The Effect of Mulching on the Root Growth of Greenhouse Tomatoes Under Different Drip Irrigation Volumes and Its Distribution Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Measurements and Methods
2.3.1. Soil Water Content
2.3.2. Soil Temperature
2.3.3. Root Distribution
2.3.4. Water Stress Coefficient (Ks)
2.4. Model Evaluation
2.5. Data Processing and Analysis
3. Results and Analysis
3.1. Effects of Irrigation and Mulching Treatments on Soil Water and Heat
3.1.1. Effects on Soil Water Content
3.1.2. Effects on Soil Temperature in Different Soil Layers
3.2. Effects of Different Water and Mulching Treatments on Tomato Root Characteristics
3.3. Effect of Mulching and Water Treatments on Tomato Root Distribution
Spatial Distribution of Root Length Density
3.4. Model Construction and Validation of Tomato Root Distribution
3.5. Improvement of Tomato Root Distribution Model
3.5.1. Mulching Factor
3.5.2. Introduction of the Mulching Factor to the Dynamic Spatial Distribution Model of Tomato Root Growth
3.5.3. Introduction of the Water Stress Factor to the Dynamic Spatial Distribution Model of Tomato Root Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Cai, Z.; Zhao, R.; He, Z.; Ding, M.; Zhang, Z. Effects of water and nitrogen coupling on the yield, quality, and water and nitrogen utilization of watermelon under CO2 enrichment. Sci. Hortic. 2021, 286, 110213. [Google Scholar] [CrossRef]
- Autovino, D.; Provenzano, G.; Monserrat, J.; Cots, L.; Barragán, J. Determining Optimal Seasonal Irrigation Depth Based on Field Irrigation Uniformity and Economic Evaluations: Application for Onion Crop. J. Irrig. Drain. Eng. 2016, 142, 1943–4774. [Google Scholar] [CrossRef]
- Gao, H.; Liu, H.; Gao, W.; Liu, Q.; Qian, C.; Jin, T.; Yan, C. Suitability of plastic mulching technology and its application in spring maize in Northeast China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 95–107. [Google Scholar]
- Huang, D.; Tong, S.; Yue, L.; Li, Y.; Zhang, X.; Zheng, W.; Wang, C.; Zhang, X.; Zhai, B.; Li, Z. Spatial distribution of rhizosphere enzyme activities under long-term drought land mulching analyzed by in-situ enzyme mapping technology. Trans. Chin. Soc. Agric. Eng. 2022, 38, 123–130. [Google Scholar]
- Blanco, I.; Cardinale, M.; Domanda, C.; Pappaccogli, G.; Romano, P.; Zorzi, G.; Rustioni, L. Mulching with Municipal Solid Waste (MSW) Compost Has Beneficial Side Effects on Vineyard Soil Compared to Mulching with Synthetic Films. Horticulturae 2024, 10, 769. [Google Scholar] [CrossRef]
- Ibrahim, M.; Khan, A.; Ali, W.; Akbar, H. Mulching techniques: An approach for offsetting soil moisture deficit and enhancing manure mineralization during maize cultivation. Soil Tillage Res. 2020, 200, 104631. [Google Scholar] [CrossRef]
- Gu, X.B.; Cai, H.J.; Du, Y.D.; Li, Y.N. Effects of film mulching and nitrogen fertilization on rhizosphere soil environment, root growth and nutrient uptake of winter oilseed rape in northwest China. Soil Tillage Res. 2019, 187, 194–203. [Google Scholar] [CrossRef]
- Pinto, J.P.; da Cunha, F.F.; da Silva Adão, A.; de Paula, L.B.; Ribeiro, M.C.; Costa Neto, J.R.R. Strawberry Production with Different Mulches and Wetted Areas. Horticulturae 2022, 8, 930. [Google Scholar] [CrossRef]
- Liang, S.M.; Ren, C.; Wang, P.J.; Wang, X.T.; Li, Y.S.; Xu, F.H.; Wang, Y.; Dai, Y.Q.; Zhang, L.; Li, X.P.; et al. Improvements of emergence and tuber yield of potato in a seasonal spring arid region using plastic film mulching only on the ridge. Field Crops Res. 2018, 223, 57–65. [Google Scholar] [CrossRef]
- Xue, N.; Anwar, S.; Shafiq, F.; Ullah, K.; Zulqarnain, M.; Haider, I.; Ashraf, M. Nanobiochar Application in Combination with Mulching Improves Metabolites and Curd Quality Traits in Cauliflower. Horticulturae 2023, 9, 687. [Google Scholar] [CrossRef]
- Geng, G.; Bai, G.; Du, S.; Yu, J. Effects of surface mulching on soil water-heat and tomato growth in the Hetao irrigation district. Bull. Soil Water Conserv. 2011, 31, 36–41. [Google Scholar]
- Zhang, M.; Li, Y.; Liu, J.; Wang, J.; Zhang, Z.; Xiao, N. Changes of Soil Water and Heat Transport and Yield of Tomato (Solanum lycopersicum) in Greenhouses with Micro-Sprinkler Irrigation under Plastic Film. Agronomy 2022, 12, 664. [Google Scholar] [CrossRef]
- Li, W.; Xu, J.; Li, W.; Zhang, J. Effects of different colored mulching on soil water-heat conditions and yield of greenhouse tomatoes. Mod. Agric. Sci. Technol. 2024, 61–66. [Google Scholar]
- Xu, X. Effects of Plastic Film Mulching and Planting Density on the Growth and Development and Yield of Mung Beans. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2024. [Google Scholar]
- Bonachela, S.; Granados, M.R.; Hernández, J.; López, J.C.; Magán, J.J. Combined Passive Heating Systems in Mediterranean, Low-Cost, Greenhouse Cucumber Crops. Agronomy 2024, 14, 374. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, W.; Dai, Z.; Li, J.; Mao, W.; Yu, F.; Ma, J.; Wang, S.; Zeng, X. Comparative Analysis of the Effects of Plastic Mulch Films on Soil Nutrient, Yields and Soil Microbiome in Three Vegetable Fields. Agronomy 2022, 12, 506. [Google Scholar] [CrossRef]
- Morra, L.; Bilotto, M.; Mignoli, E.; Sicignano, M.; Magri, A.; Cice, D.; Cozzolino, R.; Malorni, L.; Siano, F.; Picariello, G.; et al. New Mater-Bi, Biodegradable Mulching Film for Strawberry (Fragaria × Ananassa Duch.): Effects on Film Duration, Crop Yields, Qualitative, and Nutraceutical Traits of Fruits. Plants 2022, 11, 1726. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, F.; Cao, W.; Ma, F.; Han, L. Effects of water-fertilizer coupling on the yield and quality of tomato grown in substrate culture. Trans. Chin. Soc. Agric. Eng. 2022, 38, 95–101. [Google Scholar]
- Guo, S.R. Effects of dissolved oxygen concentration in nutrient solution on respiratory intensity of cucumber and tomato roots. Acta Hortic. Sin. 2000, 27, 141–142. [Google Scholar]
- Fang, Z.; Ma, F.; Cui, J.; Zheng, Z.; Feng, S.; Wang, J. Study on the root distribution pattern of processing tomato under mulched drip irrigation. Xinjiang Agric. Sci. 2008, 45, 15–20. [Google Scholar]
- Hu, J.; Gettel, G.; Fan, Z.; Lv, H.; Zhao, Y.; Yu, Y.; Wang, J.; Butterbach-Bahl, K.; Li, G.; Lin, S. Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agric. Ecosyst. Environ. 2021, 313, 107379. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, Y.; Duan, J.; Liu, N.; Wang, Z. Relationship between root distribution and water consumption of winter wheat under regulated deficit irrigation. J. Triticeae Crops 2010, 30, 693–697. [Google Scholar]
- Babalola, O.; Fawusi, M.O.A. Drought susceptibility of two tomato (Lycopersicum esculentum) varieties. Plant Soil 1980, 55, 205–214. [Google Scholar] [CrossRef]
- Dinneny, J.R. Developmental responses to water and salinity in root systems. Annu. Rev. Cell Dev. Biol. 2019, 35, 239–257. [Google Scholar] [CrossRef]
- Javaux, M.; Couvreur, V.; Vanderborght, J.; Vereecken, H. Root water uptake: From three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, M.; Katul, G.G.; Feng, X.; Konings, A.G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 2020, 10, 691–695. [Google Scholar] [CrossRef]
- Zuo, Q.; Jie, F.; Zhang, R.; Meng, L. A generalized function of wheat’s root length density distributions. Vadose Zone J. 2004, 3, 271–277. [Google Scholar] [CrossRef]
- Ma, T.; Li, Q.; Yang, L.; Zeng, W.; Wu, J.; Huang, J. Simulation of water uptake by sunflower roots in salinized farmland based on different root distribution patterns. China Rural. Water Hydropower 2016, 9, 18–23. [Google Scholar]
- Gao, R.X. Model Construction of Water Uptake and Root Distribution of Facility-Grown Tomatoes Under Salt Stress. Ph.D. Thesis, Shanxi Agricultural University, Jinzhong, China, 2017. [Google Scholar]
- Ning, S.; Shi, J.; Zuo, Q.; Wang, S.; Ben-Gal, A. Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Res. 2015, 177, 125–136. [Google Scholar] [CrossRef]
- Niu, J.; Feng, J.; Liu, S.; Jia, S.; Fan, F. A Simple Method for Drip Irrigation Scheduling of Spinach (Spinacia oleracea L.) in a Plastic Greenhouse in the North China Plain Using a 20 Cm Standard Pan Outside the Greenhouse. Horticulturae 2023, 9, 706. [Google Scholar] [CrossRef]
- Gong, X.; Liu, H.; Sun, J.; Gao, Y.; Zhang, H. Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse. Agric. Water Manag. 2019, 217, 141–153. [Google Scholar] [CrossRef]
- Meng, F. Study on the Distribution Pattern and Simulation of Rice Roots. Ph.D. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2009. [Google Scholar]
- Aiyup, M.; Chen, Y.; Li, W.; Hao, X.; Ma, J.; Su, R. Distribution of Fine Roots of Populus euphratica and Soil Characteristics under Extreme Arid Environment. J. Desert Res. 2011, 31, 1449–1458. [Google Scholar]
- Ding, R.; Kang, S.; Li, F.; Zhang, Y.; Tong, L. Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agric. For. Meteorol. 2013, 168, 140–148. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.; Xue, W.; Liu, X. Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples. Agric. Water Manag. 2021, 243, 106482. [Google Scholar] [CrossRef]
- Li, D.; Li, M.; Liu, D.; Lv, M.; Jia, Y. Effects of soil wetting range under mulched drip irrigation on soil water-heat environment and root water consumption of cotton root zone. Chin. J. Appl. Ecol. 2015, 26, 2437–2444. [Google Scholar]
- Shen, L.; Wang, P.; Zhang, L. Effects of degradable mulch on soil, temperature, moisture, and corn growth and development. Trans. Chin. Soc. Agric. Eng. 2011, 27, 25–30. [Google Scholar]
- Zhao, Y.; Li, G.A.; Xia, J.; Bo, L.; Mao, X. Effects of mulching and irrigation amounts on root distribution and yield of seed maize. Trans. Chin. Soc. Agric. Eng. 2022, 38, 104–114. [Google Scholar]
- Ren, R. Numerical Simulation of Coupled Soil Water and Heat Transfer under Non-Isothermal Conditions. Ph.D. Thesis, Taiyuan University of Technology, Taiyan, China, 2018. [Google Scholar]
- Liu, S.H.; Cao, H.X.; Yang, H.; Liu, M. Effects of irrigation amount and operating mode of drip irrigation system on tomato root distribution. J. Irrig. Drain. 2016, 36, 77–80. [Google Scholar]
- Zapata-Sierra, A.J.; Moreno-Pérez, M.F.; Reyes-Requena, R.; and Manzano-Agugliaro, F. Root distribution with the use of drip irrigation on layered soils at greenhouses crops. Sci. Total Environ. 2021, 768, 144944. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, F.; Zhang, Y.; Chen, D.; Liu, S.; Zheng, J. Suitable drip irrigation fertilization promotes root growth of spring maize in Hexi and improves yield. Trans. Chin. Soc. Agric. Eng. 2017, 33, 145–155. [Google Scholar]
- Zhu, W.; Wu, J.; Wang, M. Effects of residual mulch on soil physical properties and maize root growth. Environ. Sci. Technol. 2019, 42, 33–38. [Google Scholar]
- Zhu, J.; Li, W.; Wang, Z.; Zong, R.; Wang, T. Effects of residual mulch amount in drip-irrigated cotton fields on cotton growth. Arid. Zone Res. 2021, 38, 570–579. [Google Scholar]
- Wu, J.; Zhang, R.; Gui, S. Modelling soil water movement with water uptake by roots. Plant Soil 1999, 215, 7–17. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, F.; Wu, L.; Xiang, Y.; Fan, J.; Li, Z.; Li, S. Relative root length density distribution model of spring maize based on different water and fertilizer combinations. Trans. Chin. Soc. Agric. Eng. 2018, 34, 133–142. [Google Scholar]
Root Morphological Indices | Year | Treatments | 0–10 cm | 10–20 cm | 20–30 cm | 30–40 cm | 40–50 cm | 50–60 cm |
---|---|---|---|---|---|---|---|---|
Root Surface Area (cm2) | 2020 | Y0.9 | 72.95 ± 23.66a | 44.17 ± 7.50b | 32.92 ± 12.70bc | 33.53 ± 22.32bc | 14.27 ± 3.62cd | 8.90 ± 1.52d |
N0.9 | 72.28 ± 3.19b | 136.84 ± 26.98a | 58.64 ± 26.23bc | 43.93 ± 16.90cd | 26.38 ± 4.31de | 10.96 ± 0.69e | ||
Y0.5 | 121.07 ± 45.07a | 48.89 ± 5.06b | 21.10 ± 10.36bc | 16.14 ± 5.45c | 14.00 ± 2.80c | 11.98 ± 2.71c | ||
2021 | Y0.9 | 72.84 ± 3.73a | 45.15 ± 14.68b | 30.40 ± 5.52c | 22.30 ± 5.35cd | 14.78 ± 1.53d | 13.16 ± 2.92d | |
N0.9 | 98.77 ± 49.17a | 104.09 ± 30.61a | 40.56 ± 4.21b | 36.85 ± 10.33b | 33.98 ± 3.05b | 12.13 ± 2.27b | ||
Y0.5 | 121.03 ± 12.29a | 56.69 ± 10.38b | 24.74 ± 8.33c | 13.10 ± 5.15cd | 12.55 ± 0.91cd | 10.13 ± 2.13d | ||
Average Root Diameter (mm) | 2020 | Y0.9 | 0.53 ± 0.11ab | 0.44 ± 0.13ab | 0.78 ± 0.40a | 0.64 ± 0.22a | 0.17 ± 0.11b | 0.42 ± 0.24ab |
N0.9 | 0.61 ± 0.10a | 1.13 ± 0.45a | 1.00 ± 1.05a | 0.62 ± 0.27a | 0.50 ± 0.07a | 0.55 ± 0.31a | ||
Y0.5 | 0.91 ± 0.55a | 0.28 ± 0.02b | 0.69 ± 0.33ab | 0.41 ± 0.12ab | 0.52 ± 0.17ab | 0.79 ± 0.41ab | ||
2021 | Y0.9 | 1.09 ± 0.25a | 0.60 ± 0.29b | 0.49 ± 0.25b | 0.68 ± 0.35ab | 0.51 ± 0.23b | 0.5 ± 0.16b | |
N0.9 | 0.77 ± 0.28ab | 0.97 ± 0.23a | 0.64 ± 0.34abc | 0.69 ± 0.18ab | 0.59 ± 0.01bcd | 0.25 ± 0.02d | ||
Y0.5 | 1.11 ± 0.22a | 1.09 ± 0.42a | 1.27 ± 0.56a | 0.45 ± 0.14b | 0.59 ± 0.10b | 0.37 ± 0.11b | ||
Root Volume (cm3) | 2020 | Y0.9 | 0.40 ± 0.16ab | 0.30 ± 0.06ab | 0.30 ± 0.15ab | 0.64 ± 0.74a | 0.11 ± 0.06ab | 0.07 ± 0.02b |
N0.9 | 0.57 ± 0.16abc | 1.19 ± 0.63a | 0.85 ± 0.84ab | 0.55 ± 0.43abc | 0.29 ± 0.10bc | 0.09 ± 0.02c | ||
Y0.5 | 0.86 ± 0.46a | 0.35 ± 0.05b | 0.16 ± 0.07b | 0.12 ± 0.04b | 0.11 ± 0.04b | 0.10 ± 0.03b | ||
2021 | Y0.9 | 0.50 ± 0.08a | 0.33 ± 0.23ab | 0.25 ± 0.07bc | 0.16 ± 0.05bc | 0.09 ± 0.02c | 0.11 ± 0.04c | |
N0.9 | 1.15 ± 1.06a | 0.75 ± 0.29ab | 0.29 ± 0.07b | 0.30 ± 0.16b | 0.26 ± 0.03b | 0.08 ± 0.02b | ||
Y0.5 | 0.82 ± 0.14a | 0.48 ± 0.17b | 0.20 ± 0.05c | 0.09 ± 0.05c | 0.09 ± 0.01c | 0.08 ± 0.02c | ||
Root Length Density (cm cm−3) | 2020 | Y0.9 | 2.81 ± 0.75a | 1.35 ± 0.21b | 0.82 ± 0.25bc | 0.56 ± 0.07cd | 0.42 ± 0.01cd | 0.26 ± 0.01d |
N0.9 | 2.23 ± 0.16b | 3.97 ± 0.15a | 1.24 ± 0.09c | 1.01 ± 0.08d | 0.55 ± 0.04e | 0.32 ± 0.04f | ||
Y0.5 | 3.83 ± 0.97a | 1.46 ± 0.24b | 0.61 ± 0.37c | 0.47 ± 0.19c | 0.41 ± 0.05c | 0.30 ± 0.06c | ||
2021 | Y0.9 | 2.35 ± 0.22a | 1.36 ± 0.06b | 0.79 ± 0.06c | 0.68 ± 0.09cd | 0.49 ± 0.04de | 0.36 ± 0.03e | |
N0.9 | 2.18 ± 0.13b | 3.58 ± 0.12a | 1.29 ± 0.11c | 1.04 ± 0.07d | 0.83 ± 0.07d | 0.39 ± 0.04e | ||
Y0.5 | 3.84 ± 0.19a | 1.59 ± 0.12b | 0.68 ± 0.28c | 0.40 ± 0.11d | 0.36 ± 0.04d | 0.29 ± 0.03d |
2020 | ||||
---|---|---|---|---|
F-Value of Significance Test | Root Surface Area | Average Root Diameter | Root Volume | Root Length Density |
(cm2) | (mm) | (cm3) | (cm cm−3) | |
M | 28.01 ** | 1.916 | 4.788 | 238.322 ** |
K | 2.259 | 0.794 | 0.115 | 15.338 ** |
M × K | 16.928 ** | 1.121 | 4.766 * | 118.376 ** |
2021 | ||||
F-Value of Significance Test | Root Surface Area | Average Root Diameter | Root Volume | Root Length Density |
(cm2) | (mm) | (cm3) | (cm cm−3) | |
M | 7.442 * | 0.011 | 3.058 | 1913.66 ** |
K | 45.173 ** | 4.632 | 15.523 * | 192.728 ** |
M × K | 5.819 * | 2.829 | 2.5 | 1342.74 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Zhu, Y.; Gong, X.; Yao, C.; Wu, X.; Zhang, J.; Li, Y. The Effect of Mulching on the Root Growth of Greenhouse Tomatoes Under Different Drip Irrigation Volumes and Its Distribution Model. Horticulturae 2025, 11, 99. https://doi.org/10.3390/horticulturae11010099
Ge J, Zhu Y, Gong X, Yao C, Wu X, Zhang J, Li Y. The Effect of Mulching on the Root Growth of Greenhouse Tomatoes Under Different Drip Irrigation Volumes and Its Distribution Model. Horticulturae. 2025; 11(1):99. https://doi.org/10.3390/horticulturae11010099
Chicago/Turabian StyleGe, Jiankun, Yuhao Zhu, Xuewen Gong, Chuqi Yao, Xinyu Wu, Jiale Zhang, and Yanbin Li. 2025. "The Effect of Mulching on the Root Growth of Greenhouse Tomatoes Under Different Drip Irrigation Volumes and Its Distribution Model" Horticulturae 11, no. 1: 99. https://doi.org/10.3390/horticulturae11010099
APA StyleGe, J., Zhu, Y., Gong, X., Yao, C., Wu, X., Zhang, J., & Li, Y. (2025). The Effect of Mulching on the Root Growth of Greenhouse Tomatoes Under Different Drip Irrigation Volumes and Its Distribution Model. Horticulturae, 11(1), 99. https://doi.org/10.3390/horticulturae11010099