Optimizing Microclonal Propagation of Red Currant Cultivars: The Role of Nutrient Media, Sterilizers, and LED Lighting in Plant Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. The Stages of In Vitro Reproduction
2.3. Plant Adaptation in the Climatic Chamber with LED Lighting System
2.3.1. Morphological Parameters
2.3.2. Normalized Difference Vegetation Index (NDVI)
2.3.3. The Content of Photosynthetic Pigments
2.4. Statistical Data Analysis
3. Results
3.1. The Choice of Sterilizing Agent and Sterilization Mode
3.2. The Effect of the Nutrient Medium and the Period of In Vitro Introduction on Growth and Reproduction
3.3. Physiological and Biometric Elements of Adaptation of Micro Plants in the Climatic Chamber with LED Lighting System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kakareka, N.; Volkov, Y.; Tolkach, V.; Sapotskyi, M.; Shchelkanov, M. Possibilities of obtaining and controlling virus-free material in the process of selection and seed production of main crops. In Proceedings of the Earth and Environmental Science, Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East, Ussurijsk, Russia, 20–21 June 2021. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Dantu, P.K.; Bhojwani, S.S.; Dantu, P.K. Production of virus-free plants. In Plant Tissue Culture: An Introductory Text, 1st ed.; Bhojwani, S.S., Dantu, P.K., Eds.; Springer: New Delhi, India, 2013; pp. 227–243. [Google Scholar] [CrossRef]
- Krasova, N.G. VNIISPK Bioresource Apple Collection. Formation, Study, Usage; VNIISPK: Orel, Russia, 2024; pp. 5–6. [Google Scholar]
- Sokhandan-Bashir, N.; Ighani, H. Chapter 40—Economic significance of viruses in horticultural crops. In Viral Diseases of Field and Horticultural Crops; Awasthi, L.P., Ed.; Academic Press: New York, NY, USA, 2024; pp. 331–343. [Google Scholar] [CrossRef]
- Velasco, L.; Ruiz, L.; Galipienso, L.; Rubio, L.; Janssen, D. A Historical Account of Viruses in Intensive Horticultural Crops in the Spanish Mediterranean Arc: New Challenges for a Sustainable Agriculture. Agronomy 2020, 10, 860. [Google Scholar] [CrossRef]
- Djordjevic, B.S.; Djurovic, D.B.; Zec, G.D.; Meland, M.O.; Aksic, M.M.F. Effects of shoot age on biological and chemical properties of red currant (L.) cultivars. Folia Hortic. 2020, 32, 291–305. [Google Scholar] [CrossRef]
- Debnath, S.C.; Ghosh, A. Phenotypic variation and epigenetic insight into tissue culture berry crops. Front. Plant Sci. 2022, 13, 1042726. [Google Scholar] [CrossRef] [PubMed]
- Greblikaite, J.; Ispiryan, A.; Montvydaite, D. Development of berry farms in Europe: Organisational and management issues. Mark. Manag. Innov. 2019, 2, 141–159. [Google Scholar] [CrossRef]
- Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol content and antioxidant capacity of berries: A review. Int. J. Agric. For. Life Sci. 2019, 3, 350–361. [Google Scholar]
- Kirina, I.B.; Belosokhov, F.G.; Titova, L.V.; Suraykina, I.A.; Pulpitow, V.F. Biochemical assessment of berry crops as a source of production of functional food products. In Proceedings of the Agribusiness, Environmental Engineering and Biotechnologies, Krasnoyarsk, Russia, 18–20 June 2020. [Google Scholar] [CrossRef]
- May, N.; Guenther, E. Shared benefit by material flow cost accounting in the food supply chain–the case of berry pomace as upcycled by-product of a black currant juice production. J. Clean. Prod. 2020, 245, 118946. [Google Scholar] [CrossRef]
- Villamor, D.E.V.; Keller, K.E.; Martin, R.R.; Tzanetakis, I.E. Comparison of high throughput sequencing to standard protocols for virus detection in berry crops. Plant Dis. 2022, 106, 518–525. [Google Scholar] [CrossRef]
- Rätsep, R.; Kaldmäe, H.; Pääso, K. International Scientific Conference „Sustainable fruit and berry cultivation“: The book of abstracts. In Proceedings of the Sustainable Fruit and Berry Cultivation, Polli, Estonia, 19 November 2021. [Google Scholar] [CrossRef]
- Verzhuk, V.G.; Erastenkova, M.V.; Khokhlenko, A.A.; Agakhanov, M.M.; Kislin, E.N.; Ukhatova, Y.V. Evaluation of regenerative capacity of grape (V. vinifera L.) and red currant (R. rubrum L.) accessions in the culture in vitro for the development of VIR cryocollection. Magarach. Vitic. Winemak. 2022, 24, 214–218. [Google Scholar] [CrossRef]
- Cvopa, J.; Cvopova, E. ‘Maraton’, ‘Hron’, ‘Favorit’—The new currant varieties. In Proceedings of the VI International Symposium on Rubus and Ribes, Skierniewice, Poland, 3 July 1993. [Google Scholar] [CrossRef]
- Skrupskis, I.; Skrebele, B.; Kampuse, S.; Kampuss, K. Quality evaluation of red and white currant cultivars. In Proceedings of the V International Postharvest Symposium, Verona, Italy, 30 June 2005. [Google Scholar] [CrossRef]
- Kampuss, K.; Strautina, S.; Kampuse, S. Red and white currant genetic resources in Latvia. Acta Hortic. 2007, 760, 397–403. [Google Scholar] [CrossRef]
- Matejicek, A.; Kaplan, J.; Paprstein, F.; Matejickova, J. Evaluation of red currant and white currant prospective cultivars. Acta Hortic. 2016, 1117, 49–52. [Google Scholar] [CrossRef]
- Golyaeva, O.; Panfilova, O. The use of the ‘Heinemanns Rote Spatlese’ variety as the initial form in the Ribes rubrum selection. E3S Web Conf. 2021, 254, 01002. [Google Scholar] [CrossRef]
- Verzhuk, V.; Pavlov, A.; Novikova, L.Y.; Filipenko, G. Viability of red (Ribes rubrum L.) and black (Ribes nigrum L.) currant cuttings in field conditions after cryopreservation in vapors of liquid nitrogen. Agriculture 2020, 10, 476. [Google Scholar] [CrossRef]
- Jenderek, M.M.; Forsline, P.; Postman, J.; Stover, E.; Ellis, D. Effect of geographical location, year, and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen. HortScience 2011, 46, 1230–1234. [Google Scholar] [CrossRef]
- Kukharchyk, N. Fruit and soft fruit plants propagation in vitro. Sci. Innov. 2019, 6, 17–21. (In Russian) [Google Scholar]
- Golis, A.; Korbin, M.; Pluta, S. The development of Ribes embryos by interspecific hybridization. Acta Hortic. 2002, 585, 155–158. [Google Scholar] [CrossRef]
- Ruzic, D.; Lazic, T. Micropropagation as means of rapid multiplication of newly developed blackberry and black currant cultivars. Agric. Conspec. Sci. 2006, 71, 149–153. [Google Scholar]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Sedlák, J.; Paprštein, F. In vitro establishment and proliferation of red currant cultivars. Hort. Sci. (Prague) 2012, 39, 21–25. [Google Scholar] [CrossRef]
- Kukharchik, N.V.; Kolbanova, E.V.; Krasinskaya, T.A.; Malinovskaya, A.M.; Kastritskaya, M.S.; Tychinskaya, L.Y.; Poleshko, G.D. Mineral nutrition and morphogenesis of horticultural crops at in vitro cultivation. Fruit Growing. 2013, 25, 227–235. [Google Scholar]
- Kukharchyk, N.; Kastritskaya, M.S.; Semenas, S.E.; Kolbanova, E.V.; Krasinskaya, T.A.; Volosevich, N.N.; Solovey, O.V.; Zmushko, A.A.; Bozhidai, T.N.; Rundia, A.P.; et al. Reproduction of Fruit and Berry Plants in Vitro; Belarus Science: Minsk, Belarus, 2016; pp. 72–81. [Google Scholar]
- Hautsalo, J.; Rantala, S.; Rantanen, M.; Nukari, A. Culture medium, LEDs and bioreactor to improve in vitro propagation of red currant. Acta Hortic. 2018, 1224, 209–216. [Google Scholar] [CrossRef]
- Pavlova, I.A.; Klimenko, V.P. Modeling of the climatic conditions for the adaptation of grape plants in vitro to conditions in vivo. Sci. Work. North Cauc. Fed. Sci. Cent. Hortic. Vitic. Winemak. 2019, 25, 164–168. [Google Scholar] [CrossRef]
- Goto, E. Plant production in a closed plant factory with artificial lighting. Acta Hortic. 2012, 956, 37–49. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed]
- Park, B.G.; Lee, J.H.; Shin, E.J.; Kim, E.A.; Nam, S.Y. Light Quality Influence on Growth Performance and Physiological Activity of Coleus Cultivars. Int. J. Plant Biol. 2024, 15, 807–826. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Poukh, A.V.; Kobrinets, T.P.; Ivanova, O.S. Methodological recommendations for lighting modes for domestic plum growing at the stages of micro-propagation, in vitro rooting and ex vitro adaptation. Fruit Growing. 2022, 34, 178–187. [Google Scholar] [CrossRef]
- Evlakov, P.; Grodeckaya, T.; Fedorova, O.; Shestakov, R.; Baranov, O. Effect of different led spectrum regimens on growth and development of Betula pubescens Ehrh. and Rubus idaeus L. in culture in vitro. For. Eng. J. 2022, 12, 14–30. [Google Scholar] [CrossRef]
- Morelli, G.; Ruberti, I. Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol. 2000, 122, 621–626. [Google Scholar] [CrossRef]
- Dzhigadlo, E.N.; Dzhigadlo, M.I.; Golyshkina, L.V. Methodical Recommendations on the Use of Biotechnological Methods in Work with Fruit, Berry and Decorative Crops; VNIISPK: Orel, Russia, 2005; 51p. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lee, E.C.M.; De Fossard, R.A. Some factors affecting multiple bud formation of strawberry (x Fragaria ananassa Duchesne) in vitro. Acta Hortic. 1977, 78, 187–196. [Google Scholar] [CrossRef]
- Dziedzic, E.; Jagła, J. Micropropagation of Rubus and Ribes spp. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Humana Press: Totowa, NJ, USA, 2012; pp. 149–160. [Google Scholar] [CrossRef]
- da Silva Pinto, M.; Kwon, Y.I.; Apostolidis, E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) for potential management of type 2 diabetes and hypertensionusing in vitro models. J. Food Biochem. 2010, 34, 639–660. [Google Scholar] [CrossRef]
- Panfilova, O.; Tsoy, M.; Golyaeva, O.; Knyazev, S.; Karpukhin, M. Agrometeorological and morpho-physiological studies of the response of red currant to abiotic stresses. Agronomy 2021, 11, 1522. [Google Scholar] [CrossRef]
- Holm, G. Chlorophyll mutations in barley. Acta Agric. Scand. 1954, 4, 457–471. [Google Scholar] [CrossRef]
- Musiienko, M.; Parshykova, T.; Slavnyj, P. Spectrographic Methods in Practical Physiology, Biochemistry and Ecology of Plants; Fitosociocentr: Kyiv, Ukraine, 2001; p. 200. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Gavrilenko, V.F.; Ladygina, M.E.; Khandobina, L.M. Large Workshop on Plant Physiology, Photosynthesis, Respiration; Higher School: Moscow, Russia, 1975; pp. 133–134. [Google Scholar]
- Pettorelli, N. The Normalized Difference Vegetation Index, 1st ed.; Oxford University Press: New York, NY, USA, 2013; pp. 70–79. [Google Scholar]
- Mazneva, O.V.; Tashmatova, L.V. Optimization of the terms of strawberry in vitro introduction. Contemp. Hortic. 2018, 2, 78–83. [Google Scholar] [CrossRef]
- Turdiyev, T.; Kovalchuk, I.; Mukhitdinova, Z.; Hunger, O.; Frolov, S.; Kabylbekova, B. Micropropagation of berry crops for creation of germplasm cryobanks. Braz. J. Biol. 2023, 84, e266975. [Google Scholar] [CrossRef]
- Muratova, S.A.; Yankovskaya, M.B.; Shornikov, D.G. Characteristics of the establishment of the in vitro culture of fruit and berry plants. Fruit. Grow. Inst. Fruit. Grow. Natl. Acad. Sci. Belarus. Samokhvalovichi 2005, 17, 182–184. [Google Scholar]
- Shukla, S.; Shukla, S.K. Chapter 12—Micropropagation for crop improvement and it's commercialization potential. In Developments in Applied Microbiology and Biotechnology, The Potential of Microbes for a Circular Economy; Radhakrishnan, E.K., Kumar, A., Aswani, R., Eds.; Academic Press: New York, NY, USA, 2024; pp. 271–287. [Google Scholar] [CrossRef]
- Bobodzhanova, H.I.; Kukharchyk, N.V. Analysis of regenerative ability of grape explants depending on time of initiation of in vitro culture and type of explant. Fruit. Grow. 2020, 32, 177–182. (In Russian) [Google Scholar]
- Khoruzheva, T.I.; Borovaya, S.A.; Boginskaya, N.G. Establishing the in vitro culture of and micropropagating edible honeysuckle. Veg. Crops Russ. 2024, 1, 55–60. [Google Scholar] [CrossRef]
- Titarenko, T.E. Optimisation of methods of introduction into the in vitro culture of some berry crops—Black currant (Ribes nigrum L.), red currant (Ribes rubrum L.) and gooseberry (Ribes uva-crispa L.), Practice. In Proceedings of the Biotechnology, Science, Education, Dnipro, Ukraine, 11–13 November 2008. [Google Scholar]
- Terentyeva, O.S.; Skovorodnikov, D.N. Introduction to in vitro culture of gooseberry plants. In Proceedings of the Development of Scientific, Creative and Innovative Activities of Young People, Kurgan State Agricultural Academy, Kurgan, Russia, 20 November 2013. [Google Scholar]
- Yerbolova, L.S.; Ryabushkina, N.A.; Aubakirova, K.P.; Oleichenko, S.N.; Galiakparov, N.N. Microclonal propagation of grapes on different nutrient media. Exp. Biol. 2012, 53, 14–17. [Google Scholar]
- Ramakrishna, N.; Lacey, J.; Smith, J.E. Effect of surface sterilization, fumigation and gamma irradiation on the microflora and germination of barley seeds. Int. J. Food Microbiol. 1991, 13, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Sedlák, J.; Paprštein, F. In vitro establishment and proliferation of red currant cultivar ‘Detvan’. Acta Hortic. 2011, 946, 387–390. [Google Scholar] [CrossRef]
- Lomovskaya, L.V. The propagation pecliarities of the prospective pear selections in vitro. Breed. Fruit. Var. Agron. Pract. 2004, 107–113. [Google Scholar]
- Sokolov, R.S.; Atanassova, B.Y.; Iakimova, E.T. Physiological response of in vitro cultured Magnolia sp. to nutrient medium composition. J. Hortic. Res. 2014, 22, 49–61. [Google Scholar] [CrossRef]
- Brennan, R.M.; Millam, S.; Davidson, D.; Wilshin, A. Establishment of an in vitro Ribes germplasm collection and preliminary investigations into long-term low temperature germplasm storage. Acta Hortic. 1990, 280, 109–112. [Google Scholar] [CrossRef]
- Wainwright, H.; Flegmann, A.W. The micropropagation of gooseberry (Ribes uva-crispa L.). I. Establishment in vitro. J. Hortic. Sci. 1985, 60, 215–221. [Google Scholar] [CrossRef]
- Heo, J.W.; Shin, K.S.; Kim, S.K.; Paek, K.Y. Light quality affects in vitro growth of grape ‘Teleki 5BB’. J. Plant Biol. 2006, 49, 276–280. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. Flowering of Euphorbia millii plantlets in vitro as affected by paclobutrazol, light emitting diodes (LEDs) and sucrose. Acta Hortic. 2006, 764, 169–173. [Google Scholar] [CrossRef]
- Kurilcik, A.; Canova, M.R.; Dapkuniene, S.; Zilinskaite, S.; Kurilcik, G.; Tamulaitis, G.; Duchovskis, P.; Zukauskas, A. In vitro culture of Chrysanthemum plantlets using light emitting diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ. Cult. 2003, 73, 43–52. [Google Scholar] [CrossRef]
- Hung, C.D.; Hong, C.-H.; Kim, S.-K.; Lee, K.-H.; Park, J.-Y.; Nam, M.-W.; Choi, D.-H.; Lee, H.-I. LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol. Plant 2016, 38, 152. [Google Scholar] [CrossRef]
- de Oliveira Prudente, D.; de Souza, L.B.; Paiva, R.; Domiciano, D.; de Carvalho, P.A.; Nery, F.C. Goji berry (Lycium barbarum L.) In vitro multiplication improved by light-emitting diodes (LEDs) and 6-benzylaminopurine. Vitr. Cell. Dev. Biol.-Plant 2019, 55, 258–264. [Google Scholar] [CrossRef]
- Kim, S.-J.; Hahn, E.-J.; Heo, J.-W.; Paek, K.-Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata Chrysanthemum plantlets in vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Su, J.; Liu, B.; Liao, J.; Yang, Z.; Lin, C.; Oka, Y. Coordination of cryptochrome and phytochrome signals in the regulation of plant light responses. Agron. J. 2017, 7, 25. [Google Scholar] [CrossRef]
- Zakurin, A.O.; Shchennikova, A.V.; Kamionskaya, A.M. Artificial-Light Culture in Protected Ground Plant Growing: Photosynthesis, Photomorphogenesis, and Prospects of LED Application. Russ. J. Plant Physiol. 2020, 67, 413–424. [Google Scholar] [CrossRef]
- State standard 59653-2021; Planting Material of Fruit and Berry Cultures. General Specifications. Russian Institute Standardization: Moscow, Russia, 2021; pp. 25–32.
- Bian, Z.-H.; Cheng, R.-F.; Yang, Q.-C.; Wang, J.; Lu, C. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. J. Am. Soc. Hortic. Sci. 2016, 141, 186–195. [Google Scholar] [CrossRef]
- Smith, H.L.; McAusland, L.; Murchie, E.H. Don’t ignore the green light: Exploring diverse roles in plant processes. J. Exp. Bot. 2017, 68, 2099–2110. [Google Scholar] [CrossRef]
- Davis, P.A.; Burns, C. Photobiology in protected horticulture. Food Energy Secur. 2016, 5, 223–238. [Google Scholar] [CrossRef]
- Perea-Brenes, A.; Garcia, J.L.; Cantos, M.; Cotrino, J.; Gonzalez-Elipe, A.R.; Gomez-Ramirez, A.; Lopez Santos, C. Germination and first stages of growth in drought, salinity, and cold stress conditions of plasma-treated barley seeds. ACS Agric. Sci. Technol. 2023, 3, 760–770. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, X.; Zhao, Y.; Li, L.; Wei, J.; Yang, Z.; Chen, X.; Zheng, H.; Zhou, Z.; Tang, W.; et al. Response of chlorosis and growth to light intensity in rice seedlings. ACS Agric. Sci. Technol. 2024, 4, 234–243. [Google Scholar] [CrossRef]
- Sager, J.C.; McFarlane, J.C. Plant growth chamber handbook. Radiation. In Iowa Agriculture and Home Economics Experimental Station Special Report No. 99; Langhans, R.W., Tibbits, T.W., Eds.; Iowa State University Press: Ames, IA, USA, 1997; pp. 1–29. [Google Scholar]
- Wright, S.W.; Shearer, J.D. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton. J. Chromatogr. 1984, 294, 281–295. [Google Scholar] [CrossRef]
- Hamdani, S.; Khan, N.; Perveen, S.; Qu, M.; Jiang, J.G.; Zhu, X. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. Photosynth. Res. 2018, 139, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Kozukue, N.; Tsuchida, H.; Mizuno, S. Effect of light intensity, duration, and photoperiod on chlorophyll and glycoalkaloid production by potato tubers. J. Jpn. Soc. Hortic. Sci. 1993, 62, 669–673. [Google Scholar] [CrossRef]
- Su, N.; Wu, Q.; Shen, Z.; Xia, K.; Cui, J. Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Grow. Reg. 2014, 73, 227–235. [Google Scholar] [CrossRef]
- Aynalem, H.M.; Righetti, T.L.; Reed, B.M. Non-destructive evaluation of in vitro-stored plants: A comparison of visual and image analysis. Vitr. Cell. Dev. Biol.-Plant 2006, 42, 562–567. [Google Scholar] [CrossRef]
- Chávez-Martínez, O.; Monjardin-Armenta, S.A.; Rangel-Peraza, J.G.; Sanhouse-García, A.J.; Mora-Felix, Z.D.; Plata-Rocha, W. Use of different vegetation indices for the evaluation of the kinetics of the cherry tomato (Solanum lycopersicum var. cerasiforme) growth based on multispectral images by UAV. Open Agric. 2024, 9, 20220357. [Google Scholar] [CrossRef]
- Kruczek, A.; Krupa-Małkiewicz, M.; Lachowicz, S.; Oszmiański, J.; Ochmian, I. Health-Promoting Capacities of In Vitro and Cultivated Goji (Lycium chinense Mill.) Fruit and Leaves; Polyphenols, Antimicrobial Activity, Macro- and Microelements and Heavy Metals. Molecules 2020, 25, 5314. [Google Scholar] [CrossRef]
Cultivar | Genetic Origin | Species Origin | Country |
---|---|---|---|
‘Red Lake’ | unknown | R. vulgare Lam. | USA |
‘Englische Grosse Weisse’ | unknown | R. petraeum Wulf. | Netherlands |
‘Marmeladnitsa’ | ‘Rote Spatlese’ × ‘Maarses Prominent’ | R. rubrum L. R. multiflorum Kit. | Russia |
‘Podarok Leta’ | ‘Rote Spatlese’ × ‘Jonkheer Van Tets’ | R. rubrum L. R. multiflorum Kit. | Russia |
Media Components | Nutrient Media (g/L) | |
---|---|---|
MS | LF | |
Macronutrients | ||
NH4 NO3 | 1.65 | 0.80 |
(NH4)2SO4 | - | - |
KNO3 | 1.90 | 1.01 |
KH2PO4 | 0.17 | - |
CaCl2·2H2O | 0.44 | 0.29 |
Ca(NO3)2·4H2O | - | - |
MgSO4·7H2O | 0.37 | 0.37 |
NaH2PO4·H2O | - | 0.14 |
Na2SO4 | - | 0.64 |
Micronutrients | ||
Na2EDTA | 0.75 | 0.34 |
FeSO4·7H2O | 0.56 | 0.28 |
H3BO3 | 0.06 | 0.03 |
MnSO4·4H2O | 0.22 | 0.11 |
ZnSO4·4H2O | 0.09 | 0.06 |
ZnSO4·7H2O | - | - |
KJ | 0.00083 | 0.0004 |
Na2MoO4·2H2O | 0.00025 | 0.000024 |
CuSO4·5H2O | 0.000025 | 0.000025 |
CoCl2·5H2O | 0.000025 | 0.000118 |
Vitamins | ||
Thiamine | 0.0005 | 0.0005 |
Pyridoxine | 0.0005 | 0.0005 |
Nicotinic acid | 0.0005 | 0.0005 |
Ascorbic acid | 0.001 | 0.001 |
Other components | ||
Glycine | 0.002 | 0.002 |
Sucrose | 30.00 | 30.00 |
Agar-Agar | 4.20 | 4.20 |
pH | 5.8–6.0 |
Variant of Irradiation | Photon Flux, µmol Photons m−2 s−1 | Percentage Composition of Light UV:B:G:R:FR | |||||
---|---|---|---|---|---|---|---|
UV-A | Blue (B) | Green (G) | Red (R) | Far Red (FR) | PPFD * (400–700 nm) | ||
W | 0 | 33.7 ± 0.3 | 86.4 ± 1.2 | 81.1 ± 1.5 | 6.8 ± 0.2 | 201.2 ± 3.5 | 0:16:42:39:3 |
RWUV-A | 2.3 ± 0.3 | 28.2 ± 0.2 | 70.5 ± 1.1 | 104.1 ± 1.6 | 7.9 ± 0.6 | 202.7 ± 4.1 | 1:13:33:49:4 |
RW | 0 | 28.1 ± 0.5 | 51.9 ± 1.3 | 121.1 ± 1.2 | 8.6 ± 0.3 | 201.2 ± 3.2 | 0:13:25:58:4 |
Medium | ‘Podarok Leta’ | ‘Marmeladnitsa’ | ‘Englische Grosse | ‘Red Lake’ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weisse’ | ||||||||||||
R0 | R1 | R2 | R0 | R1 | R2 | R0 | R1 | R2 | R0 | R1 | R2 | |
MS + 1 mg·L−1 BAP | 1.2 ± 0.4 a | 1.3 ± 0.3 a | 1.9 ± 0.5 a | 1.2 ± 0.4 a | 1.1 ± 0.3 a | 1.2 ± 0.4 a | 1.3 ± 0.5 a | 1.1 ± 0.3 a | 1.2 ± 0.4 a | 1.1 ± 0.3 a | 1.1 ± 0.3 a | 1.1 ± 0.4 a |
LF + 1 mg·L−1 BAP | 2.2 ± 0.6 b | 1.4 ± 0.6 b | 1.4 ± 0.6 a | 1.2 ± 0.4 a | 1.1 ± 0.3 a | 1.2 ± 0.3 a | 1.2 ± 0.3 a | 1.2 ± 0.3 a | 1.2 ± 0.4 a | 1.1 ± 0.3 a | 1.1 ± 0.3 a | 1.1 ± 0.3 a |
Cultivar | Leaf N0, pcs | Micro Shoot H0, cm |
---|---|---|
‘Englische Grosse Weisse’ | 6.50 ± 0.8 a | 2.45 ± 0.5 a |
‘Podarok Leta’ | 4.42 ± 0.6 b | 3.10 ± 0.3 b |
‘Red Lake’ | 5.00 ± 0.5 c | 3.33 ± 0.2 c |
Cultivar | Leaf N1, pcs | Micro Shoot H1, cm | ||||
---|---|---|---|---|---|---|
W | RWUV-A | RW | W | RWUV-A | RW | |
‘Englische Grosse Weisse’ | 14.00 ± 1.4 a | 15.33 ± 1.4 a | 20.17 ± 1.5 c | 22.12 ± 1.8 a | 24.38 ± 1.1 b | 16.68 ± 1.4 c |
‘Podarok Leta’ | 10.50 ± 1.1 a | 11.17 ± 0.7 a | 11.17 ± 1.2 a | 21.67 ± 1.1 a | 17.77 ± 0.8 b | 13.58 ± 1.6 c |
‘Red Lake’ | 12.17 ± 1.3 a | 14.67 ± 1.0 b | 14.17 ± 1.3 c | 20.58 ± 1.2 a | 21.47 ± 1.0 a | 11.85 ± 1.1 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panfilova, O.; Ryago, N.; Ondrasek, G.; Knyazeva, I.V.; Kahramanoğlu, I.; Vershinina, O.; Tsoy, M.; Izmailov, A.Y.; Dorokhov, A.S. Optimizing Microclonal Propagation of Red Currant Cultivars: The Role of Nutrient Media, Sterilizers, and LED Lighting in Plant Adaptation. Horticulturae 2025, 11, 149. https://doi.org/10.3390/horticulturae11020149
Panfilova O, Ryago N, Ondrasek G, Knyazeva IV, Kahramanoğlu I, Vershinina O, Tsoy M, Izmailov AY, Dorokhov AS. Optimizing Microclonal Propagation of Red Currant Cultivars: The Role of Nutrient Media, Sterilizers, and LED Lighting in Plant Adaptation. Horticulturae. 2025; 11(2):149. https://doi.org/10.3390/horticulturae11020149
Chicago/Turabian StylePanfilova, Olga, Nelli Ryago, Gabrijel Ondrasek, Inna V. Knyazeva, Ibrahim Kahramanoğlu, Oksana Vershinina, Mikhail Tsoy, Andrey Yu Izmailov, and Alexey S. Dorokhov. 2025. "Optimizing Microclonal Propagation of Red Currant Cultivars: The Role of Nutrient Media, Sterilizers, and LED Lighting in Plant Adaptation" Horticulturae 11, no. 2: 149. https://doi.org/10.3390/horticulturae11020149
APA StylePanfilova, O., Ryago, N., Ondrasek, G., Knyazeva, I. V., Kahramanoğlu, I., Vershinina, O., Tsoy, M., Izmailov, A. Y., & Dorokhov, A. S. (2025). Optimizing Microclonal Propagation of Red Currant Cultivars: The Role of Nutrient Media, Sterilizers, and LED Lighting in Plant Adaptation. Horticulturae, 11(2), 149. https://doi.org/10.3390/horticulturae11020149