Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Description of Treatments and Experimental Design
2.3. Plant Sampling
2.4. Analysis of Plant Material
2.4.1. Leaf Area
2.4.2. Relative Water Content
2.4.3. Electrolyte Leakage
2.4.4. Determination of Oxidative Markers (MDA, H2O2, and O2−)
2.4.5. Determination of Enzyme Activities
2.4.6. Determination of Ascorbate (AsA) and Glutathione (GSH) Forms
2.4.7. Determination of Total Phenols, Flavonoids, and Anthocyanins
2.4.8. Antioxidant Capacity: FRAP and TEAC Assays
2.4.9. Determination of Soluble Sugars and Proline Concentration
2.4.10. Photosynthetic Pigment Concentration
2.4.11. Chlorophyll a Fluorescence Analysis
2.4.12. Gas Exchange Parameters Analysis
2.5. Statistical Analysis
3. Results
3.1. Growth-Related Parameters
3.2. Stress-Related Parameters
3.3. Antioxidant Response
3.4. Osmoprotector Concentration
3.5. Photosynthesis Performance
4. Discussion
Plant Growth Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kørup, K.; Laerke, P.E.; Baadsgaard, H.; Andersen, M.N.; Kristensen, K.; Münnich, C.; Didion, T.; Jensen, E.S.; Mårtensson, L.-M.; Jørgensen, U. Biomass Production and Water Use Efficiency in Perennial Grasses during and after Drought Stress. GCB Bioenergy 2018, 10, 12–27. [Google Scholar] [CrossRef]
- Loubser, J.; Hills, P. The Application of a Commercially Available Citrus-Based Extract Mitigates Moderate NaCl-Stress in Arabidopsis thaliana Plants. Plants 2020, 9, 1010. [Google Scholar] [CrossRef]
- Khalid, M.F.; Huda, S.; Yong, M.; Li, L.; Li, L.; Chen, Z.-H.; Ahmed, T. Alleviation of Drought and Salt Stress in Vegetables: Crop Responses and Mitigation Strategies. Plant Growth Regul. 2023, 99, 177–194. [Google Scholar] [CrossRef]
- Abd El-Ghany, M.F.; Attia, M. Effect of Exopolysaccharide-Producing Bacteria and Melatonin on Faba Bean Production in Saline and Non-Saline Soil. Agronomy 2020, 10, 316. [Google Scholar] [CrossRef]
- Jordan-Meille, L.; Martineau, E.; Bornot, Y.; Lavres, J.; Abreu-Junior, C.; Domec, J.-C. How Does Water-Stressed Corn Respond to Potassium Nutrition? A Shoot-Root Scale Approach Study under Controlled Conditions. Agriculture 2018, 8, 180. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Khan, A.H.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought Tolerance Strategies in Plants: A Mechanistic Approach. J. Plant Growth Regul. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Nxele, X.; Klein, A.; Ndimba, B.K. Drought and Salinity Stress Alters ROS Accumulation, Water Retention, and Osmolyte Content in Sorghum Plants. S. Afr. J. Bot. 2017, 108, 261–266. [Google Scholar] [CrossRef]
- Ji, T.; Li, S.; Li, L.; Huang, M.; Wang, X.; Wei, M.; Shi, Q.; Li, Y.; Gong, B.; Yang, F. Cucumber Phospholipase D Alpha Gene Overexpression in Tobacco Enhanced Drought Stress Tolerance by Regulating Stomatal Closure and Lipid Peroxidation. BMC Plant Biol. 2018, 18, 355. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.; Ali, A.; Siddiqui, Y.; Supramaniam, C.V. Plant Bio-Stimulant: Prospective, Safe and Natural Resources. J. Soil Sci. Plant Nutr. 2022, 22, 2570–2586. [Google Scholar] [CrossRef]
- Khalid, F.; Rasheed, Y.; Asif, K.; Ashraf, H.; Maqsood, M.F.; Shahbaz, M.; Zulfiqar, U.; Sardar, R.; Haider, F.U. Plant Biostimulants: Mechanisms and Applications for Enhancing Plant Resilience to Abiotic Stresses. J. Soil Sci. Plant Nutr. 2024, 24, 6641–6690. [Google Scholar] [CrossRef]
- El Khattabi, O.; El Hasnaoui, S.; Toura, M.; Henkrar, F.; Collin, B.; Levard, C.; Colin, F.; Merghoub, N.; Smouni, A.; Fahr, M. Seaweed Extracts as Promising Biostimulants for Enhancing Lead Tolerance and Accumulation in Tomato (Solanum lycopersicum). J. Appl. Phycol. 2023, 35, 459–469. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple. Horticulturae 2022, 9, 32. [Google Scholar] [CrossRef]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Chojnacka, K.; Saeid, A. Plant Growth Biostimulants, Dietary Feed Supplements and Cosmetics Formulated with Supercritical CO2 Algal Extracts. Molecules 2017, 22, 66. [Google Scholar] [CrossRef]
- Caruso, G.; El-Nakhel, C.; Rouphael, Y.; Comite, E.; Lombardi, N.; Cuciniello, A.; Woo, S.L. Diplotaxis tenuifolia (L.) DC. Yield and Quality as Influenced by Cropping Season, Protein Hydrolysates, and Trichoderma Applications. Plants 2020, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Francesca, S.; Arena, C.; Hay Mele, B.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The Use of a Plant-Based Biostimulant Improves Plant Performances and Fruit Quality in Tomato Plants Grown at Elevated Temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef]
- Lucini, L.; Miras-Moreno, B.; Rouphael, Y.; Cardarelli, M.; Colla, G. Combining Molecular Weight Fractionation and Metabolomics to Elucidate the Bioactivity of Vegetal Protein Hydrolysates in Tomato Plants. Front. Plant Sci. 2020, 11, 527218. [Google Scholar] [CrossRef]
- Ziaei, M.; Pazoki, A. Foliar-Applied Seaweed Extract Improves Yield of Common Bean (Phaseolus vulgaris L.) Cultivars Through Changes in Biochemical and Fatty Acid Profile Under Irrigation Regimes. J. Soil Sci. Plant Nutr. 2022, 22, 2969–2979. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Rouphael, Y.; Colla, G.; Colantoni, A.; Cardarelli, M. Biostimulants as a Tool for Improving Environmental Sustainability of Greenhouse Vegetable Crops. Sustainability 2020, 12, 5101. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; El-Ansary, D.O.; Mattar, M.A. Effects of Water Stress and Modern Biostimulants on Growth and Quality Characteristics of Mint. Agronomy 2019, 10, 6. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Bioregulators: Unlocking Their Potential Role in Regulation of the Plant Oxidative Defense System. Plant Mol. Biol. 2021, 105, 11–41. [Google Scholar] [CrossRef]
- Rodrigues de Queiroz, A.; Hines, C.; Brown, J.; Sahay, S.; Vijayan, J.; Stone, J.M.; Bickford, N.; Wuellner, M.; Glowacka, K.; Buan, N.R.; et al. The Effects of Exogenously Applied Antioxidants on Plant Growth and Resilience. Phytochem. Rev. 2023, 22, 407–447. [Google Scholar] [CrossRef]
- Velasco-Clares, D.; Navarro-León, E.; Atero-Calvo, S.; Ruiz, J.M.; Blasco, B. Is the Application of Bioactive Anti-Stress Substances with a Seaweed-Derived Biostimulant Effective under Adequate Growth Conditions? Physiol. Plant 2024, 176, e14193. [Google Scholar] [CrossRef]
- Barrs, H.; Weatherley, P. A Re-Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
- Soloklui, A.A.G.; Ershadi, A.; Fallahi, E. Evaluation of Cold Hardiness in Seven Iranian Commercial Pomegranate (Punica granatum L.) Cultivars. HortScience 2012, 47, 1821–1825. [Google Scholar] [CrossRef]
- Fu, J.; Huang, B. Involvement of Antioxidants and Lipid Peroxidation in the Adaptation of Two Cool-Season Grasses to Localized Drought Stress. Environ. Exp. Bot. 2001, 45, 105–114. [Google Scholar] [CrossRef]
- Mukherjee, S.P.; Choudhuri, M.A. Implications of Water Stress-Induced Changes in the Levels of Endogenous Ascorbic Acid and Hydrogen Peroxide in Vigna Seedlings. Physiol. Plant 1983, 58, 166–170. [Google Scholar] [CrossRef]
- Barrameda-Medina, Y.; Montesinos-Pereira, D.; Romero, L.; Blasco, B.; Ruiz, J.M. Role of GSH Homeostasis under Zn Toxicity in Plants with Different Zn Tolerance. Plant Sci. 2014, 227, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.V.; Paliyath, G.; Ormrod, D.P. Ultraviolet-B- and Ozone-Induced Biochemical Changes in Antioxidant Enzymes of Arabidopsis thaliana. Plant Physiol. 1996, 110, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Badiani, M.; Biasi, M.; Cologna, M.; Artemi, F. Catalase, Peroxidase and Superoxide Dismutase Activities in Seedlings Submitted to Increasing Water Deficit. Agrochimica 1990, 34, 90–102. [Google Scholar]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Law, M.Y.; Charles, S.A.; Halliwell, B. Glutathione and Ascorbic Acid in Spinach (Spinacia oleracea) Chloroplasts. The Effect of Hydrogen Peroxide and of Paraquat. Biochem. J. 1983, 210, 899–903. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Simultaneous Measurement of Foliar Glutathione, γ-Glutamylcysteine, and Amino Acids by High-Performance Liquid Chromatography: Comparison with Two Other Assay Methods for Glutathione. Anal. Biochem. 1998, 264, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Rivero, R.M.; Ruiz, J.M.; García, P.C.; López-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to Cold and Heat Stress: Accumulation of Phenolic Compounds in Tomato and Watermelon Plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant Capacity of Phenolic Phytochemicals from Various Cultivars of Plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Einerich, D.W.; Sánchez-Díaz, M. Water Stress Induced Changes in Concentrations of Proline and Total Soluble Sugars in Nodulated Alfalfa (Medicago sativa) Plants. Physiol. Plant 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Strasser, R.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In Probing Photosynthesis: Mechanism, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor & Francis: London, UK, 2000; pp. 443–480. [Google Scholar]
- Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P.; Bayat, H. Effect of Water Deficit Stress on Seedling Biomass and Physio-Chemical Characteristics in Different Species of Wheat Possessing the D Genome. Agronomy 2019, 9, 522. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Pan, Y.; Pang, J.; Zhang, X.; Fan, J.; Zhang, Y. The Influence of Nitrogen Availability on Anatomical and Physiological Responses of Populus alba × P. glandulosa to Drought Stress. BMC Plant Biol. 2019, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling Biomass Production and Yield of Horticultural Crops: A Review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Balestrini, R.; Chitarra, W.; Antoniou, C.; Ruocco, M.; Fotopoulos, V. Improvement of Plant Performance under Water Deficit with the Employment of Biological and Chemical Priming Agents. J. Agric. Sci. 2018, 156, 680–688. [Google Scholar] [CrossRef]
- Jiménez-Arias, D.; Bonardd, S.; Morales-Sierra, S.; Almeida Pinheiro de Carvalho, M.Â.; Díaz Díaz, D. Chitosan-Enclosed Menadione Sodium Bisulfite as an Environmentally Friendly Alternative to Enhance Biostimulant Properties against Drought. J. Agric. Food Chem. 2023, 71, 3192–3200. [Google Scholar] [CrossRef] [PubMed]
- Askari, S.H.; Ashraf, M.A.; Ali, S.; Rizwan, M.; Rasheed, R. Menadione Sodium Bisulfite Alleviated Chromium Effects on Wheat by Regulating Oxidative Defense, Chromium Speciation, and Ion Homeostasis. Environ. Sci. Pollut. Res. 2021, 28, 36205–36225. [Google Scholar] [CrossRef]
- Ibrahim, A.E.-A.; Abd El Mageed, T.; Abohamid, Y.; Abdallah, H.; El-Saadony, M.; AbuQamar, S.; El-Tarabily, K.; Abdou, N. Exogenously Applied Proline Enhances Morph-Physiological Responses and Yield of Drought-Stressed Maize Plants Grown Under Different Irrigation Systems. Front. Plant Sci. 2022, 13, 897027. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic Acid-Induced Abiotic Stress Tolerance and Underlying Mechanisms in Plants. Front. Plant Sci. 2015, 6, 135066. [Google Scholar] [CrossRef] [PubMed]
- Pushpam, A.; Mini, M.; Amutha, S. Assessing Biochemical Changes in Exogenous Application of Osmoprotectants in Amelioration of Water Stress in Black Gram (Vigna mungo L.). Int. J. Chem. Stud. 2020, 8, 2467–2472. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of Proline under Changing Environments. Plant Signal Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- İkiz, B.; Dasgan, H.Y.; Balik, S.; Kusvuran, S.; Gruda, N.S. The Use of Biostimulants as a Key to Sustainable Hydroponic Lettuce Farming under Saline Water Stress. BMC Plant Biol. 2024, 24, 808. [Google Scholar] [CrossRef]
- Sattar, A.; El-Yazied, A.A.; Alharbi, B.M.; El-Gawad, H.G.A.; Abbas, Z.K.; El-Absy, K.M.; Mahmoud, S.F.; Althaqafi, M.M.; Darwish, D.B.E.; Al-Harbi, N.A.; et al. Application of Biostimulants Alleviated Drought Stress in Sugar Beet (Beta vulgaris L.) by Improving Oxidative Defense System, Osmolytes Accumulation and Root Yield. J. Soil Sci. Plant Nutr. 2024, 24, 7167–7183. [Google Scholar] [CrossRef]
- Turan, M.; Ekinci, M.; Argin, S.; Brinza, M.; Yildirim, E. Drought Stress Amelioration in Tomato (Solanum lycopersicum L.) Seedlings by Biostimulant as Regenerative Agent. Front. Plant Sci. 2023, 14, 1211210. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The Role of Biostimulants and Bioeffectors as Alleviators of Abiotic Stress in Crop Plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Agliassa, C.; Mannino, G.; Molino, D.; Cavalletto, S.; Contartese, V.; Bertea, C.M.; Secchi, F. A New Protein Hydrolysate-Based Biostimulant Applied by Fertigation Promotes Relief from Drought Stress in Capsicum annuum L. Plant Physiol. Biochem. 2021, 166, 1076–1086. [Google Scholar] [CrossRef]
- Arora, A.; Sairam, R.K.; Srivastava, G.C. Oxidative Stress and Antioxidative System in Plants. Curr. Sci. 2002, 82, 1227–1238. [Google Scholar]
- Corpas, F.J.; González-Gordo, S.; Palma, J.M. Plant Peroxisomes: A Factory of Reactive Species. Front. Plant Sci. 2020, 11, 551823. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Aziz, U.; Alsahli, A.A.; Alyemeni, M.N.; Ahmad, P. Influence of Exogenous Salicylic Acid and Nitric Oxide on Growth, Photosynthesis, and Ascorbate-Glutathione Cycle in Salt Stressed Vigna angularis. Biomolecules 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Havaux, M. Carotenoids as Membrane Stabilizers in Chloroplasts. Trends Plant Sci. 1998, 3, 147–151. [Google Scholar] [CrossRef]
- Mayer, A.; Harel, E. Phenoloxidases and Their Significance in Fruit and Vegetables. Food Enzymol 1991, 1, 373–398. [Google Scholar]
- He, M.; He, C.-Q.; Ding, N.-Z. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Front. Plant Sci. 2018, 9, 419713. [Google Scholar] [CrossRef]
- Navarro-León, E.; López-Moreno, F.J.; de la Torre-González, A.; Ruiz, J.M.; Esposito, S.; Blasco, B. Study of Salt-Stress Tolerance and Defensive Mechanisms in Brassica rapa CAX1a TILLING Mutants. Environ. Exp. Bot. 2020, 175, 104061. [Google Scholar] [CrossRef]
- Brunetti, C.; Gori, A.; Marino, G.; Latini, P.; Sobolev, A.P.; Nardini, A.; Haworth, M.; Giovannelli, A.; Capitani, D.; Loreto, F.; et al. Dynamic Changes in ABA Content in Water-Stressed Populus nigra: Effects on Carbon Fixation and Soluble Carbohydrates. Ann. Bot. 2019, 124, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Abdeshahian, M.; Nabipour, M.; Meskarbashee, M. Chlorophyll Fluorescence as Criterion for the Diagnosis Salt Stress in Wheat (Triticum aestivum) Plants. Int. J. Chem. Biol. Eng. 2010, 4, 184–186. [Google Scholar]
- Cáceres-Cevallos, G.J.; Albacete-Moreno, A.A.; Ferreres, F.; Gil-Izquierdo, Á.; Jordán, M.J. Evaluation of the Physiological Parameters in Lavandula latifolia Medik. under Water Deficit for Preselection of Elite Drought-Resistant Plants. Ind. Crops Prod. 2023, 199, 116742. [Google Scholar] [CrossRef]
Fresh Weight (g Plant−1) | Dry Weight (g Plant−1) | Leaf AREA (cm2) | ||
---|---|---|---|---|
Priming | Control | 29.56 ± 1.43 a | 2.72 ± 0.13 a | 314.79 ± 4.82 a |
WS | 16.34 ± 0.67 c | 1.13 ± 0.04 c | 178.50 ± 17.78 c | |
WS + Cytolan® | 22.42 ± 0.76 b | 1.90 ± 0.02 b | 235.00 ± 5.09 b | |
p-value | *** | *** | *** | |
LSD0.05 | 1.20 | 0.11 | 15.03 | |
Buffering | Control | 29.56 ± 1.43 a | 2.72 ± 0.13 a | 314.79 ± 4.82 a |
WS | 16.34 ± 0.67 c | 1.13 ± 0.04 c | 178.50 ± 17.78 c | |
WS + Cytolan® | 23.43 ± 0.62 b | 1.99 ± 0.07 b | 250.23 ± 7.90 b | |
p-value | *** | *** | *** | |
LSD0.05 | 1.25 | 0.12 | 20.05 | |
Detoxifying | Control | 35.94 ± 0.53 a | 2.79 ± 0.08 a | 409.65 ± 6.27 a |
WS | 28.85 ± 1.73 b | 2.05 ± 0.0 b | 345.65 ± 27.48 b | |
WS + Cytolan® | 41.93 ± 1.49 a | 2.70 ± 0.06 a | 395.47 ± 7.19 a | |
p-value | ** | *** | * | |
LSD0.05 | 1.59 | 0.15 | 25.10 |
LWC (%) | EL (%) | MDA (µMg−1 FW) | H2O2 (µg g−1 FW) | O2− (µg g−1 FW) | ||
---|---|---|---|---|---|---|
Priming | Control | 87.80 ± 0.38 a | 10.32 ± 0.21 ab | 1.48 ± 0.16 c | 16.19 ± 0.97 c | 4.50 ± 0.18 c |
WS | 56.70 ± 0.45 c | 31.11 ± 1.44 c | 5.37 ± 0.15 a | 39.98 ± 1.78 a | 7.99 ± 0.22 a | |
WS + Cytolan® | 73.02 ± 0.90 b | 16.88 ± 0.19 b | 3.54 ± 0.15 b | 24.95 ± 1.16 b | 6.80 ± 0.30 b | |
p-value | *** | *** | *** | *** | ** | |
LSD0.05 | 5.03 | 2.11 | 0.52 | 4.90 | 0.34 | |
Buffering | Control | 87.80 ± 0.38 a | 10.32 ± 0.21 c | 1.48 ± 0.16 c | 16.19 ± 0.97 c | 4.50 ± 0.18 c |
WS | 56.70 ± 0.45 c | 31.11 ± 1.44 a | 5.37 ± 0.15 a | 39.98 ± 1.78 a | 7.99 ± 0.22 a | |
WS + Cytolan® | 71.55 ± 0.42 b | 16.74 ± 0.49 b | 3.55 ± 0.14 b | 23.55 ± 1.12 b | 6.34 ± 0.26 b | |
p-value | *** | *** | *** | *** | *** | |
LSD0.05 | 5.55 | 2.24 | 0.55 | 4.32 | 0.41 | |
Detoxifying | Control | 81.60 ± 1.45 a | 12.74 ± 0.42 b | 1.47 ± 0.05 c | 11.64 ± 1.23 b | 3.40 ± 0.13 b |
WS | 71.96 ± 1.34 b | 22.04 ± 0.90 a | 3.74 ± 0.17 a | 18.54 ± 0.53 a | 6.73 ± 0.35 a | |
WS + Cytolan® | 79.05 ± 3.33 a | 13.28 ± 0.57 b | 2.14 ± 0.19 b | 11.83 ± 1.57 b | 3.96 ± 0.23 b | |
p-value | ** | ** | *** | ** | NS | |
LSD0.05 | 6.21 | 2.59 | 0.64 | 4.95 | 1.95 |
Total Phenols (mg g−1 FW) | Flavonoids (mg g−1 FW) | Anthocyanins (µg g−1 FW) | FRAP (mg g−1 FW) | TEAC (mg g−1 FW) | ||
---|---|---|---|---|---|---|
Priming | Control | 0.76 ± 0.02 c | 0.17 ± 0.01 c | 34.09 ± 1.22 c | 3.47 ± 0.07 c | 3.29 ± 0.04 c |
WS | 1.09 ± 0.05 b | 0.24 ± 0.01 b | 47.79 ± 5.53 b | 4.53 ± 0.01 b | 5.35 ± 0.07 b | |
WS + Cytolan® | 1.63 ± 0.09 a | 0.36 ± 0.12 a | 54.90 ± 1.27 a | 5.73 ± 0.03 a | 6.34 ± 0.02 a | |
p-value | *** | *** | *** | *** | *** | |
LSD0.05 | 0.15 | 0.03 | 4.87 | 0.28 | 0.17 | |
Buffering | Control | 0.76 ± 0.02 c | 0.17 ± 0.01 c | 34.09 ± 1.22 c | 3.47 ± 0.07 c | 3.29 ± 0.04 c |
WS | 1.09 ± 0.05 b | 0.24 ± 0.01 b | 47.79 ± 5.53 b | 4.53 ± 0.01 b | 5.35 ± 0.07 b | |
WS + Cytolan® | 1.58 ± 0.01 a | 0.33 ± 0.01 a | 54.90 ± 1.54 a | 5.47 ± 0.17 a | 6.46 ± 0.03 a | |
p-value | *** | *** | *** | *** | *** | |
LSD0.05 | 0.18 | 0.05 | 4.83 | 0.29 | 0.19 | |
Detoxifying | Control | 1.67 ± 0.03 b | 0.54 ± 0.12 b | 73.36 ± 1.47 b | 3.68 ± 0.12 a | 2.68 ± 0.11 b |
WS | 1.90 ± 0.03 a | 0.70 ± 0.05 a | 81.30 ± 3.46 a | 4.22 ± 0.24 b | 3.23 ± 0.06 a | |
WS + Cytolan® | 1.68 ± 0.07 b | 0.47 ± 0.04 b | 74.36 ± 1.28 b | 3.34 ± 0.05 a | 2.53 ± 0.09 b | |
p-value | * | * | * | ** | * | |
LSD0.05 | 0.20 | 0.09 | 6.43 | 0.49 | 0.27 |
Soluble Sugar (mg g−1 FW) | Proline (µg g−1 FW) | Glycine Betaine (mM g−1 FW) | ||
---|---|---|---|---|
Priming | Control | 7.58 ± 0.48 c | 53.76 ± 7.42 c | 5.15 ± 0.23 b |
WS | 11.94 ± 0.43 a | 154.80 ± 20.31 a | 6.39 ± 0.11 a | |
WS + Cytolan® | 8.82 ± 0.42 b | 76.35 ± 10.41 b | 5.13 ± 0.25 b | |
p-value | *** | *** | * | |
LSD0.05 | 1.01 | 10.05 | 0.34 | |
Buffering | Control | 7.58 ± 0.48 c | 53.76 ± 7.42 c | 5.15 ± 0.23 b |
WS | 11.94 ± 0.43 a | 154.80 ± 20.31 a | 6.39 ± 0.11 a | |
WS + Cytolan® | 8.82 ± 0.22 b | 70.76 ± 4.22 b | 5.15 ± 0.32 b | |
p-value | *** | *** | * | |
LSD0.05 | 1.15 | 15.33 | 0.46 | |
Detoxifying | Control | 8.71 ± 0.56 b | 134.02 ± 10.44 b | 3.60 ± 0.21 b |
WS | 9.80 ± 0.45 a | 244.22 ± 31.82 a | 5.28 ± 0.21 a | |
WS + Cytolan® | 8.60 ± 0.27 b | 147.69 ± 16.60 b | 3.52 ± 0.21 b | |
p-value | * | * | * | |
LSD0.05 | 1.04 | 20.56 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco-Clares, D.; Navarro-León, E.; Izquierdo-Ramos, M.J.; Blasco, B.; Ruiz, J.M. Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages. Horticulturae 2025, 11, 157. https://doi.org/10.3390/horticulturae11020157
Velasco-Clares D, Navarro-León E, Izquierdo-Ramos MJ, Blasco B, Ruiz JM. Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages. Horticulturae. 2025; 11(2):157. https://doi.org/10.3390/horticulturae11020157
Chicago/Turabian StyleVelasco-Clares, Daniel, Eloy Navarro-León, María José Izquierdo-Ramos, Begoña Blasco, and Juan Manuel Ruiz. 2025. "Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages" Horticulturae 11, no. 2: 157. https://doi.org/10.3390/horticulturae11020157
APA StyleVelasco-Clares, D., Navarro-León, E., Izquierdo-Ramos, M. J., Blasco, B., & Ruiz, J. M. (2025). Enhancing Drought Tolerance in Lettuce: The Efficacy of the Seaweed-Derived Biostimulant Cytolan® Stress Applied at Different Growth Stages. Horticulturae, 11(2), 157. https://doi.org/10.3390/horticulturae11020157