Effect of Application of Nitrogen Fertilizer, Microbial and Humic Substance-Based Biostimulants on Soil Microbiological Properties During Strawberry (Fragaria × ananassa Duch.) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and Treatments
2.2. Soil Sampling and Analyses
2.3. Strawberry Yield
2.4. Bioinformatics and Statistical Analysis
3. Results
3.1. Soil Enzymatic Activity
3.2. Soil Respiration Activities
3.3. Numbers of Cultivable Microorganisms in Soil
3.4. Microbial Communities in Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Ma, H.; Jung, S.; Main, D.; Guo, L. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annu. Rev. Plant Biol. 2020, 71, 547–573. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Bakshi, P.; Singh, M.; Singh, A.; Vikas, V.; Srivatava, J.; Kumar, V.; Gupta, V. Organic production of strawberry: A review. Int. J. Chem. Stud. 2018, 6, 1231–1236. [Google Scholar]
- Sangiorgio, D.; Cellini, A.; Spinelli, F.; Donati, I. Promoting strawberry (Fragaria × ananassa) stress resistance, growth, and yield using native bacterial biostimulants. Agronomy 2023, 13, 529. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products: Strawberries. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 November 2024).
- Negi, Y.K.; Sajwan, P.; Uniyal, S.; Mishra, A. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci. Hortic. 2021, 283, 110038. [Google Scholar] [CrossRef]
- Hernández-Martínez, N.R.; Blanchard, C.; Wells, D.; Salazar-Gutiérrez, M.R. Current state and future perspectives of commercial strawberry production: A review. Sci. Hortic. 2023, 312, 111893. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003; EU: Luxembourg, 2019. [Google Scholar]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Lumactud, R.A.; Gorim, L.Y.; Thilakarathna, M.S. Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Front. Sustain. Food Syst. 2022, 6, 977121. [Google Scholar] [CrossRef]
- Lodolini, E.; Savini, G.; Sabbatini, P.; Bonanomi, G.; Zucconi, F.; Neri, D. Foliar application of humic acids on strawberry (cv Onda). Int. Symp. Foliar Nutr. Perenn. Fruit Plants 2001, 594, 297–302. [Google Scholar]
- Ameri, A.; Tehranifar, A. Effect of humic acid on nutrient uptake and physiological characteristic Fragaria ananassa var: camarosa. J. Biol. Environ. Sci. 2012, 6, 77–79. [Google Scholar]
- Singh, R.; Gupta, R.; Patil, R.; Sharma, R.; Asrey, R.; Kumar, A.; Jangra, K. Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Sci. Hortic. 2010, 124, 34–39. [Google Scholar] [CrossRef]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 096–102. [Google Scholar]
- Cinkocki, R.; Lipková, N.; Javoreková, S.; Petrová, J.; Maková, J.; Medo, J.; Ducsay, L. The impact of growth-promoting streptomycetes isolated from rhizosphere and bulk soil on oilseed rape (Brassica napus L.) growth parameters. Sustainability 2021, 13, 5704. [Google Scholar] [CrossRef]
- Andrejiová, A.; Adamec, S.; Hegedűsová, A.; Hegedűs, O.; Rosa, R. Verification of the humic substances and PGPB biostimulants beneficial effects on the potato yield and bioactive substances content. Slovak J. Food Sci. 2023, 17, 1–15. [Google Scholar] [CrossRef]
- Wadduwage, J.; Egidi, E.; Singh, B.K.; Macdonald, C.A. Impacts of biostimulants on crop yield and biological activity under drought conditions. J. Sustain. Agric. Environ. 2024, 3, e12093. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2017, 68, 12–26. [Google Scholar] [CrossRef]
- Lipková, N.; Medo, J.; Artimová, R.; Maková, J.; Petrová, J.; Javoreková, S.; Michalko, J. Growth promotion of rapeseed (Brassica napus L.) and blackleg disease (Leptosphaeria maculans) suppression mediated by endophytic bacteria. Agronomy 2021, 11, 1966. [Google Scholar] [CrossRef]
- Cassel, D.; Nielsen, D. Field capacity and available water capacity. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; ASA-SSSA Inc.: Madison, WI, USA, 1986; Volume 5, pp. 901–926. [Google Scholar]
- Casida, L., Jr.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Green, V.S.; Stott, D.E.; Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem. 2006, 38, 693–701. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Alef, K. Soil respiration. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 214–218. [Google Scholar]
- Dilly, O.; Munch, J.-C. Ratios between estimates of microbial biomass content and microbial activity in soils. Biol. Fertil. Soils 1998, 27, 374–379. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef]
- Ihrmark, K.; Bödeker, I.T.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Větrovský, T.; Baldrian, P.; Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 2018, 34, 2292–2294. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Ryberg, M.; Hartmann, M.; Branco, S.; Wang, Z.; Godhe, A.; De Wit, P.; Sánchez-García, M.; Ebersberger, I.; de Sousa, F. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013, 4, 914–919. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- R_Core_team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Gałązka, A.; Gawryjołek, K.; Frąc, J.; Księżak, J. Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant Soil Environ. 2017, 63, 264–270. [Google Scholar] [CrossRef]
- Luo, P.; Han, X.; Wang, Y.; Han, M.; Shi, H.; Liu, N.; Bai, H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015, 65, 533–542. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Wolny-Koładka, K.; Gondek, K.; Gałązka, A.; Gawryjołek, K. Effect of coapplication of biochar and nutrients on microbiocenotic composition, dehydrogenase activity index and chemical properties of sandy soil. Waste Biomass Valorization 2020, 11, 3911–3923. [Google Scholar] [CrossRef]
- Campos, J.A.; Peco, J.D.; Garcia-Noguero, E. Antigerminative comparison between naturally occurring naphthoquinones and commercial pesticides. Soil dehydrogenase activity used as bioindicator to test soil toxicity. Sci. Total Environ. 2019, 694, 133672. [Google Scholar] [CrossRef]
- Pukalchik, M.; Kydralieva, K.; Yakimenko, O.; Fedoseeva, E.; Terekhova, V. Outlining the potential role of humic products in modifying biological properties of the soil—A review. Front. Environ. Sci. 2019, 7, 80. [Google Scholar] [CrossRef]
- Latkovic, D.; Maksimovic, J.; Dinic, Z.; Pivic, R.; Stanojkovic, A.; Stanojkovic-Sebic, A. Case study upon foliar application of biofertilizers affecting microbial biomass and enzyme activity in soil and yield related properties of maize and wheat grains. Biology 2020, 9, 452. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M. Application of biofertilization and biological control for cowpea production. Ann. Agric. Sci. Moshtohor 2017, 55, 271–286. [Google Scholar] [CrossRef]
- Buragohain, S.; Sarma, B.; Nath, D.J.; Gogoi, N.; Meena, R.S.; Lal, R. Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. Soil Res. 2017, 56, 49–58. [Google Scholar] [CrossRef]
- Soltaniband, V.; Brégard, A.; Gaudreau, L.; Dorais, M. Biostimulants promote plant development, crop productivity, and fruit quality of protected strawberries. Agronomy 2022, 12, 1684. [Google Scholar] [CrossRef]
- Schoebitz, M.; López, M.D.; Serri, H.; Aravena, V.; Zagal, E.; Roldán, A. Characterization of bioactive compounds in blueberry and their impact on soil properties in response to plant biostimulants. Commun. Soil Sci. Plant Anal. 2019, 50, 2482–2494. [Google Scholar] [CrossRef]
- Makova, J.; Javoreková, S.; Medo, J.; Majerčíková, K. Characteristics of microbial biomass carbon and respiration activities in arable soil and pasture grassland soil. J. Cent. Eur. Agric. 2011, 12, 745–758. [Google Scholar] [CrossRef]
- Bolat, İ. Microbial biomass, basal respiration, and microbial indices of soil in diverse croplands in a region of northwestern Turkey (Bartın). Environ. Monit. Assess. 2019, 191, 695. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Wichern, F. Alive and kicking: Why dormant soil microorganisms matter. Soil Biol. Biochem. 2018, 116, 419–430. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 2010, 42, 2039–2043. [Google Scholar] [CrossRef]
- Anderson, T.-H. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 2003, 98, 285–293. [Google Scholar] [CrossRef]
- Zhu, Z.; Ge, T.; Luo, Y.; Liu, S.; Xu, X.; Tong, C.; Shibistova, O.; Guggenberger, G.; Wu, J. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol. Biochem. 2018, 121, 67–76. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. Assessing bacterial diversity in soil: A brief review. J. Soils Sediments 2008, 8, 379–388. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Mikiciuk, G.; Mikiciuk, M.; Izwikow, M.; Kiniorska, J. Number and Activity of Microorganisms in Soil Inoculated with the Rhizocell C Biopreparation In Strawberry Cultivation (Fragaria × ananasa Duch.). J. Ecol. Eng. 2016, 17, 135–140. [Google Scholar] [CrossRef] [PubMed]
- De Nobili, M.; Contin, M.; Mondini, C.; Brookes, P. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol. Biochem. 2001, 33, 1163–1170. [Google Scholar] [CrossRef]
- Amaresan, N.; Kumar, M.S.; Annapurna, K.; Kumar, K.; Sankaranarayanan, A. Beneficial Microbes in Agro-Ecology: Bacteria and Fungi; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Bezuglova, O.; Polienko, E.; Gorovtsov, A.; Lyhman, V.; Pavlov, P. The effect of humic substances on winter wheat yield and fertility of ordinary chernozem. Ann. Agrar. Sci. 2017, 15, 239–242. [Google Scholar] [CrossRef]
- Semenov, M. Metabarcoding and metagenomics in soil ecology research: Achievements, challenges, and prospects. Biol. Bull. Rev. 2021, 11, 40–53. [Google Scholar] [CrossRef]
- Chernov, T.; Zhelezova, A. The dynamics of soil microbial communities on different timescales: A review. Eurasian Soil Sci. 2020, 53, 643–652. [Google Scholar] [CrossRef]
- Wei, J.-L.; Qin, Y.; Khan, Q.; Liang, W.-T.; He, W.-L.; Dong, D.-F.; Xing, Y.-X.; Li, Y.-R. Different responses of sugarcane and rhizosphere soil microorganisms to single or mixture application of PGPB. Res. Square 2024. [Google Scholar] [CrossRef]
- Beltran-Garcia, M.J.; Martínez-Rodríguez, A.; Olmos-Arriaga, I.; Valdes-Salas, B.; Di Mascio, P.; White, J.F. Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis 2021, 84, 379–390. [Google Scholar] [CrossRef]
- Damo, J.L.C.; Shimizu, T.; Sugiura, H.; Yamamoto, S.; Agake, S.-i.; Anarna, J.; Tanaka, H.; Sugihara, S.; Okazaki, S.; Yokoyama, T. The Application of Sulfur Influences Microbiome of Soybean Rhizosphere and Nutrient-Mobilizing Bacteria in Andosol. Microorganisms 2023, 11, 1193. [Google Scholar] [CrossRef]
- Olimi, E.; Kusstatscher, P.; Wicaksono, W.A.; Abdelfattah, A.; Cernava, T.; Berg, G. Insights into the microbiome assembly during different growth stages and storage of strawberry plants. Environ. Microbiome 2022, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Ayoubi, N.; Soleimani, M.; Zare, R. Pilidium concavum, causing tan-brown rot on strawberry in Iran. J. Plant Pathol. 2016, 98, 667–669. [Google Scholar]
- Thảo, H.H.M.; Lê Thị, V.H.; Minh, Đ.H.N.; Quốc, N.V.; Việt, T.Q.; Duyên, N.N.; Tâm, B.N.; Ẩn, N.N.; Việt, P.T.; Hạnh, N.T.D. Screening of antagonistic bacteria strains against Pilidium sp. MD1 causing strawberry (Fragaria ananassa) leaf spot. J. Sci. Technol.-IUH 2022, 55, 134–141. [Google Scholar]
- Silva, L.I.d.; Oliveira, I.P.d.; Jesus, E.d.C.; Pereira, M.C.; Pasqual, M.; Araújo, R.C.d.; Dória, J. Fertilizer of the future: Beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy 2022, 12, 2465. [Google Scholar] [CrossRef]
Activity/Application | Date | C | N | N+G | N+PGPB | N+A | N+G+A | N+PGPB+A |
---|---|---|---|---|---|---|---|---|
40 kg N | 19 March 2021 | • | • | • | • | • | • | |
Transplantation | 26 March 2021 | • | • | • | • | • | • | • |
Agriful | 26 March 2021 | • | • | • | ||||
PGPB | 26 March 2021 | • | • | |||||
Grounfix | 26 March 2021 | • | • | |||||
Soil sampling | 12 April 2021 | • | • | • | • | • | • | • |
Agriful | 12 April 2021 | • | • | • | ||||
40 kg N | 30 April 2021 | • | • | • | • | • | • | |
Agriful | 5 May 2021 | • | • | • | ||||
PGPB | 5 May 2021 | • | • | |||||
Grounfix | 5 May 2021 | • | • | |||||
Agriful | 28 May 2021 | • | • | • | ||||
Harvesting | 4–18 June 2021 | • | • | • | • | • | • | • |
Soil sampling | 8 July 2021 | • | • | • | • | • | • | • |
40 kg N | 16 March 2022 | • | • | • | • | • | • | |
Agriful | 23 March 2022 | • | • | • | ||||
PGPB | 23 March 2022 | • | • | |||||
Grounfix | 23 March 2022 | • | • | |||||
Soil sampling | 8 April 2022 | • | • | • | • | • | • | • |
Agriful | 6 April 2022 | • | • | • | ||||
40 kg N | 18 April 2022 | • | • | • | • | • | • | |
Agriful | 21 April 2022 | • | • | • | ||||
PGPB | 21 April 2022 | • | • | |||||
Grounfix | 21 April 2022 | • | • | |||||
Agriful | 4 May 2022 | • | • | • | ||||
Harvesting | 23 May–17 June 2022 | • | • | • | • | • | • | • |
Soil sampling | 2 July 2022 | • | • | • | • | • | • | • |
Treatment | April 2021 | July 2021 | April 2022 | July 2022 | Average |
---|---|---|---|---|---|
Dehydrogenase activity in µg TPF/g soil/h | |||||
C | 3.82 ± 0.07 1 a C 2 | 5.83 ± 0.22 c D | 4.34 ± 0.41 a C | 5.11 ± 0.07 b E | 4.78 ± 0.82 C |
N | 1.82 ± 0.17 a A | 3.75 ± 0.08 c B | 2.08 ± 0.08 a A | 2.98 ± 0.12 b AB | 2.66 ± 0.80 A |
N+G | 3.51 ± 0.05 a C | 8.35 ± 0.31 c E | 3.30 ± 0.17 a B | 4.07 ± 0.21 b D | 4.81 ± 2.16 C |
N+PGPB | 2.00 ± 0.13 a A | 4.96 ± 0.32 c C | 2.58 ± 0.60 a AB | 3.52 ± 0.09 b BC | 3.27 ± 1.21 AB |
N+A | 1.76 ± 0.14 a A | 3.51 ± 0.16 d B | 2.43 ± 0.04 b A | 2.84 ± 0.18 c A | 2.64 ± 0.68 A |
N+G+A | 2.96 ± 0.23 a B | 5.96 ± 0.15 c D | 3.34 ± 0.18 ab B | 3.86 ± 0.34 b CD | 4.03 ± 1.23 BC |
N+PGPB+A | 2.14 ± 0.09 a A | 2.72 ± 0.11 b A | 2.37 ± 0.01 a A | 3.47 ± 0.21 c BC | 2.68 ± 0.54 A |
Average | 2.57 ± 0.82 a | 5.01 ± 1.82 c | 2.92 ± 0.78 a | 3.69 ± 0.74 b | |
FDA hydrolysis in mg FDA/g soil/3 h | |||||
C | 1.56 ± 0.16 a AB | 1.52 ± 0.16 a AB | 1.78 ± 0.07 a A | 1.48 ± 0.10 a AB | 1.59 ± 0.16 AB |
N | 1.32 ± 0.08 a A | 1.25 ± 0.08 a A | 1.69 ± 0.22 b A | 1.29 ± 0.04 a A | 1.39 ± 0.21 A |
N+G | 2.13 ± 0.09 c D | 1.91 ± 0.08 ab B | 2.03 ± 0.11 c AB | 1.73 ± 0.12 a BC | 1.95 ± 0.18 C |
N+PGPB | 1.42 ± 0.10 a AB | 1.55 ± 0.12 a AB | 1.56 ± 0.23 a A | 1.29 ± 0.17 a A | 1.46 ± 0.18 A |
N+A | 1.40 ± 0.08 a AB | 1.36 ± 0.05 a A | 1.59 ± 0.18 a A | 1.30 ± 0.12 a A | 1.42 ± 0.15 A |
N+G+A | 2.05 ± 0.23 a CD | 1.96 ± 0.11 a B | 1.93 ± 0.25 a AB | 1.72 ± 0.02 a BC | 1.92 ± 0.20 C |
N+PGPB+A | 1.76 ± 0.14 a BC | 1.60 ± 0.34 a AB | 2.36 ± 0.10 b B | 1.84 ± 0.12 a C | 1.89 ± 0.34 BC |
Average | 1.66 ± 0.33 ab | 1.59 ± 0.28 ab | 1.85 ± 0.31 b | 1.52 ± 0.24 a | |
Phosphatase activityµg PNF/g soil/h | |||||
C | 12.46 ± 0.45 c B | 7.77 ± 0.35 a C | 9.36 ± 0.46 b A | 6.94 ± 0.24 a A | 9.13 ± 2.23 AB |
N | 12.11 ± 0.19 d B | 4.84 ± 0.60 a AB | 8.52 ± 0.17 c A | 7.30 ± 0.34 b A | 8.20 ± 2.75 A |
N+G | 14.18 ± 0.42 c C | 10.73 ± 1.05 b D | 10.51 ± 0.21 b B | 8.66 ± 0.20 a B | 11.02 ± 2.14 C |
N+PGPB | 12.23 ± 0.67 c B | 6.32 ± 0.09 a BC | 8.96 ± 0.25 b A | 6.77 ± 0.54 a A | 8.57 ± 2.47 A |
N+A | 12.09 ± 0.20 c B | 4.70 ± 0.29 a A | 8.91 ± 0.64 b A | 7.81 ± 0.69 b AB | 8.38 ± 2.79 A |
N+G+A | 14.26 ± 0.34 c C | 9.75 ± 0.56 a D | 11.20 ± 0.44 b BC | 8.83 ± 0.63 a B | 11.01 ± 2.19 C |
N+PGPB+A | 10.15 ± 0.43 b A | 9.70 ± 0.38 b D | 11.74 ± 0.22 c C | 8.77 ± 0.18 a B | 10.09 ± 1.16 BC |
Average | 12.50 ± 1.38 c | 7.69 ± 2.38 a | 9.89 ± 1.23 b | 7.87 ± 0.92 a |
Treatment | July 2021 | July 2022 | Average |
---|---|---|---|
Basal respiration in µg CO2-C/g soil/h | |||
C | 1.69 ± 0.08 1 a A 2 | 3.05 ± 0.04 b A | 2.37 ± 0.75 A |
N | 2.23 ± 0.12 a B | 3.19 ± 0.03 b AB | 2.71 ± 0.53 B |
N+G | 2.28 ± 0.06 a B | 3.57 ± 0.08 b D | 2.93 ± 0.71 BC |
N+PGPB | 2.09 ± 0.11 a B | 3.38 ± 0.04 b C | 2.74 ± 0.71 B |
N+A | 2.57 ± 0.17 a C | 3.29 ± 0.12 b BC | 2.93 ± 0.42 BC |
N+G+A | 2.04 ± 0.05 a B | 3.74 ± 0.03 b DE | 2.89 ± 0.93 B |
N+PGPB+A | 2.66 ± 0.03 a C | 3.78 ± 0.05 b E | 3.22 ± 0.61 C |
Average | 2.22 ± 0.32 a | 3.43 ± 0.27 b | |
Potential respiration in µg CO2-C/g soil/h | |||
C | 13.84 ± 0.27 a A | 17.50 ± 0.14 b A | 15.67 ± 2.01 A |
N | 18.61 ± 0.02 a D | 20.36 ± 0.05 b CD | 19.49 ± 0.96 C |
N+G | 14.91 ± 0.03 a B | 20.17 ± 0.12 b BC | 17.54 ± 2.88 B |
N+PGPB | 17.72 ± 0.71 a C | 20.75 ± 0.07 b E | 19.24 ± 1.72 C |
N+A | 18.91 ± 0.05 a D | 20.50 ± 0.09 b D | 19.70 ± 0.87 C |
N+G+A | 17.55 ± 0.19 a C | 20.01 ± 0.06 b B | 18.78 ± 1.35 BC |
N+PGPB+A | 16.99 ± 0.06 a C | 21.60 ± 0.04 b F | 19.29 ± 2.53 C |
Average | 16.93 ± 1.81 a | 20.13 ± 1.21 b | |
Metabolic quotient in µg CO2-C/mg Cmic/h | |||
C | 2.35 ± 0.09 a A | 3.45 ± 0.13 b AB | 2.90 ± 0.61 A |
N | 4.33 ± 0.45 a AB | 3.94 ± 0.11 a CD | 4.14 ± 0.36 AB |
N+G | 4.72 ± 0.81 a AB | 3.82 ± 0.28 a BC | 4.27 ± 0.73 AB |
N+PGPB | 7.76 ± 1.60 b CD | 3.28 ± 0.14 a A | 5.52 ± 2.66 BC |
N+A | 8.94 ± 0.03 b D | 4.30 ± 0.13 a D | 6.62 ± 2.54 BC |
N+G+A | 5.42 ± 0.53 a BC | 4.79 ± 0.00 a E | 5.11 ± 0.48 ABC |
N+PGPB+A | 9.03 ± 1.63 b D | 4.85 ± 0.15 a E | 6.94 ± 2.51 C |
Average | 6.08 ± 2.55 b | 4.06 ± 0.60 a |
Treatment | April 2021 | July 2021 | April 2022 | July 2022 | Average |
---|---|---|---|---|---|
Total microbial count | |||||
C | 6.05 ± 0.05 1 c A 2 | 6.23 ± 0.02 c B | 5.43 ± 0.12 a AB | 5.69 ± 0.07 b AB | 5.85 ± 0.33 AB |
N | 6.13 ± 0.03 b A | 7.30 ± 0.05 c C | 5.43 ± 0.19 a AB | 5.72 ± 0.15 a AB | 6.15 ± 0.75 B |
N+G | 6.12 ± 0.07 bc A | 5.93 ± 0.05 ab A | 5.69 ± 0.13 a BC | 6.23 ± 0.13 c C | 5.99 ± 0.23 AB |
N+PGPB | 6.08 ± 0.06 bc A | 6.35 ± 0.17 c B | 5.65 ± 0.11 a BC | 5.86 ± 0.10 ab ABC | 5.99 ± 0.29 AB |
N+A | 6.06 ± 0.10 b A | 6.21 ± 0.05 b B | 5.26 ± 0.02 a A | 5.58 ± 0.31 a A | 5.78 ± 0.42 A |
N+G+A | 6.10 ± 0.08 b A | 5.72 ± 0.03 a A | 5.92 ± 0.06 b C | 5.94 ± 0.10 b ABC | 5.92 ± 0.15 AB |
N+PGPB+A | 6.07 ± 0.06 b A | 6.15 ± 0.05 b B | 5.34 ± 0.16 a AB | 6.03 ± 0.11 b BC | 5.90 ± 0.35 AB |
Average | 6.09 ± 0.06 bc | 6.27 ± 0.48 c | 5.53 ± 0.24 a | 5.86 ± 0.25 b | |
Dormant forms count | |||||
C | 6.09 ± 0.08 c AB | 5.31 ± 0.09 a A | 5.54 ± 0.05 b ABC | 5.44 ± 0.07 ab AB | 5.60 ± 0.32 A |
N | 6.26 ± 0.04 b C | 5.63 ± 0.05 a ABC | 5.60 ± 0.19 a BC | 5.49 ± 0.15 a ABC | 5.75 ± 0.33 ABC |
N+G | 6.36 ± 0.03 c C | 5.85 ± 0.04 b BC | 5.49 ± 0.15 a ABC | 5.96 ± 0.11 b D | 5.92 ± 0.33 C |
N+PGPB | 6.23 ± 0.05 c BC | 6.05 ± 0.06 c C | 5.35 ± 0.13 a AB | 5.72 ± 0.10 b BCD | 5.84 ± 0.36 BC |
N+A | 6.28 ± 0.04 c C | 5.59 ± 0.24 b AB | 5.21 ± 0.09 a A | 5.43 ± 0.05 ab AB | 5.63 ± 0.43 AB |
N+G+A | 6.04 ± 0.06 a A | 5.72 ± 0.29 a ABC | 5.72 ± 0.04 a C | 5.80 ± 0.15 a CD | 5.82 ± 0.20 BC |
N+PGPB+A | 6.06 ± 0.04 c A | 5.71 ± 0.18 b ABC | 5.31 ± 0.10 a AB | 5.31 ± 0.14 a A | 5.60 ± 0.35 A |
Average | 6.19 ± 0.12 c | 5.70 ± 0.26 b | 5.46 ± 0.20 a | 5.59 ± 0.24 ab | |
Actinomycetes | |||||
C | 4.57 ± 0.04 c B | 4.35 ± 0.10 ab C | 4.23 ± 0.12 a B | 4.52 ± 0.05 bc A | 4.42 ± 0.16 B |
N | 4.57 ± 0.09 b B | 3.84 ± 0.18 a ABC | 4.00 ± 0.17 a AB | 4.80 ± 0.04 b C | 4.30 ± 0.43 AB |
N+G | 4.72 ± 0.10 b B | 3.46 ± 0.62 a AB | 4.24 ± 0.06 ab B | 4.61 ± 0.14 b ABC | 4.26 ± 0.59 AB |
N+PGPB | 4.57 ± 0.07 b B | 4.28 ± 0.08 a C | 4.16 ± 0.06 a AB | 4.57 ± 0.06 b AB | 4.39 ± 0.19 B |
N+A | 4.32 ± 0.10 bc A | 3.14 ± 0.17 a A | 4.07 ± 0.12 b AB | 4.67 ± 0.14 c ABC | 4.05 ± 0.60 A |
N+G+A | 4.62 ± 0.07 b B | 3.65 ± 0.27 a ABC | 4.04 ± 0.14 a AB | 4.49 ± 0.03 b A | 4.20 ± 0.42 AB |
N+PGPB+A | 4.57 ± 0.06 c B | 4.06 ± 0.00 b BC | 3.87 ± 0.08 a A | 4.77 ± 0.02 d BC | 4.32 ± 0.39 AB |
Average | 4.56 ± 0.13 c | 3.83 ± 0.48 a | 4.09 ± 0.16 b | 4.63 ± 0.13 c | |
Microscopic fungi | |||||
C | 4.43 ± 0.05 ab A | 4.48 ± 0.16 b BC | 4.23 ± 0.07 a A | 4.48 ± 0.02 b C | 4.41 ± 0.13 A |
N | 4.02 ± 0.41 a A | 4.21 ± 0.10 a ABC | 5.73 ± 0.22 b B | 4.20 ± 0.02 a A | 4.54 ± 0.75 A |
N+G | 4.43 ± 0.09 ab A | 4.57 ± 0.10 b C | 4.16 ± 0.20 a A | 4.67 ± 0.06 b D | 4.46 ± 0.23 A |
N+PGPB | 4.50 ± 0.12 b A | 3.87 ± 0.10 a A | 4.42 ± 0.35 b A | 4.29 ± 0.02 ab AB | 4.27 ± 0.30 A |
N+A | 4.40 ± 0.14 ab A | 4.07 ± 0.11 a A | 4.33 ± 0.13 ab A | 4.41 ± 0.13 b BC | 4.30 ± 0.18 A |
N+G+A | 4.44 ± 0.13 a A | 4.16 ± 0.21 a AB | 4.45 ± 0.13 a A | 4.51 ± 0.05 a CD | 4.39 ± 0.19 A |
N+PGPB+A | 4.05 ± 0.36 a A | 4.19 ± 0.13 a AB | 4.33 ± 0.05 a A | 4.20 ± 0.06 a A | 4.19 ± 0.20 A |
Average | 4.32 ± 0.27 ab | 4.22 ± 0.25 a | 4.52 ± 0.54 b | 4.39 ± 0.17 ab |
Treatment | April 2021 | July 2021 | April 2022 | July 2022 | Average |
---|---|---|---|---|---|
Prokaryotic community | |||||
C | 7.87 ± 0.19 1 bc B 2 | 6.95 ± 0.11 a B | 8.06 ± 0.12 c C | 7.33 ± 0.33 ab AB | 7.55 ± 0.49 BC |
N | 8.05 ± 0.1 c B | 7.57 ± 0.09 b CD | 7.42 ± 0.18 b B | 6.7 ± 0.12 a AB | 7.44 ± 0.52 BC |
N+G | 7.68 ± 0.34 a AB | 7.5 ± 0.12 a C | 7.48 ± 0.07 a B | 7.13 ± 0.89 a AB | 7.45 ± 0.46 BC |
N+PGPB | 8.1 ± 0.11 b B | 7.76 ± 0.19 b CD | 8.06 ± 0.06 b C | 6.9 ± 0.43 a AB | 7.71 ± 0.55 C |
N+A | 7.59 ± 0.17 a AB | 7.84 ± 0.05 ab D | 8.03 ± 0.06 b C | 7.46 ± 0.23 a B | 7.73 ± 0.26 C |
N+G+A | 7.68 ± 0.22 b AB | 6.39 ± 0.12 a A | 6.58 ± 0.26 a A | 6.29 ± 0.15 a A | 6.74 ± 0.61 A |
N+PGPB+A | 7.15 ± 0.13 a A | 7.58 ± 0.05 a CD | 7.17 ± 0.27 a B | 7.23 ± 0.15 a AB | 7.28 ± 0.23 B |
Average | 7.73 ± 0.35 c | 7.37 ± 0.50 b | 7.54 ± 0.55 bc | 7 ± 0.52 a | |
Fungal community | |||||
C | 5.6 ± 0.51 c A | 5.76 ± 0.37 c A | 2.75 ± 0.49 b AB | 1.07 ± 0.19 a AB | 3.8 ± 1.84 A |
N | 5.63 ± 0.1 b A | 5.65 ± 0.44 b A | 2.76 ± 0.43 a A | 2.22 ± 0.29 a AB | 4.06 ± 1.59 A |
N+G | 5.53 ± 0.4 b A | 5.73 ± 0.57 b A | 3.55 ± 0.59 a B | 4.24 ± 0.13 a C | 4.76 ± 0.89 B |
N+PGPB | 5.41 ± 0.14 b A | 5.78 ± 0.37 b A | 4.89 ± 0.47 b C | 4.32 ± 0.44 a C | 5.1 ± 0.81 B |
N+A | 5.56 ± 1.14 ab A | 5.76 ± 0.09 b A | 3.37 ± 0.08 a AB | 2.61 ± 0.12 a BC | 4.33 ± 1.24 A |
N+G+A | 5.52 ± 0.15 b A | 5.36 ± 0.10 b A | 2.81 ± 0.12 a A | 3.1 ± 0.07 a BC | 4.2 ± 1.40 A |
N+PGPB+A | 5.46 ± 0.15 b A | 5.58 ± 0.37 b A | 5.64 ± 0.04 a C | 4.48 ± 0.19 b C | 5.29 ± 0.73 B |
Average | 5.53 ± 0.48 c | 5.66 ± 0.2 d | 3.68 ± 1.12 b | 3.15 ± 10 a |
Treatment | 2021 | 2022 | Average |
---|---|---|---|
Total yield in t/ha | |||
C | 0.90 ± 0.19 1 a A 2 | 2.25 ± 0.17 b A | 1.58 ± 0.76 A |
N | 0.86 ± 0.09 a A | 2.56 ± 0.51 b A | 1.71 ± 0.98 A |
N+G | 1.00 ± 0.10 a A | 2.98 ± 0.46 b AB | 1.99 ± 1.12 AB |
N+PGPB | 0.78 ± 0.13 a A | 3.39 ± 0.46 b AB | 2.09 ± 1.46 AB |
N+A | 0.90 ± 0.16 a A | 3.07 ± 1.12 b AB | 1.98 ± 1.39 AB |
N+G+A | 1.05 ± 0.13 a A | 3.56 ± 0.54 b AB | 2.31 ± 1.42 AB |
N+PGPB+A | 1.15 ± 0.42 a A | 4.38 ± 0.66 b B | 2.77 ± 1.83 B |
Average | 0.95 ± 0.21 a | 3.17 ± 0.84 b | |
Average weight of a single fruit in g | |||
C | 8.81 ± 1.68 a A | 7.68 ± 0.38 a A | 8.25 ± 1.30 A |
N | 9.53 ± 1.70 a A | 8.62 ± 0.74 a A | 9.07 ± 1.28 A |
N+G | 10.20 ± 0.58 b A | 8.12 ± 0.66 a A | 9.16 ± 1.27 A |
N+PGPB | 8.08 ± 0.52 a A | 8.93 ± 0.47 a A | 8.50 ± 0.64 A |
N+A | 10.33 ± 0.77 a A | 9.69 ± 1.97 a A | 10.01 ± 1.38 A |
N+G+A | 10.05 ± 0.67 a A | 10.26 ± 1.71 a A | 10.16 ± 1.17 A |
N+PGPB+A | 8.70 ± 1.15 a A | 9.47 ± 0.65 a A | 9.09 ± 0.94 A |
Average | 9.39 ± 1.24 a | 8.97 ± 1.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maková, J.; Artimová, R.; Javoreková, S.; Adamec, S.; Paulen, O.; Andrejiová, A.; Ducsay, L.; Medo, J. Effect of Application of Nitrogen Fertilizer, Microbial and Humic Substance-Based Biostimulants on Soil Microbiological Properties During Strawberry (Fragaria × ananassa Duch.) Cultivation. Horticulturae 2025, 11, 119. https://doi.org/10.3390/horticulturae11020119
Maková J, Artimová R, Javoreková S, Adamec S, Paulen O, Andrejiová A, Ducsay L, Medo J. Effect of Application of Nitrogen Fertilizer, Microbial and Humic Substance-Based Biostimulants on Soil Microbiological Properties During Strawberry (Fragaria × ananassa Duch.) Cultivation. Horticulturae. 2025; 11(2):119. https://doi.org/10.3390/horticulturae11020119
Chicago/Turabian StyleMaková, Jana, Renata Artimová, Soňa Javoreková, Samuel Adamec, Oleg Paulen, Alena Andrejiová, Ladislav Ducsay, and Juraj Medo. 2025. "Effect of Application of Nitrogen Fertilizer, Microbial and Humic Substance-Based Biostimulants on Soil Microbiological Properties During Strawberry (Fragaria × ananassa Duch.) Cultivation" Horticulturae 11, no. 2: 119. https://doi.org/10.3390/horticulturae11020119
APA StyleMaková, J., Artimová, R., Javoreková, S., Adamec, S., Paulen, O., Andrejiová, A., Ducsay, L., & Medo, J. (2025). Effect of Application of Nitrogen Fertilizer, Microbial and Humic Substance-Based Biostimulants on Soil Microbiological Properties During Strawberry (Fragaria × ananassa Duch.) Cultivation. Horticulturae, 11(2), 119. https://doi.org/10.3390/horticulturae11020119