Table Grape Ferritin1 Is Implicated in Iron Accumulation, Iron Homeostasis, and Plant Tolerance to Iron Toxicity and H2O2 Induced Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Condition
2.2. Physiological Analysis
2.3. Isolation and Cloning of VvFerritin1 from Table Grape
2.4. Phylogenetic Tree Construction
2.5. Quantitative Real Time PCR (qRT-PCR)
2.6. Complementation of VvFerritin2 Gene in Yeast Mutant
2.7. Over-Expression of VvFerritin1 in Arabidopsis fer1-2 Mutant
2.8. Statistical Analysis
3. Results
3.1. Isolation of VvFerritin1 in Grape
3.2. Expression Profiles of VvFerritin1
3.3. VvFerritin1 Restored the Growth of Yeast Mutant DEY1453
3.4. VvFerritin1 Recovered the Impaired Growth of Arabidopsis fer1-2 Mutant
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kermeur, N.; Pédrot, M.; Cabello-Hurtado, F. Iron availability and homeostasis in plants: A review of responses, adaptive mechanisms, and signaling. Methods Mol. Biol. 2023, 2642, 49–81. [Google Scholar] [CrossRef] [PubMed]
- Montejano-Ramírez, V.; Valencia-Cantero, E. Cross-talk between iron deficiency response and defense establishment in plants. Int. J. Mol. Sci. 2023, 24, 6263. [Google Scholar] [CrossRef]
- Song, Z.Z.; Lin, S.Z.; Fu, J.Y.; Chen, Y.H.; Zhang, H.X.; Li, J.Z.; Liang, M.X. Heterologous expression of ISU1 gene from Fragaria vesca enhances plant tolerance to Fe depletion in Arabidopsis. Plant Physiol. Biochem. 2022, 184, 65–74. [Google Scholar] [CrossRef]
- Tagliavini, M.; Rombolà, A.D. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 2001, 15, 72–92. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef]
- Zelazny, E.; Vert, G. Regulation of iron uptake by IRT1: Endocytosis pulls the trigger. Mol. Plant 2015, 8, 977–979. [Google Scholar] [CrossRef]
- Fourcroy, P.; Tissot, N.; Gaymard, F.; Briat, J.F.; Dubos, C. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system. Mol. Plant 2016, 9, 485–488. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, W.; Wang, T. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef]
- Sudarev, V.V.; Dolotova, S.M.; Bukhalovich, S.M.; Bazhenov, S.V.; Ryzhykau, Y.L.; Uversky, V.N.; Bondarev, N.A.; Osipov, S.D.; Mikhailov, A.E.; Kuklina, D.D.; et al. Ferritin self-assembly, structure, function, and biotechnological applications. Int. J. Biol. Macromol. 2023, 224, 319–343. [Google Scholar] [CrossRef] [PubMed]
- Ravet, K.; Touraine, B.; Boucherez, J.; Briat, J.F.; Gaymard, F.; Cellier, F. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 2009, 57, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Briat, J.F.; Duc, C.; Ravet, K.; Gaymard, F. Ferritins and iron storage in plants. BBA-Gen. Subj. 2010, 1800, 806–814. [Google Scholar] [CrossRef]
- Lόpez-Millán, A.F.; Duy, D.; Philippar, K. Chloroplast iron transport proteins-function and impact on plant physiology. Front. Plant Sci. 2016, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y. Function of FER2 Gene in Response to Drought Stress in Arabidopsis thaliana. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2018. (In Chinese). [Google Scholar]
- Liu, J.; Fan, Y.; Zou, J.; Fang, Y.; Wang, L.; Wang, M.; Jiang, X.; Liu, Y.; Gao, J.; Zhang, C. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. Plant J. 2017, 92, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Reyt, G.; Boudouf, S.; Boucherez, J.; Gaymard, F.; Briat, J.F. Iron- and ferritin-dependent reactive oxygen species distribution: Impact on Arabidopsis root system architecture. Mol. Plant 2015, 8, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Ghislain, M.; Muzhingi, T.; Low, J.W. Zinc and iron fortification in cassava. Nat. Biotechnol. 2019, 37, 130–132. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Li, M.; Ning, Y.; Tao, Y.; Shi, S.; Dark, A.; Song, Z. Heterologous expression of a Ferritin homologue gene PpFer1 from Prunus persica enhances plant tolerance to iron toxicity and H2O2 stress in Arabidopsis thaliana. Plants 2023, 12, 4093. [Google Scholar] [CrossRef] [PubMed]
- Jaillon, O.; Aury, J.M.; Noel, B.; Policriti, A.; Clepet, C.; Casagrabde, A.; Choisne, N.; Aubourg, S.; Vitulo, N.; Jubin, C.; et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449, 463–467. [Google Scholar] [CrossRef]
- Song, Z.Z.; Wang, X.; Li, M.Y.; Ning, Y.Z.; Shi, S.P.; Yang, G.R.; Zhang, H.X.; Tang, M.L.; Peng, B. Isolation, heterologous expression, and functional determination of an iron regulated transporter (IRT) gene involved in Fe2+ transport and tolerance to Fe2+ deficiency in Vitis vinifera. Plant Growth Regul. 2024, 156, 65. [Google Scholar] [CrossRef]
- Sheng, Y.T.; Cheng, H.; Wang, L.M.; Shen, J.Y.; Tang, M.L.; Liang, M.X.; Zhang, K.; Zhang, H.X.; Kong, Q.; Yu, M.L.; et al. Foliar spraying with compound amino acid-iron fertilizer increases leaf fresh weight, photosynthesis and Fe-S cluster gene expression in peach [Prunus persica (L.) Batsch]. BioMed Res. Int. 2020, 2020, 2854795. [Google Scholar] [CrossRef]
- Song, Z.Z.; Guo, S.L.; Ma, R.J.; Zhang, B.B.; Guo, S.L.; Yu, M.L.; Korir, N.K. Differential expression of iron–sulfur cluster biosynthesis genes during peach fruit development and ripening, and their response to iron compound spraying. Sci. Hortic. 2016, 207, 73–81. [Google Scholar] [CrossRef]
- Petit, J.M.; Briat, J.F.; Lobréaux, S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem. J. 2001, 359, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Ran, J.G.; Li, Y.Y.; Tang, M.L.; Xiao, H.L.; Shi, S.P.; Ning, Y.Z.; Dark, A.; Guan, X.Q.; Song, Z.Z. Site-directed mutagenesis of VvCYP76F14 (cytochrome P450) unveils its potential for selection in wine grape varieties linked to the development of wine bouquet. J. Agric. Food Chem. 2024, 72, 3683–3694. [Google Scholar] [CrossRef] [PubMed]
- Vert, G.; Barberon, M.; Zelazny, E.; Séguéla, M.; Briat, J.F.; Curie, C. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 2009, 229, 1171–1179. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.M.; Lin, S.Z.; Wang, J.P.; Tang, M.L.; Huang, J.F.; Gao, T.P.; Zhang, H.X.; Song, Z.Z. Heterologous expression of the MiHAK14 homologue from Mangifera indica enhances plant tolerance to K+ deficiency and salinity stress in Arabidopsis. Plant Growth Regul. 2022, 98, 39–49. [Google Scholar] [CrossRef]
- Murgia, I.; Vazzola, V.; Tarantino, D.; Cellier, F.; Ravet, K.; Briat, J.F.; Soave, C. Knock-out of ferritin AtFer1 causes earlier onset of age-dependent leaf senescence in Arabidopsis. Plant Physiol. Biochem. 2007, 45, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Su, J.; Tang, T.T.; Ding, W.; Zhu, L.W.; Jia, B. Cloning and differential expression analysis of Fer2 gene in leaf of ‘Dangshansuli’ pear. J. Nanjing Agric. Univ. 2013, 36, 33–38. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.; Peng, B.; Shi, M.; Yang, G.; Song, Z. Table Grape Ferritin1 Is Implicated in Iron Accumulation, Iron Homeostasis, and Plant Tolerance to Iron Toxicity and H2O2 Induced Oxidative Stress. Horticulturae 2025, 11, 146. https://doi.org/10.3390/horticulturae11020146
Xie Z, Peng B, Shi M, Yang G, Song Z. Table Grape Ferritin1 Is Implicated in Iron Accumulation, Iron Homeostasis, and Plant Tolerance to Iron Toxicity and H2O2 Induced Oxidative Stress. Horticulturae. 2025; 11(2):146. https://doi.org/10.3390/horticulturae11020146
Chicago/Turabian StyleXie, Zhenqiang, Bin Peng, Matthew Shi, Guangrong Yang, and Zhizhong Song. 2025. "Table Grape Ferritin1 Is Implicated in Iron Accumulation, Iron Homeostasis, and Plant Tolerance to Iron Toxicity and H2O2 Induced Oxidative Stress" Horticulturae 11, no. 2: 146. https://doi.org/10.3390/horticulturae11020146
APA StyleXie, Z., Peng, B., Shi, M., Yang, G., & Song, Z. (2025). Table Grape Ferritin1 Is Implicated in Iron Accumulation, Iron Homeostasis, and Plant Tolerance to Iron Toxicity and H2O2 Induced Oxidative Stress. Horticulturae, 11(2), 146. https://doi.org/10.3390/horticulturae11020146