Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops
Abstract
:1. Introduction
2. Formulations of Brown Algae
2.1. Extracts
2.2. Direct Applications
2.3. Composts
3. Applications and Effects of Brown Algae in Plants
3.1. Brown Algae Products on Growth, Yield, Physiology, and Quality of Crops
3.2. Effect of Brown Algae Products in the Induction of Tolerance to Stress in Crops
4. Soil Applications of Brown Algae
4.1. Impact on the Physico-Chemical Characteristics of Soil
4.2. Impact on the Rhizosphere
5. Mechanism of Action of Algae Products on Plants and Agricultural Soil
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pereira, L. Macroalgae. Encyclopedia 2021, 1, 177–188. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Fang, H.; Lin, X.; Dai, X.; Liu, H. Photosynthetic Toxicity of Enrofloxacin on Scenedesmus obliquus in an Aquatic Environment. Int. J. Environ. Res. Public Health 2022, 19, 5545. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, C.; Jiang, P. Cloning and characterization of nitrate reductase gene in kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Plant Biol. 2023, 23, 78. [Google Scholar] [CrossRef]
- Gutiérrez-Cuesta, R.; González-García, K.L.; Valdés-Iglesias, O.d.R.; Hernández-Rivera, Y.; Acosta-Suárez, Y. Seaweeds As Sources of Bioactive Compounds in the Benefit of Human Health: A Review. Biotecnia 2016, 18, 20–27. [Google Scholar] [CrossRef]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- González-Morales, S.; Solís-Gaona, S.; Valdés-Caballero, M.V.; Juárez-Maldonado, A.; Loredo-Treviño, A.; Benavides-Mendoza, A. Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Front. Genet. 2021, 12, 583888. [Google Scholar] [CrossRef]
- Kergosien, N.; Stiger-Pouvreau, V.; Connan, S.; Hennequart, F.; Brébion, J. Mini-Review: Brown macroalgae as a promising raw material to produce biostimulants for the agriculture sector. Front. Agron. 2023, 5, 1109989. [Google Scholar] [CrossRef]
- Lemesheva, V.; Islamova, R.; Stepchenkova, E.; Shenfeld, A.; Birkemeyer, C.; Tarakhovskaya, E. Antibacterial, Antifungal and Algicidal Activity of Phlorotannins, as Principal Biologically Active Components of Ten Species of Brown Algae. Plants 2023, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Ryabushko, V.I.; Prazukin, A.V.; Gureeva, E.V.; Bobko, N.I.; Kovrigina, N.G.; Nekhoroshev, M.V. Fucoxanthin and heavy metals in brown algae of genus Cystoseira C. Agardh from water areas with different anthropogenic influences (Black Sea). Mar. Biol. J. 2017, 2, 70–79. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Brown algae carbohydrates: Structures, pharmaceutical properties, and research challenges. Mar. Drugs 2021, 19, 620. [Google Scholar] [CrossRef] [PubMed]
- Esserti, S.; Smaili, A.; Rifai, L.A.; Koussa, T.; Makroum, K.; Belfaiza, M.; Kabil, E.M.; Faize, L.; Burgos, L.; Alburquerque, N.; et al. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J. Appl. Phycol. 2017, 29, 1081–1093. [Google Scholar] [CrossRef]
- Drira, M.; Ben Mohamed, J.; Ben Hlima, H.; Hentati, F.; Michaud, P.; Abdelkafi, S.; Fendri, I. Improvement of Arabidopsis thaliana salt tolerance using a polysaccharidic extract from the brown algae Padina pavonica. Algal Res. 2021, 56, 102324. [Google Scholar] [CrossRef]
- Sariñana-Aldaco, O.; Benavides-Mendoza, A.; Robledo-Olivo, A.; González-Morales, S. The Biostimulant Effect of Hydroalcoholic Extracts of Sargassum spp. in Tomato Seedlings under Salt Stress. Plants 2022, 11, 3180. [Google Scholar] [CrossRef]
- Yurkevich, M.; Suleymanov, R.; Ikkonen, E.; Dorogaya, E.; Bakhmet, O. Effect of Brown Algae (Fucus vesiculosus L.) on Humus and Chemical Properties of Soils of Different Type and Postgermination Growth of Cucumber Seedlings. Agronomy 2022, 12, 1991. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva-Reis, R.; Chouh, A.; Silva, S.; Braga, S.S.; Silva, A.M.S.; Cardoso, S.M. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar. Drugs 2023, 21, 172. [Google Scholar] [CrossRef]
- Massimi, M.; Radócz, L.; Csótó, A. Impact of Organic Acids and Biological Treatments in Foliar Nutrition on Tomato and Pepper Plants. Horticulturae 2023, 9, 413. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Berthon, J.Y.; Michel, T.; Wauquier, A.; Joly, P.; Gerbore, J.; Filaire, E. Seaweed and microalgae as major actors of blue biotechnology to achieve plant stimulation and pest and pathogen biocontrol—A review of the latest advances and future prospects. J. Agric. Sci. 2021, 159, 523–534. [Google Scholar] [CrossRef]
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Garza-Alonso, C.A.; Olivares-Sáenz, E.; González-Morales, S.; Cabrera-De la Fuente, M.; Juárez-Maldonado, A.; González-Fuentes, J.A.; Tortella, G.; Valdés-Caballero, M.V.; Benavides-Mendoza, A. Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality. Plants 2022, 11, 3463. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef]
- Juárez-Maldonado, A.; Tortella, G.; Rubilar, O.; Fincheira, P.; Benavides-Mendoza, A. Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants. J. Adv. Res. 2021, 31, 113–126. [Google Scholar] [CrossRef]
- Baweja, P.; Kumar, S.; Kumar, G. Organic Fertilizer from Algae: A Novel Approach Towards Sustainable Agriculture. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.Q., Varma, A., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 353–370. ISBN 9783030189334. [Google Scholar]
- Zamljen, T.; Šircelj, H.; Veberič, R.; Hudina, M.; Slatnar, A. Impact of Two Brown Seaweed (Ascophyllum nodosum L.) Biostimulants on the Quantity and Quality of Yield in Cucumber (Cucumis sativus L.). Foods 2024, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.P. The Biomass of Algae and Algal Extracts in Agricultural Production. In Algae Biomass: Characteristics and Applications; Chojnacka, K., Wieczorek, P.P., Schroeder, G., Michalak, I., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2018; pp. 103–114. ISBN 9783319747033. [Google Scholar]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Dang, B.-T.; Ramaraj, R.; Huynh, K.-P.-H.; Le, M.-V.; Tomoaki, I.; Pham, T.-T.; Luan, V.H.; Le Na, P.T.; Tran, D.P.H. Current application of seaweed waste for composting and biochar: A review. Bioresour. Technol. 2023, 375, 128830. [Google Scholar] [CrossRef]
- Zubia, M.; Andréfouët, S.; Payri, C. Distribution and biomass evaluation of drifting brown algae from Moorea lagoon (French Polynesia) for eco-friendly agricultural use. J. Appl. Phycol. 2015, 27, 1277–1287. [Google Scholar] [CrossRef]
- La Bella, S.; Consentino, B.B.; Rouphael, Y.; Ntatsi, G.; De Pasquale, C.; Iapichino, G.; Sabatino, L. Impact of Ecklonia maxima seaweed extract and Mo foliar treatments on biofortification, spinach yield, quality and NUE. Plants 2021, 10, 1139. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; El-Sheekh, M.M.; Hamed Aly, S.; Al-Harbi, M.; Elkelish, A.; Nagah, A. Inductive role of the brown alga Sargassum polycystum on growth and biosynthesis of imperative metabolites and antioxidants of two crop plants. Front. Plant Sci. 2023, 14, 1136325. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Farrell, A.; Ramsubhag, A.; Jayaraman, J. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J. Appl. Phycol. 2016, 28, 1353–1362. [Google Scholar] [CrossRef]
- Jithesh, M.N.; Shukla, P.S.; Kant, P.; Joshi, J.; Critchley, A.T.; Prithiviraj, B. Physiological and Transcriptomics Analyses Reveal that Ascophyllum nodosum Extracts Induce Salinity Tolerance in Arabidopsis by Regulating the Expression of Stress Responsive Genes. J. Plant Growth Regul. 2019, 38, 463–478. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Alamri, S.A.; Alrumman, S.A.; Hashem, M.; Taher, M.A.; Baka, Z.A. In Vitro and In Vivo Biocontrol of Tomato Fusarium Wilt by Extracts from Brown, Red, and Green Macroalgae. Agriculture 2022, 12, 345. [Google Scholar] [CrossRef]
- Rodríguez-Bernaldo de Quirós, A.; López-Hernández, J. An overview on effects of processing on the nutritional content and bioactive compounds in seaweeds. Foods 2021, 10, 2168. [Google Scholar] [CrossRef] [PubMed]
- Goñi, O.; Fort, A.; Quille, P.; McKeown, P.C.; Spillane, C.; O’Connell, S. Comparative Transcriptome Analysis of Two Ascophyllum nodosum Extract Biostimulants: Same Seaweed but Different. J. Agric. Food Chem. 2016, 64, 2980–2989. [Google Scholar] [CrossRef]
- Chwastowska-Siwiecka, I.; Miciński, J. Characteristics and applications of marine algae in the agri-food industry and animal nutrition. J. Elem. 2023, 28, 855–874. [Google Scholar] [CrossRef]
- Lefi, E.; Badri, M.; Hamed, S.B.; Talbi, S.; Mnafgui, W.; Ludidi, N.; Chaieb, M. Influence of Brown Seaweed (Ecklonia maxima) Extract on the Morpho-Physiological Parameters of Melon, Cucumber, and Tomato Plants. Agronomy 2023, 13, 2745. [Google Scholar] [CrossRef]
- Patil, S.D.; More, V.R.; Bhalerao, G.A.; Jagtap, M.P. Effect of combination of inorganic fertilizer and seaweed extract on yield, yield attributes and economics of soybean crop. J. Pharmacogn. Phytochem. 2019, 8, 1741–1744. [Google Scholar]
- Kumari, S.; Sehrawat, K.D.; Phogat, D.; Sehrawat, A.R.; Chaudhary, R.; Sushkova, S.N.; Voloshina, M.S.; Rajput, V.D.; Shmaraeva, A.N.; Marc, R.A.; et al. Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review. Agriculture 2023, 13, 1179. [Google Scholar] [CrossRef]
- Billard, V.; Etienne, P.; Jannin, L.; Garnica, M.; Cruz, F.; Garcia-Mina, J.M.; Yvin, J.C.; Ourry, A. Two Biostimulants Derived from Algae or Humic Acid Induce Similar Responses in the Mineral Content and Gene Expression of Winter Oilseed Rape (Brassica napus L.). J. Plant Growth Regul. 2014, 33, 305–316. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Charalambous, S.; Xylia, P.; Litskas, V.; Stavrinides, M.; Tzortzakis, N. Assessing the biostimulant effects of a novel plant-based formulation on tomato crop. Sustainability 2020, 12, 8432. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Praveen, T.M.; Patil, S.R.; Patil, B.C.; Seetharamu, G.K.; Rudresh, D.L.; Pavankumar, P.; Patil, R.T. Influence of biostimulants on growth and yield of floribunda rose cv. Mirabel. J. Pharmacogn. Phytochem. 2021, 10, 2701–2705. [Google Scholar]
- Sariñana-Aldaco, O.; Sanchez-Chavez, E.; Fortis-Hernández, M.; González-Fuentes, J.A.; Moreno-Resendez, A.; Rojas-Duarte, A.; Preciado-Rangel, P. Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 882–892. [Google Scholar] [CrossRef]
- Kaloko, A. Time and direction effect of boron (B) and silicon (Si) application on oil palm (Elaeis guineensis) through leaves. AGROLAND Agric. Sci. J. 2017, 4, 16–19. [Google Scholar] [CrossRef]
- Sariñana-Aldaco, O.; Benavides-Mendoza, A.; Juárez-Maldonado, A.; Robledo-Olivo, A.; Rodríguez-Jasso, R.M.; Preciado-Rangel, P.; Gonzalez-Morales, S. Efecto de extractos de Sargassum spp. en el crecimiento y antioxidantes de plántulas de tomate. Ecosistemas Recur. Agropecu. 2021, 8, e2814. [Google Scholar] [CrossRef]
- Piwowar, A.; Harasym, J. The importance and prospects of the use of algae in agribusiness. Sustainability 2020, 12, 5669. [Google Scholar] [CrossRef]
- Fleurence, J. Perspectives on the Use of Algae in Agriculture and Animal Production. Phycology 2021, 1, 79–82. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; EL-Shershaby, N.A. Algae as Bio-fertilizers: Between current situation and future prospective. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Antón, A.A.; Zamora-Natera, J.F.; Zarazúa-Villaseñor, P.; Santacruz-Ruvalcaba, F.; Sánchez-Hernández, C.V.; Águila Alcántara, E.; Torres-Morán, M.I.; Velasco-Ramírez, A.P.; Hernández-Herrera, R.M. Application of Seaweed Generates Changes in the Substrate and Stimulates the Growth of Tomato Plants. Plants 2023, 12, 1520. [Google Scholar] [CrossRef]
- Soares, C.; Švarc-Gajić, J.; Oliva-Teles, M.T.; Pinto, E.; Nastić, N.; Savić, S.; Almeida, A.; Delerue-Matos, C. Mineral composition of subcritical water extracts of Saccorhiza polyschides, a brown seaweed used as fertilizer in the North of Portugal. J. Mar. Sci. Eng. 2020, 8, 244. [Google Scholar] [CrossRef]
- Michalak, I.; Tuhy, Ł.; Chojnacka, K. Co-Composting of Algae and Effect of the Compost on Germination and Growth of Lepidium sativum. Pol. J. Environ. Stud. 2016, 25, 1107–1115. [Google Scholar] [CrossRef]
- Badar, R.; Khan, M.; Batool, B.; Shabbir, S. Effects of organic amendments in comparison with chemical fertilizer on cowpea growth. Int. J. Appl. Res. 2015, 1, 24–29. [Google Scholar]
- Reeves, S.H.; Somasundaram, J.; Wang, W.J.; Heenan, M.A.; Finn, D.; Dalal, R.C. Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a Vertisol. Geoderma 2019, 337, 1086–1096. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- van der Merwe, R.D.T.; Goosen, N.J.; Pott, R.W.M. Macroalgal-Derived Alginate Soil Amendments for Water Retention, Nutrient Release Rate Reduction, and Soil pH Control. Gels 2022, 8, 548. [Google Scholar] [CrossRef]
- Sabate, K.; Masutani, S.; Yoza, B. Microbiological degradation of macroalgae waste and its potential considerations for agricultural applications. J. Appl. Phycol. 2021, 33, 2645–2654. [Google Scholar] [CrossRef]
- Rodrigues Mota, T.; Matias de Oliveira, D.; Marchiosi, R.; Ferrarese-Filho, O.; Dantas dos Santos, W. Plant cell wall composition and enzymatic deconstruction. AIMS Bioeng. 2018, 5, 63–77. [Google Scholar] [CrossRef]
- Ihua, M.W.; Guihéneuf, F.; Mohammed, H.; Margassery, L.M.; Jackson, S.A.; Stengel, D.B.; Clarke, D.J.; Dobson, A.D.W. Microbial population changes in decaying Ascophyllum nodosum result in macroalgal-polysaccharide-degrading bacteria with potential applicability in enzyme-assisted extraction technologies. Mar. Drugs 2019, 17, 200. [Google Scholar] [CrossRef]
- Madejón, E.; Panettieri, M.; Madejón, P.; Pérez-de-Mora, A. Composting as Sustainable Managing Option for Seaweed Blooms on Recreational Beaches. Waste Biomass Valorization 2021, 13, 863–875. [Google Scholar] [CrossRef]
- Han, W.; Clarke, W.; Pratt, S. Composting of waste algae: A review. Waste Manag. 2014, 34, 1148–1155. [Google Scholar] [CrossRef]
- Juniara, M.I.; Harahap, E.M.; Lubis, A. The Effect of Various Water Content Levels and The Application of Several Brown Algae (Sargassum polycystum) Composts in Increasing The Production of Soybean (Glycine max L.) Plant. J. Online Agroekoteknologi 2021, 9, 1–4. [Google Scholar] [CrossRef]
- Sembera, J.A.; Meier, E.J.; Waliczek, T.M. Composting as an alternative management strategy for Sargassum drifts on coastlines. HortTechnology 2018, 28, 80–84. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algal compost-toward sustainable fertilization. Rev. Inorg. Chem. 2013, 33, 161–172. [Google Scholar] [CrossRef]
- Ghinea, C.; Leahu, A. Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical parameters. Processes 2020, 8, 302. [Google Scholar] [CrossRef]
- Di Piazza, S.; Houbraken, J.; Meijer, M.; Cecchi, G.; Kraak, B.; Rosa, E.; Zotti, M. Thermotolerant and thermophilic mycobiota in different steps of compost maturation. Microorganisms 2020, 8, 880. [Google Scholar] [CrossRef] [PubMed]
- Dinca, M.N.; Ferdes, M.; Paraschiv, G.; Ungureanu, N.; Zabava, B.; Ionescu, M.; Moiceanu, G. Recovery of Organic Waste Through Composting Process. Acta Technol. Corviniensis-Bull. Eng. 2019, 12, 119–122. [Google Scholar]
- Tang, J.; Wang, M.; Zhou, Q.; Nagata, S. Improved composting of Undaria pinnatifida seaweed by inoculation with Halomonas and Gracilibacillus sp. isolated from marine environments. Bioresour. Technol. 2011, 102, 2925–2930. [Google Scholar] [CrossRef]
- Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 2018, 87, 3583. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Hoque, M.N.; Imran, S.; Hannan, A.; Paul, N.C.; Mahamud, M.A.; Chakrobortty, J.; Sarker, P.; Irin, I.J.; Brestic, M.; Rhaman, M.S. Organic Amendments for Mitigation of Salinity Stress in Plants: A Review. Life 2022, 12, 1632. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Illera-Vives, M.; Seoane Labandeira, S.; López-Mosquera, M.E. Production of compost from marine waste: Evaluation of the product for use in ecological agriculture. J. Appl. Phycol. 2013, 25, 1395–1403. [Google Scholar] [CrossRef]
- Cole, A.J.; Roberts, D.A.; Garside, A.L.; de Nys, R.; Paul, N.A. Seaweed compost for agricultural crop production. J. Appl. Phycol. 2015, 28, 629–642. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Nieto-Garibay, A.; Murillo-Amador, B.; Troyo-Diéguez, E.; Larrinaga-Mayoral, J.Á.; García-Hernández, J.L. El uso de compostas como alternativa ecológica para la producción sostenible del Chile (Capsicum annuum L.) en zonas áridas. Interciencia 2002, 27, 417–421. [Google Scholar]
- Trejo Valencia, R.; Sánchez Acosta, L.; Fortis Hernández, M.; Preciado Rangel, P.; Gallegos Robles, M.Á.; Antonio Cruz, R.D.; Vázquez Vázquez, C. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy 2018, 8, 264. [Google Scholar] [CrossRef]
- Martynenko, A.; Shotton, K.; Astatkie, T.; Petrash, G.; Fowler, C.; Neily, W.; Critchley, A.T. Thermal imaging of soybean response to drought stress: The effect of Ascophyllum nodosum seaweed extract. SpringerPlus 2016, 5, 1393. [Google Scholar] [CrossRef] [PubMed]
- Vijay, K.; Balasundari, S.; Jeyashakila, R.; Velayathum, P.; Masilan, K. Proximate and mineral composition of brown seaweed from Gulf of Mannar. Int. J. Fish. Aquat. Stud. 2017, 5, 106–112. [Google Scholar]
- Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The Role of Sugars in Plant Responses to Stress and Their Regulatory Function during Development. Int. J. Mol. Sci. 2022, 23, 5161. [Google Scholar] [CrossRef]
- Janse van Rensburg, H.C.; Van den Ende, W.; Signorelli, S. Autophagy in plants: Both a puppet and a puppet master of sugars. Front. Plant Sci. 2019, 10, 14. [Google Scholar] [CrossRef]
- Reboleira, J.; Freitas, R.; Pinteus, S.; Silva, J.; Alves, C.; Pedrosa, R.; Bernardino, S. Brown seaweeds. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 171–176. [Google Scholar]
- Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Rep. 2008, 27, 411–424. [Google Scholar] [CrossRef]
- Heinemann, B.; Hildebrandt, T.M. The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. J. Exp. Bot. 2021, 72, 4634–4645. [Google Scholar] [CrossRef]
- Zuo, S.; Li, J.; Gu, W.; Wei, S. Exogenous Proline Alleviated Low Temperature Stress in Maize Embryos by Optimizing Seed Germination, Inner Proline Metabolism, Respiratory Metabolism and a Hormone Regulation Mechanism. Agriculture 2022, 12, 548. [Google Scholar] [CrossRef]
- Zamljen, T.; Medic, A.; Hudina, M.; Veberic, R.; Slatnar, A. Biostimulatory Effects of Amino Acids on Phenylalanine Ammonia Lyase, Capsaicin Synthase, and Peroxidase Activities in Capsicum baccatum L. Biology 2022, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Decouard, B.; Bailly, M.; Rigault, M.; Marmagne, A.; Arkoun, M.; Soulay, F.; Caïus, J.; Paysant-Le Roux, C.; Louahlia, S.; Jacquard, C.; et al. Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. Front. Plant Sci. 2022, 12, 807798. [Google Scholar] [CrossRef]
- Mata-Pérez, C.; Padilla, M.N.; Sánchez-Calvo, B.; Begara-Morales, J.C.; Valderrama, R.; Chaki, M.; Barroso, J.B. Biological properties of nitro-fatty acids in plants. Nitric Oxide Biol. Chem. 2018, 78, 176–179. [Google Scholar] [CrossRef]
- Kim, G.; Ryu, H.; Sung, J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022, 12, 811. [Google Scholar] [CrossRef]
- Sharma, A.; Zheng, B. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins. Biomolecules 2019, 9, 397. [Google Scholar] [CrossRef]
- Kingman, A.R.; Moore, J. Isolation, Purification and Quantitation of Several Growth Regulating Substances in Ascophyllum nodosum (Phaeophyta). Bot. Mar. 1982, 25, 149–154. [Google Scholar] [CrossRef]
- Carrasco-Gil, S.; Hernandez-Apaolaza, L.; Lucena, J.J. Effect of several commercial seaweed extracts in the mitigation of iron chlorosis of tomato plants (Solanum lycopersicum L.). Plant Growth Regul. 2018, 86, 401–411. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Q.; Wang, B.; Yuan, F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. J. Agric. Food Chem. 2021, 69, 3566–3584. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Fernando, W.G.D. Directing Trophic Divergence in Plant-Pathogen Interactions: Antagonistic Phytohormones With NO Doubt? Front. Plant Sci. 2020, 11, 600063. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Samuels, L.J.; Setati, M.E.; Blancquaert, E.H. Towards a Better Understanding of the Potential Benefits of Seaweed Based Biostimulants in Vitis vinifera L. Cultivars. Plants 2022, 11, 348. [Google Scholar] [CrossRef]
- Estaji, A.; Kalaji, H.M.; Karimi, H.R.; Roosta, H.R.; Moosavi-Nezhad, S.M. How glycine betaine induces tolerance of cucumber plants to salinity stress? Photosynthetica 2019, 57, 753–761. [Google Scholar] [CrossRef]
- Singhal, R.K.; Fahad, S.; Kumar, P.; Choyal, P.; Javed, T.; Jinger, D.; Singh, P.; Saha, D.; Md, P.; Bose, B.; et al. Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regul. 2023, 100, 237–265. [Google Scholar] [CrossRef]
- González-Morales, S.; Pérez-Labrada, F.; García-Enciso, E.L.; Leija-Martínez, P.; Medrano-Macías, J.; Dávila-Rangel, I.E.; Juárez-Maldonado, A.; Rivas-Martínez, E.N.; Benavides-Mendoza, A. Selenium and sulfur to produce Allium functional crops. Molecules 2017, 22, 558. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cui, B.; Huang, P.; Hu, C.; Zhao, J.; Li, Z.; Wang, J. Silicon Improves Soil Environment and Promotes Crop Growth under Compound Irrigation via Brackish Water and Reclaimed Water. Horticulturae 2024, 10, 317. [Google Scholar] [CrossRef]
- González-García, Y.; Flores-Robles, V.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Cabrera De La Fuente, M.; Sandoval-Rangel, A.; Juárez-Maldonado, A. Application of two forms of silicon and their impact on the postharvest and the content of bioactive compounds in cucumber (Cucumis sativus L.) fruits. Biocell 2022, 46, 2497–2506. [Google Scholar] [CrossRef]
- Medrano-Macías, J.; Leija-Martínez, P.; González-Morales, S.; Juárez-Maldonado, A.; Benavides-Mendoza, A. Use of iodine to biofortify and promote growth and stress tolerance in crops. Front. Plant Sci. 2016, 7, 1146. [Google Scholar] [CrossRef] [PubMed]
- García Fuentes, J.E.; Herrera Castellanos, B.F.; Rivas Martínez, E.N.; Narváez Ortiz, W.A.; Benavides Mendoza, A.; Medrano Macías, J. Outcomes of foliar iodine application on growth, minerals and antioxidants in tomato plants under salt stress. Folia Hortic. 2022, 34, 27–37. [Google Scholar] [CrossRef]
- Ramya, S.S.; Vijayanand, N.; Rathinavel, S. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. Int. J. Recycl. Org. Waste Agric. 2015, 4, 167–173. [Google Scholar] [CrossRef]
- Rajendran, R.; Jagmohan, S.; Jayaraj, P.; Ali, O.; Ramsubhag, A.; Jayaraman, J. Effects of Ascophyllum nodosum extract on sweet pepper plants as an organic biostimulant in grow box home garden conditions. J. Appl. Phycol. 2022, 34, 647–657. [Google Scholar] [CrossRef]
- Subramaniyan, L.; Veerasamy, R.; Prabhakaran, J.; Selvaraj, A.; Algarswamy, S.; Karuppasami, K.M.; Thangavel, K.; Nalliappan, S. Biostimulation Effects of Seaweed Extract (Ascophyllum nodosum) on Phytomorpho-Physiological, Yield, and Quality Traits of Tomato (Solanum lycopersicum L.). Horticulturae 2023, 9, 348. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; González-González, M.F.; Velasco-Ramírez, A.P.; Velasco-Ramírez, S.F.; Santacruz-Ruvalcaba, F.; Zamora-Natera, J.F. Seaweed Extract Components Are Correlated with the Seeds Germination and Growth of Tomato Seedlings. Seeds 2023, 2, 436–448. [Google Scholar] [CrossRef]
- Villa e Vila, V.; Piedade, S.M.; Bouix, C.P.; Rezende, R.; Wenneck, G.S.; Terassi, D.D.; Matumoto-Pintro, P.T.; Marques, P.A.A. Use of a Biostimulant Based on Seaweed Extract as a Sustainable Input to Enhance the Quality of Solanaceous Seedlings. Horticulturae 2024, 10, 642. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 621. [Google Scholar] [CrossRef] [PubMed]
- Engel, D.C.H.; Feltrim, D.; Rodrigues, M.; Baptistella, J.L.C.; Mazzafera, P. Algae Extract Increases Seed Production of Soybean Plants and Alters Nitrogen Metabolism. Agriculture 2023, 13, 1296. [Google Scholar] [CrossRef]
- Patel, R.V.; Pandya, K.Y.; Jasrai, R.T.; Brahmbhatt, N. Significance of green and brown seaweed liquid fertilizer on seed germination of Solanum melongena, Solanum lycopersicum and Capsicum annum by paper towel and pot method. Int. J. Recent Sci. Res. 2018, 9, 24065–24072. [Google Scholar] [CrossRef]
- Vasantharaja, R.; Abraham, L.S.; Inbakandan, D.; Thirugnanasambandam, R.; Senthilvelan, T.; Jabeen, S.K.A.; Prakash, P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatal. Agric. Biotechnol. 2019, 17, 589–594. [Google Scholar] [CrossRef]
- Machado, L.P.; dos Santos, N.H.S.; Bastos, K.V.; Costa, D.M. Biostimulant effect of seaweed extracts applied on beans (Phaseolus vulgaris L.). Cult. Agron. Rev. Ciências Agron. 2018, 27, 101–110. [Google Scholar] [CrossRef]
- Xu, P.; Tan, H.; Jin, W.; Li, Y.; Santhoshkumar, C.; Li, P.; Liu, W. Antioxidative and antimicrobial activities of intertidal seaweeds and possible effects of abiotic factors on these bioactivities. J. Oceanol. Limnol. 2018, 36, 2243–2256. [Google Scholar] [CrossRef]
- Mzibra, A.; Aasfar, A.; El Arroussi, H.; Khouloud, M.; Dhiba, D.; Kadmiri, I.M.; Bamouh, A. Polysaccharides extracted from Moroccan seaweed: A promising source of tomato plant growth promoters. J. Appl. Phycol. 2018, 30, 2953–2962. [Google Scholar] [CrossRef]
- Klykov, A.G.; Anisimov, M.M.; Chaikina, E.L.; Shevchenko, N.M.; Parskaya, N.S. Carbohydrate containing biopolymers derived from brown algae as promoters of growth, development and productivity of agricultural crops. Indian J. Agric. Res. 2019, 53, 609–613. [Google Scholar] [CrossRef]
- de Sousa, A.M.; Ayub, R.A.; Viencz, T.; Botelho, R.V. Fruit set and yield of apple trees cv. Gala treated with seaweed extract of Ascophyllum nodosum and thidiazuron. Rev. Bras. Frutic. 2019, 41, e-072. [Google Scholar] [CrossRef]
- Nasution, C.B.; Lubis, A.; Harahap, E.M. Pengaruh Pemberian Kompos Ganggang Coklat (Sargassum polycystum) Dan Kompos Sampah Sayuran Pada Berbagai Penyiraman Air Tanah Ultisol Serta Pertumbuhan Tanaman Padi Gogo. J. Online Agroekoteknologi 2020, 8, 110–117. [Google Scholar] [CrossRef]
- Adderley, A.; Wallace, S.; Stubbs, D.; Bowen-O’Connor, C.; Ferguson, J.; Watson, C.; Gustave, W. Sargassum sp. as a biofertilizer: Is it really a key towards sustainable agriculture for The Bahamas? Bull. Natl. Res. Cent. 2023, 47, 112. [Google Scholar] [CrossRef]
- Drygaś, B.; Piechowiak, T.; Balawejder, M.; Matłok, N.; Kreczko, J.; Puchalski, C. The Eliciting Effect of Aqueous Extracts from Ascophyllum nodosum Algae on the Cultivation of Arugula (Eruca sativa Mill.) Microgreens. Sustainability 2024, 16, 7436. [Google Scholar] [CrossRef]
- Mzibra, A.; Aasfar, A.; Khouloud, M.; Farrie, Y.; Boulif, R.; Kadmiri, I.M.; Bamouh, A.; Douira, A. Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy 2021, 11, 1373. [Google Scholar] [CrossRef]
- Baroud, S.; Tahrouch, S.; Hatimi, A. Effect of brown algae as biofertilizer materials on pepper (Capsicum annuum) growth, yield, and fruit quality. Asian J. Agric. 2024, 8, 25–31. [Google Scholar] [CrossRef]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2016, 25, 563–571. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Kurniawan, N.S.H.; Kirana, I.A.P.; Ardiana, N.; Abidin, A.S.; Ilhami, B.T.K.; Jupri, A.; Widyastuti, S.; Sunarpi, H.; Nikmatullah, A. Seaweed Fertilizer Prepared by EM-Fermentation Increases Abundance of Beneficial Soil Microbiome in Paddy (Oryza sativa L.) during Vegetative Stage. Fermentation 2022, 8, 46. [Google Scholar] [CrossRef]
- Manghwar, H.; Zaman, W. Plant Biotic and Abiotic Stresses. Life 2024, 14, 372. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, R.; Harlina, P.W.; Gallego, P.P.; Flexas, J.; Ewas, M.; Leiwen, X.; Karuniawan, A. The seaweed Ascophyllum nodosum-based biostimulant enhances salt stress tolerance in rice (Oryza sativa L.) by remodeling physiological, biochemical, and metabolic responses. J. Plant Interact. 2023, 18, 2266514. [Google Scholar] [CrossRef]
- Shukla, P.S.; Shotton, K.; Norman, E.; Neily, W.; Critchley, A.T.; Prithiviraj, B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 2018, 10, plx051. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2007, 58, 221–227. [Google Scholar] [CrossRef]
- Jia, J.; Liang, Y.; Gou, T.; Hu, Y.; Zhu, Y.; Huo, H.; Guo, J.; Gong, H. The expression response of plasma membrane aquaporins to salt stress in tomato plants. Environ. Exp. Bot. 2020, 178, 104190. [Google Scholar] [CrossRef]
- Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2021, 172, 1321–1335. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef]
- Mikołajczak, K.; Kuczyńska, A.; Krajewski, P.; Kempa, M.; Witaszak, N. Global Proteome Profiling Revealed the Adaptive Reprogramming of Barley Flag Leaf to Drought and Elevated Temperature. Cells 2023, 12, 1685. [Google Scholar] [CrossRef]
- Melo, G.B.; da Silva, A.G.; da Costa, A.C.; Alves da Silva, A.; Rosa, M.; Bessa, L.A.; Rodrigues, C.R.; Castoldi, G.; Vitorino, L.C. Foliar Application of Biostimulant Mitigates Water Stress Effects on Soybean. Agronomy 2024, 14, 414. [Google Scholar] [CrossRef]
- Khedia, J.; Dangariya, M.; Nakum, A.K.; Agarwal, P.; Panda, A.; Parida, A.K.; Gangapur, D.R.; Meena, R.; Agarwal, P.K. Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. J. Appl. Phycol. 2020, 32, 4373–4384. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Carmody, N.; Goñi, O.; Łangowski, Ł.; O’Connell, S. Ascophyllum nodosum Extract Biostimulant Processing and Its Impact on Enhancing Heat Stress Tolerance During Tomato Fruit Set. Front. Plant Sci. 2020, 11, 807. [Google Scholar] [CrossRef] [PubMed]
- ul Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.-X.; Zhang, H.-X.; Wei, A.-M.; Gong, Z.-H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef] [PubMed]
- Jameel, J.; Anwar, T.; Majeed, S.; Qureshi, H.; Siddiqi, E.H.; Sana, S.; Zaman, W.; Ali, H.M. Effect of salinity on growth and biochemical responses of brinjal varieties: Implications for salt tolerance and antioxidant mechanisms. BMC Plant Biol. 2024, 24, 128. [Google Scholar] [CrossRef] [PubMed]
- Hashem, H.A.; Mansour, H.A.; El-Khawas, S.A.; Hassanein, R.A. The potentiality of marine macro-algae as bio-fertilizers to improve the productivity and salt stress tolerance of canola (Brassica napus L.) plants. Agronomy 2019, 9, 146. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of Ascorbic acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense under Different Levels of Irrigation Intervals. Molecules 2020, 25, 1702. [Google Scholar] [CrossRef]
- Yıldıztekın, M.; Tuna, A.L.; Kaya, C. Physiological effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biol. Hung. 2018, 69, 325–335. [Google Scholar] [CrossRef]
- Zou, P.; Lu, X.; Zhao, H.; Yuan, Y.; Meng, L.; Zhang, C.; Li, Y. Polysaccharides derived from the brown algae Lessonia nigrescens enhance salt stress tolerance to wheat seedlings by enhancing the antioxidant system and modulating intracellular ion concentration. Front. Plant Sci. 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Holsteens, K.; De Jaegere, I.; Wynants, A.; Prinsen, E.L.J.; Van de Poel, B. Mild and severe salt stress responses are age-dependently regulated by abscisic acid in tomato. Front. Plant Sci. 2022, 13, 982622. [Google Scholar] [CrossRef]
- Guan, C.; Huang, Y.-H.; Cen, H.-F.; Cui, X.; Tian, D.-Y.; Zhang, Y.-W. Overexpression of the Lolium perenne L. Delta1-pyrroline 5-carboxylate synthase (LpP5CS) gene results in morphological alterations and salinity tolerance in switchgrass (Panicum virgatum L.). PLoS ONE 2019, 14, e0219669. [Google Scholar] [CrossRef] [PubMed]
- Andreotti, C. Management of abiotic stress in horticultural crops: Spotlight on biostimulants. Agronomy 2020, 10, 1514. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef]
- Yang, T.; Pang, B.; Zhou, L.; Gu, L.; Wang, H.; Du, X.; Wang, H.; Zhu, B. Transcriptome Profiling, Physiological and Biochemical Analyses Reveal Comprehensive Insights in Cadmium Stress in Brassica carinata L. Int. J. Mol. Sci. 2024, 25, 1260. [Google Scholar] [CrossRef] [PubMed]
- Shaari, N.E.M.; Khandaker, M.M.; Tajudin, M.T.F.M.; Majrashi, A.; Alenazi, M.M.; Badaluddin, N.A.; Adnan, A.F.M.; Osman, N.; Mohd, K.S. Enhancing the Growth Performance, Cellular Structure, and Rubisco Gene Expression of Cadmium Treated Brassica chinensis Using Sargassum polycystum and Spirulina platensis Extracts. Horticulturae 2023, 9, 738. [Google Scholar] [CrossRef]
- Iddrisu, L.; Danso, F.; Cheong, K.-L.; Fang, Z.; Zhong, S. Polysaccharides as Protective Agents against Heavy Metal Toxicity. Foods 2024, 13, 853. [Google Scholar] [CrossRef]
- Bouvier, J.W.; Emms, D.M.; Kelly, S. Rubisco is evolving for improved catalytic efficiency and CO2 assimilation in plants. Proc. Natl. Acad. Sci. USA 2024, 121, e2321050121. [Google Scholar] [CrossRef]
- Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE 2019, 14, e0220562. [Google Scholar] [CrossRef]
- Al-Maliki, S.; Adnan, A.; Al-Mammory, K.A.A.H.; Almoslimawi, A.A. Effect of Ascophyllum Extract and Water Stress on Soil Biological Properties and Growth of Onion (Allium cepa L.). Indian J. Ecol. 2019, 46, 796–802. [Google Scholar]
- Di Stasio, E.; Cirillo, V.; Raimondi, G.; Giordano, M.; Esposito, M.; Maggio, A. Osmo-priming with seaweed extracts enhances yield of salt-stressed tomato plants. Agronomy 2020, 10, 1559. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A biostimulant based on seaweed (Ascophyllum Nodosum and Laminaria digitata) and yeast extracts mitigates water stress effects on tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- El-Katony, T.M.; Deyab, M.A.; El-Adl, M.F.; Ward, F.M.E.-N. Extracts of the Brown Alga Dictyota dichotoma (Hudson) J.V. Lamouroux Alleviate Salt Stress in Rice (Oryza sativa L.) During Germination. J. Plant Growth Regul. 2021, 40, 986–999. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Julia, I.; Oscar, M.; Analía, L.; Zocolo Guilherme, J.; Virginia, L. Biofertilization with Macrocystis pyrifera algae extracts combined with PGPR-enhanced growth in Lactuca sativa seedlings. J. Appl. Phycol. 2020, 32, 4361–4371. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. Seaweed Extract Improves Growth and Productivity of Tomato Plants under Salinity Stress. Agronomy 2022, 12, 2495. [Google Scholar] [CrossRef]
- Babazadeh, B.A.; Sadeghzadeh, N.; Hajiboland, R. The impact of algal extract as a biostimulant on cold stress tolerance in barley (Hordeum vulgare L.). J. Appl. Phycol. 2023, 35, 2919–2933. [Google Scholar] [CrossRef]
- Alharbi, K.; Amin, M.A.; Ismail, M.A.; Ibrahim, M.T.S.; Hassan, S.E.-D.; Fouda, A.; Eid, A.M.; Said, H.A. Alleviate the Drought Stress on Triticum aestivum L. Using the Algal Extracts of Sargassum latifolium and Corallina elongate Versus the Commercial Algal Products. Life 2022, 12, 1757. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Gul, H.; Rauf, M.; Arif, M.; Hamayun, M.; Ud-Din, A.; Sajid, Z.A.; Khilji, S.A.; Rehman, A.; Tabassum, A.; et al. Sargassum wightii Aqueous Extract Improved Salt Stress Tolerance in Abelmoschus esculentus by Mediating Metabolic and Ionic Rebalance. Front. Mar. Sci. 2022, 9, 853272. [Google Scholar] [CrossRef]
- Giovannetti, M.; Salvioli di Fossalunga, A.; Stringlis, I.A.; Proietti, S.; Fiorilli, V. Unearthing soil-plant-microbiota crosstalk: Looking back to move forward. Front. Plant Sci. 2023, 13, 1082752. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Luo, Y.; Yang, D.; Yang, J.; Zhao, Y.; Zhang, J. Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China. Int. J. Environ. Res. Public Health 2023, 20, 3233. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Bordoloi, B.C.; Singha, D.D.; Ojha, N.J. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agric. Rev. 2018, 39, 321–326. [Google Scholar] [CrossRef]
- Hamed, S.M.; Abdelrhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Role of Marine Macroalgae in Plant Protection & Improvement for Sustainable Agriculture Technology. Beni-Suef Univ. J. Basic Appl. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Nabti, E.; Jha, B.; Hartmann, A. Impact of seaweeds on agricultural crop production as biofertilizer. Int. J. Environ. Sci. Technol. 2017, 14, 1119–1134. [Google Scholar] [CrossRef]
- Furey, G.N.; Tilman, D. Plant biodiversity and the regeneration of soil fertility. Proc. Natl. Acad. Sci. USA 2021, 118, e2111321118. [Google Scholar] [CrossRef]
- Pereira, L.; Morrison, L.; Shukla, P.S.; Critchley, A.T. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J. Appl. Phycol. 2020, 32, 3561–3584. [Google Scholar] [CrossRef]
- Uribe-Orozco, M.E.; Mateo-Cid, L.E.; Mendoza-González, A.C.; Amora-Lazcano, E.F.; González-Mendoza, D.; Duran-Hernández, D. Efecto del alga marina Sargassum vulgare C. Agardh en suelo y el desarrollo de plantas de cilantro. Idesia (Arica) 2018, 36, 69–76. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Rai, A.; Santana, M.M.; Maia, R.N.; Tavares, J.; Nabti, E.; Cruz, C. Bacterial Inoculation and Extracts of Opuntia Rackets or Marine Algae Trigger Distinct Proline Balances in Tomato Salt Stress Alleviation. Agronomy 2023, 13, 2921. [Google Scholar] [CrossRef]
- Flavel, T.C.; Murphy, D.V. Carbon and Nitrogen Mineralization Rates after Application of Organic Amendments to Soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Abujabhah, I.S.; Bound, S.A.; Doyle, R.; Bowman, J.P. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 2015, 98, 243–253. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Z.; Li, Y.; Jiang, T.; Xu, M.; Li, J.; Xu, R. Mechanisms for increasing soil resistance to acidification by long-term manure application. Soil Tillage Res. 2019, 185, 77–84. [Google Scholar] [CrossRef]
- Sun, Y.; Xiong, X.; He, M.; Xu, Z.; Hou, D.; Zhang, W.; Ok, Y.S.; Rinklebe, J.; Wang, L.; Tsang, D.C.W. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chem. Eng. J. 2021, 424, 130387. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. History of Botany (1530–1860), 2nd ed.; Clarendon Press: Oxford, UK, 1906. [Google Scholar]
- Murphy, B.W. Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, roles and fate of organic acids in soils: A review. S. Afr. J. Bot. 2016, 108, 393–406. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 2018, 423, 363–373. [Google Scholar] [CrossRef]
- Gayosso-Rodríguez, S.; Borges-Gómez, L.; Villanueva-Couoh, E.; Estrada-Botello, M.; Garruña, R. Caracterización Física Y Química De Materiales Orgánicos Para Sustratos Agrícolas. Agrociencia 2018, 52, 639–652. [Google Scholar]
- Huntley, B.J. Soil, Water and Nutrients. In Ecology of Angola: Terrestrial Biomes and Ecoregions; Huntley, B.J., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 127–147. ISBN 978-3-031-18922-7. [Google Scholar]
- Raza, S.; Na, M.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Chang. Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Arjona, F.M.; Sánchez-Rodríguez, C.; Montesinos, J.C. The root apoplastic pH as an integrator of plant signaling. Front. Plant Sci. 2022, 13, 931979. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados. Renew. Sustain. Energy Rev. 2020, 118, 109564. [Google Scholar] [CrossRef]
- Ramos, F.T.; de Carvalho Dores, E.F.; dos Santos Weber, O.L.; Beber, D.C.; Campelo Jr, J.H.; de Souza Maia, J. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. J. Sci. Food Agric. 2018, 98, 3595–3602. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Hassan, M.K.; McInroy, J.A.; Kloepper, J.W. The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture 2019, 9, 142. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
- Patiño-Torres, C.O.; Sanclemente-Reyes, O.E. Los Microorganismos solubilizadores de Fosforo (MSF): Una Alternativa Biotecnológica Para Una Agricultura Sostenible. Entramado 2014, 10, 288–297. [Google Scholar]
- Ding, Z.; Ali, E.F.; Almaroai, Y.A.; Eissa, M.A.; Abeed, A.H.A. Effect of Potassium Solubilizing Bacteria and Humic Acid on Faba Bean (Vicia faba L.) Plants Grown on Sandy Loam Soils. J. Soil Sci. Plant Nutr. 2021, 21, 791–800. [Google Scholar] [CrossRef]
- Pérez-Pérez, R.; Hernández-Forte, I.; Sanabria Álvarez, Y.O.; Salcedo Benítez, J.C.; Sosa-del Castillo, D.; Pérez-Martínez, S. Characterization of potassium solubilizing bacteria isolated from corn rhizoplane. Agron. Colomb. 2021, 39, 415–425. [Google Scholar] [CrossRef]
- Schneider, K.; Rose, I.; Vikineswary, S.; Jones, A.L.; Goodfellow, M.; Nicholson, G.; Beil, W.; Süssmuth, R.D.; Fiedler, H.-P. Nocardichelins A and B, Siderophores from Nocardia Strain Acta 3026. J. Nat. Prod. 2007, 70, 932–935. [Google Scholar] [CrossRef]
- Mekonnen, H.; Kibret, M. The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chem. Biol. Technol. Agric. 2021, 8, 15. [Google Scholar] [CrossRef]
- Hines, S.; van der Zwan, T.; Shiell, K.; Shotton, K.; Prithiviraj, B. Alkaline extract of the seaweed Ascophyllum nodosum stimulates arbuscular mycorrhizal fungi and their endomycorrhization of plant roots. Sci. Rep. 2021, 11, 13491. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, J.; Carvalhais, L.C.; Percy, C.D.; Verma, J.P.; Schenk, P.M.; Singh, B.K. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 2021, 229, 2873–2885. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, J.; Norrie, J.; Punja, Z.K. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. J. Appl. Phycol. 2011, 23, 353–361. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Phytoelicitor activity of Sargassum vulgare and Acanthophora spicifera extracts and their prospects for use in vegetable crops for sustainable crop production. J. Appl. Phycol. 2021, 33, 639–651. [Google Scholar] [CrossRef]
- Mahgoub, H.A.; El-Adl, M.A.M.; Martyniuk, C.J. Fucoidan ameliorates acute and sub-chronic in vivo toxicity of the fungicide cholorothalonil in Oreochromis niloticus (Nile tilapia). Comp. Biochem. Physiol. Part C 2021, 245, 109035. [Google Scholar] [CrossRef]
- Bouissil, S.; El Alaoui-Talibi, Z.; Pierre, G.; Michaud, P.; El Modafar, C.; Delattre, C. Use of alginate extracted from Moroccan brown algae to stimulate natural defense in date palm roots. Molecules 2020, 25, 720. [Google Scholar] [CrossRef]
- Ishii, T.; Aikawa, J.; Kirino, S.; Kitabayashi, H.; Matsumoto, I.; Kadoya, K. Effects of alginate oligosaccharide and polyamines on hyphal growth of vesicular-arbuscular mycorrhizal fungi and their infectivity of citrus roots. In Proceedings of the 9th International Society of Citriculture Congress, Orlando, FL, USA, 3–7 December 2000; pp. 1030–1032. [Google Scholar]
- Madejón, E.; Madejón, P.; García de Arboleya, C.; Puente, P.; Pérez de Mora, A. Proceso de compostaje de algas marinas. Limitaciones y perspectivas. Red Española Compost. 2020, 1, 232–236. [Google Scholar]
- Bertoldo, G.; Chiodi, C.; Della Lucia, M.C.; Borella, M.; Ravi, S.; Baglieri, A.; Lucenti, P.; Ganasula, B.K.; Mulagala, C.; Squartini, A.; et al. Brown Seaweed Extract (BSE) Application Influences Auxin- and ABA-Related Gene Expression, Root Development, and Sugar Yield in Beta vulgaris L. Plants 2023, 12, 843. [Google Scholar] [CrossRef]
- Yuan, P.; Tanaka, K.; Poovaiah, B.W. Calcium/Calmodulin-Mediated Defense Signaling: What Is Looming on the Horizon for AtSR1/CAMTA3-Mediated Signaling in Plant Immunity. Front. Plant Sci. 2022, 12, 795353. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.; Katiyar, A.; Mudgil, Y. Role of G Protein Signaling Components in Plant Stress Management. Plant Stress 2012, 6, 1–9. [Google Scholar]
- Zhang, Y.; Xu, J.; Li, R.; Ge, Y.; Li, Y.; Li, R. Plants’ Response to Abiotic Stress: Mechanisms and Strategies. Int. J. Mol. Sci. 2023, 24, 10915. [Google Scholar] [CrossRef] [PubMed]
- Medrano-Macías, J.; Flores-Gallegos, A.C.; Nava-Reyna, E.; Morales, I.; Tortella, G.; Solís-Gaona, S.; Benavides-Mendoza, A. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview. Plants 2022, 11, 3203. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, M.; Xu, X.; Li, H.; Deng, W. Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022, 11, 2761. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Ramnarine, S.D.B.J.; Jayaraman, J. Transcriptomic changes induced by applications of a commercial extract of Ascophyllum nodosum on tomato plants. Sci. Rep. 2022, 12, 8042. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Godínez, L.J.; Aguirre-Noyola, J.L.; Martínez-Romero, E.; Arteaga-Garibay, R.I.; Ireta-Moreno, J.; Ruvalcaba-Gómez, J.M. A Look at Plant-Growth-Promoting Bacteria. Plants 2023, 12, 1668. [Google Scholar] [CrossRef] [PubMed]
- Masrahi, A.S.; Alasmari, A.; Shahin, M.G.; Qumsani, A.T.; Oraby, H.F.; Awad-Allah, M.M.A. Role of Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria in Improving Yield, Yield Components, and Nutrients Uptake of Barley under Salinity Soil. Agriculture 2023, 13, 537. [Google Scholar] [CrossRef]
- Shao, Z.; Arkhipov, A.; Batool, M.; Muirhead, S.R.; Harry, M.S.; Ji, X.; Mirzaee, H.; Carvalhais, L.C.; Schenk, P.M. Rhizosphere Bacteria Biofertiliser Formulations Improve Lettuce Growth and Yield under Nursery and Field Conditions. Agriculture 2023, 13, 1911. [Google Scholar] [CrossRef]
- Asimakis, E.; Shehata, A.A.; Eisenreich, W.; Acheuk, F.; Lasram, S.; Basiouni, S.; Emekci, M.; Ntougias, S.; Taner, G.; May-Simera, H.; et al. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022, 10, 307. [Google Scholar] [CrossRef] [PubMed]
Algae | Application Form | Effect | References |
---|---|---|---|
A. nodosum | Extract/Foliar at a dose of 0.5% | Increased growth, number of fruits, yield, carbohydrates, phenols, amino acids, proteins, chlorophylls, and minerals in bell pepper | [107] |
A. nodosum | Extract/Drench at a dose of 2.5, 5, and 10 L ha−1 | Increase in plant height, leaf area, dry biomass, yield and nutraceutical quality of fruits, chlorophylls, photosynthetic rate, stomatal conductance, and transpiration of tomato plants | [108] |
A. nodosum | Extract/Foliar at a dose of 0.3% | Increase in total soluble solids, titratable acidity and yield as measured by number, length and diameter of apples | [120] |
A. nodosum | Extract/Seeds and Foliar at a dose of 0.25, and 0.5% | Increased biomass, greater number of pods, seeds and nodules, greater absorption of macronutrients and increased activity of glutamine synthetase, glutamate synthase, and nitrate reductase in soybeans | [113] |
A. nodosum | Extract/Foliar (0.2%) and Drench (0.1, 0.2, and 0.3%) | Increased growth and aerial and root biomass of tomato and eggplant seedlings along with increased foliar chlorophylls | [111] |
A. nodosum | Extract/Drench at a dose of 2.5, 5 and 10% | Increase in total phenols, flavonoids, antioxidant capacity, and enzymatic activities (CAT, SOD, PPO, and PAL) in arugula plants | [123] |
B. bifurcate | Extract/Drench at a dose of 0.1 mg mL−1 | Increased yield of tomatoes and their components and higher concentration of sugars, organic acids, and lycopene in fruits | [124] |
C. gibraltarica, B. bifurcate, and F. spiralis | Extract/Foliar (0.5, 1 y 2%) and Amendment/Soil (2.5, 5 and 10 g pot−1) | Increased yield of pepper and its components, increased foliar N, and higher concentration of sugars in fruits | [125] |
E. maxima | Extracts/Foliar at a dose of 0.2 and 0.4% | Increased yield and higher antioxidant capacity and concentration of phenolic compounds and anthocyanins in bean seeds | [126] |
E. maxima | Extract/Foliar at a dose of 3 mL L−1 | High yield and increased nutraceutical (ascorbic acid and phenols) and nutritional (N, P, K, and Mg) quality of spinach | [30] |
F. spiralis and B. bifurcata | Extract/Seeds at a dose of 0.1 mg mL−1 | Increased seed germination percentage, plant growth, and chlorophyll accumulation in tomato plants | [118] |
F. vesiculosus | Granular/Soil at a dose of 0.1, 0.5, 1, 2, 5, and 10% | Increases in organic matter, carbon, and minerals and decrease in acidity in soils with cucumber production | [15] |
L. cichorioides | Extract/Drench at a dose of 10 µg mL−1 | Increase in height, ear length, number of seeds per ear, and seed weight per ear in wheat and barley | [119] |
M. pyrifera | Extract/Seeds at a dose of 1% | Increased seed germination and length of shoots and radicles in tomato seedlings | [110] |
M. pyrifera and Grammatophora spp. | Extract/Foliar at a dose of 10% | Greater concentration of ascorbic acid, phenolic compounds, and antioxidant capacity in cucumber fruits | [79] |
S. johnstonii | Extract/Seeds at a dose of 1, 2, 3, 4, and 5% | Improvement of seeds germination percentage and growth of chili, tomato, and eggplant seedlings | [114] |
S. marginatum | Extract/Foliar at a dose of 1.5% | Improvement of yield and its components, moisture content, photosynthetic pigments, proteins, amino acids, reducing sugars, ascorbic acid, and nitrate reductase activity in eggplant crop | [106] |
S. polycystum | Compost/Soil at a dose of 15 ton ha−1 | Increased growth and yield of rice crop. Soil organic C, N, and C/N ratio were also increased | [121] |
Sargassum spp. | Extract/Foliar at a dose of 1.5% | Increased growth and aerial and root biomass and higher concentration of chlorophylls, carotenoids, glutathione, phenols, flavonoids, and foliar proteins in tomato seedlings | [48] |
Sargassum sp. | Powder/Soil at a dose of 1, 5 and 10% | They increased soil nutrients, organic matter, and salinity. However, they negatively affected the growth of cherry tomato plants | [122] |
S. swartzii | Extract/Foliar at a dose of 3% | Increased yield, proteins, phenolic compounds, flavonoids, and antioxidant capacity of cowpea crop | [115] |
S. vulgare | Extract/Seeds at a dose of 25% | Lower germination speed index, length, and biomass of bean seedlings compared to those treated with extracts of the algae O. obtusiloba | [116] |
S. cristaefolium, S. crassifolium, and S. polycystum | Fermented compost/Soil at a dose of 50, 75, and 100% | Increased growth of rice plants and increased N-fixing bacteria in the soil | [127] |
Algae | Application Form | Effect | Reference |
---|---|---|---|
A. nodosum | Extract/Foliar at a dose of 1 L ha−1 | Decrease in MDA, increase in relative water content and increase in photosynthetic activity of soybean under water deficit | [136] |
A. nodosum | Extract/Irrigation water at a dose of 1, 2, and 3 g L−1 | Tolerance to salinity stress in pepper through increased SOD, POD, and CAT activity | [145] |
A. nodosum | Extract/Foliar at a dose of 0.33% | Increased osmolytes and expression of defense genes (TAS14) against drought in tomato | [134] |
A. nodosum | Extract/Foliar at a dose of 4 g L−1 | Increased growth, yield, phenols, and anthocyanins in fruits, and increased photosynthetic activity and transpiration in strawberry leaves, grown under nutrient limitation | [150] |
A. nodosum | Extract/Foliar at a dose of 0.106% | Tolerance to heat stress in tomato measured by pollen viability, fruits production, and expression of defense genes in flowers (HSP101.1, HSP70.9, and HSP17.7C-Cl) | [140] |
A. nodosum | Extract/Drench at a dose of 7 mL L−1 | Increased relative water content, stomatal conductance, antioxidant capacity, and defense gene expression in drought-stressed soybean | [130] |
A. nodosum | Extract/Drench at a dose of 5 and 15 mL L−1 | Reduction in head blight in wheat caused by F. graminearum measured by the expression of the defense genes TaPR1.1, TaPR2, TaPR3 and TaGlu2 and the antioxidant enzymes POD and PPO | [155] |
A. nodosum | Extract/Drench at a dose of 5 g L−1 | Increased soil microbial activity and better aggregate stability, increased water use efficiency, and higher onion yield under water deficit conditions | [156] |
A. nodosum | Extract/Seeds at a dose of 2 and 2.5 mL L−1 | Increased yield, aboveground and root biomass, and greater water use efficiency in tomato under salt stress | [157] |
A. nodosum and D. potatorum | Extract/Foliar at a dose of 0.2 and 1.1 mL L−1 | In Fe-deficient tomato plants, A. nodosum increased SOD activity in roots and leaves, decreased malondialdehyde concentration in leaves, and increased root dry biomass. D. potatorum increased CAT activity in roots | [94] |
A. nodosum and L. digitata | Extract/Foliar at a dose of 2 mL L−1 | Lower concentration of MDA and ABA, increased stem water potential and photosynthetic pigments in tomato plants under water stress | [158] |
Cystoseira spp. | Powder/Soil at a dose of 3 g kg−1 | Accumulation of total phenols, flavonoids, anthocyanins, carbohydrates, and proline in canola under salinity conditions | [143] |
D. dichotoma | Extract/Seeds at a dose of 20 g L−1 | Higher germination percentage of rice seeds and increased radicle and plumule length under salt stress | [159] |
E. maxima | Extract/Foliar at a dose of 3 mL L−1 | Increased yield and its components, total soluble solids, CO2 assimilation rate, chlorophylls, and high K and low Na accumulation in zucchini under salt stress | [160] |
L. nigrescens | Extract/Nutrient solution at a dose of 5% | Increased growth and antioxidant capacity, decreasing lipid peroxidation, and better coordination of intracellular ion flux in wheat seedlings subjected to salinity stress | [146] |
M. pyrifera | Extract/Seeds at a dose of 30% | Synergy between the extracts and Azospirillum brasilense that improved the root development of lettuce seedlings under water deficit | [161] |
P. gymnospora | Extract/Drench at a dose of 0.2% | Increased root and shoot length, early flowering and greater weight and nutraceutical quality of tomato fruits under salt stress | [162] |
S. angustifolium | Extract/Nutrient solution at a dose of 5 mL L−1 | Increased quantum yield of PSII, photosynthetic pigments, proline, phenols, sugars and antioxidant enzymes in barley subjected to low temperature stress | [163] |
S. dentifolium | Powder/Soil at a dose of 1g kg−1 | Decreased severity of tomato disease caused by F. oxysporum and increased yield in plants treated with the algae | [34] |
S. latifolium | Extract/Foliar at a dose of 5% | Increased carbohydrates, proteins, GA3, and IAA in wheat under drought stress | [164] |
S. polycystum | Extract/Foliar and drench at a dose of 25, 50, and 100 mL L−1 | Improvement of biomass, CAT, APX, and POD enzymes, histological variables, expression of the rbcL gene, and decrease in Cd accumulation in B. chinensis | [152] |
S. tenerrimum | Extract/Foliar at a dose of 10% | Resistance to M. phaseolina in tomato by modulating SA, ABA, IAA, and antioxidant enzymes (SOD, CAT, and APX) | [137] |
Sargassum spp. | Extract/Foliar at a dose of 1.5% | Greater growth and biomass, activation of the enzymatic and non-enzymatic antioxidant system, and expression of defense genes in tomato seedlings under salt stress | [14] |
S. wightii | Extract/Foliar at a dose of 2 and 4% | Increased growth, yield, carbohydrates, proteins, lipids, carotenoids and proline and decreased H2O2 and ABA levels in okra plants under salt stress. The K+/Na+, Mg2+/Na+ and Ca2+/Na+ ratios were modulated with the application of the extracts | [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sariñana-Aldaco, O.; Rivera-Solís, L.L.; Benavides-Mendoza, A.; Robledo-Olivo, A.; Rodríguez-Jasso, R.M.; González-Morales, S. Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops. Horticulturae 2025, 11, 94. https://doi.org/10.3390/horticulturae11010094
Sariñana-Aldaco O, Rivera-Solís LL, Benavides-Mendoza A, Robledo-Olivo A, Rodríguez-Jasso RM, González-Morales S. Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops. Horticulturae. 2025; 11(1):94. https://doi.org/10.3390/horticulturae11010094
Chicago/Turabian StyleSariñana-Aldaco, Oscar, Luz Leticia Rivera-Solís, Adalberto Benavides-Mendoza, Armando Robledo-Olivo, Rosa María Rodríguez-Jasso, and Susana González-Morales. 2025. "Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops" Horticulturae 11, no. 1: 94. https://doi.org/10.3390/horticulturae11010094
APA StyleSariñana-Aldaco, O., Rivera-Solís, L. L., Benavides-Mendoza, A., Robledo-Olivo, A., Rodríguez-Jasso, R. M., & González-Morales, S. (2025). Using Brown Algae in the Plant–Soil System: A Sustainable Approach to Improving the Yield and Quality of Agricultural Crops. Horticulturae, 11(1), 94. https://doi.org/10.3390/horticulturae11010094