration in Leaves or Olive Yield Across Three Rainfed Olive Orchards" Horticulturae 11, no. 1: 80. https://doi.org/10.3390/horticulturae11010080
APA StyleRodrigues, M. Â., Lopes, J. I., Martins, S., Brito, C., Correia, C. M., & Arrobas, M. (2025). A Spray Foliar Containing Methylobacterium symbioticum Did Not Increase Nitrogen Concentration in Leaves or Olive Yield Across Three Rainfed Olive Orchards. Horticulturae, 11(1), 80. https://doi.org/10.3390/horticulturae11010080