Encapsulation of Shoot Tips and Nodal Segments for in Vitro Storage of “Kober 5BB” Grapevine Rootstock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Media and Conditions
2.2. Encapsulation Procedure and Storage
2.3. Data Analysis
3. Results
3.1. Shoot Regrowth from Beads
3.2. Storage in Slow-Growth Conditions
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Murashige, T. Plant cell and organ cultures as horticultural practices. Acta Hortic. 1977, 78, 17–30. [Google Scholar]
- Aitkens-Christie, J.; Kozai, T.; Takayama, S. Automation in plant tissue culture: General introduction and overview. In Automation and Environmental Control in Plant Tissue Culture; Aitken-Christie, J., Kozai, T., Smith, M.A.L., Eds.; Kluwer Academic Publication: Dordrecht, The Netherlands, 1995; pp. 1–18. [Google Scholar]
- Standardi, A.; Piccioni, E. Recent perspectives on the synthetic seed technology using non-embryogenic vitro-derived explants. Int. J. Plant Sci. 1998, 159, 968–978. [Google Scholar]
- Dereuddre, J.; Blandin, S.; Hassen, N. Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 1. Effects of preculture. CryoLetters 1991, 12, 125–134. [Google Scholar]
- Sakai, A.; Engelmann, F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters 2007, 28, 151–172. [Google Scholar] [PubMed]
- Fabbri, A.; Ganino, T.; Lambardi, M.; Nisi, R. Crioconservazione di gemme di portinnesto ‘Kober’ 5BB (Vitis berlandieri × Vitis riparia): Aspetti anatomici. Ital. Hortus 2007, 14, 82–86. [Google Scholar]
- Benelli, C.; de Carlo, A.; Engelmann, F. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [PubMed]
- Lambardi, M.; Benelli, C.; Ozudogru, E.A.; Ozden-Tokatli, Y. Synthetic seed technology in ornamental plants. Floric. Ornam. Plant Biotechnol. Adv. Top. Issues 2006, 2, 347–354. [Google Scholar]
- Piccioni, E.; Standardi, A. Encapsulation of micropropagated buds of six woody species. Plant Cell Tissue Org. Cult. 1995, 42, 221–226. [Google Scholar] [CrossRef]
- Micheli, M.; Hafiz, I.A.; Standardi, A. Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo) II. Effects of storage on capsule and derived shoots performance. Sci. Hortic. 2007, 113, 286–292. [Google Scholar] [CrossRef]
- Rai, M.K.; Asthana, P.; Singh, S.K.; Jaiswal, V.S.; Jaiswal, U. The encapsulation technology in fruit plants—A review. Biotechnol. Adv. 2009, 27, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.M.; Murthy, K.S.R.; Pullaiah, T. Synthetic seeds: A review in agriculture and forestry. Afr. J. Biotechnol. 2012, 11, 14254–14275. [Google Scholar]
- Kulus, D.; Zalewska, M. In vitro plant recovery from alginate-encapsulated Chrysanthemum × grandiflorum (Ramat.) Kitam shoot tips. Propag. Ornam. Plants 2014, 14, 3–12. [Google Scholar]
- Nower, A.A.; Ali, E.A.; Rizkalla, A. Synthetic seeds of pear (Pyrus communis L.) rootstock storage in vitro. Aust. J. Basic Appl. Sci. 2007, 1, 262–270. [Google Scholar]
- Benelli, C.; Ozudogru, E.A.; Lambardi, M.; Dradi, G. In vitro conservation ornamental plants by slow growth storage. Acta Hortic. 2012, 961, 89–93. [Google Scholar] [CrossRef]
- Cordeiro, S.Z.; Simas, N.K.; Henriques, A.B.; Sato, A. In vitro conservation of Mandevilla moricandiana (Apocynaceae): Short-term storage and encapsulation–dehydration of nodal segments. In Vitro Cell Dev. Biol. Plant 2014, 50, 326–336. [Google Scholar] [CrossRef]
- Grout, B.W.W. In vitro conservation of germplasm. In Plant Tissue Culture: Application and Limitations; Bhojwani, S.S., Ed.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 394–411. [Google Scholar]
- Ikhlaq, M.M.; Hafiz, I.A.; Micheli, M.; Ahmad, T.; Abbasi, N.A.; Standardi, A. In vitro storage of synthetic seeds: Effect of different storage conditions and intervals on their conversion ability. Afr. J. Biotechnol. 2010, 9, 5712–5721. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Standardi, A.; Micheli, M. Encapsulation of in vitro-derived explants: An innovative tool for nurseries. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Lambardi, M., Ozudogru, E.A., Jain, S.M., Eds.; Humana Press: New York, NY, USA, 2013; pp. 397–418. [Google Scholar]
- Sharma, S.; Shahzad, A.; Teixeira da Silva, J.A. Synseed technology—A complete synthesis. Biotechnol. Adv. 2013, 31, 186–207. [Google Scholar] [CrossRef] [PubMed]
- Standardi, A. Encapsulation: Promising technology for nurseries and plant tissue laboratories. AgroLife Sci. J. 2012, 1, 48–54. [Google Scholar]
- Sicurani, M.; Piccioni, E.; Standardi, A. Micropropagation and preparation of synthetic seed in M.26 apple rootstock I: Attempts towards saving labor in the production of adventitious shoot tips suitable for encapsulation. Plant Cell Tissue Org. Cult. 2001, 66, 207–216. [Google Scholar]
- Lisek, A.; Orlikowska, T. In vitro storage of strawberry and raspberry in calcium-alginate beads at 4 °C. Plant Cell Tissue Org. Cult. 2004, 78, 167–172. [Google Scholar] [CrossRef]
- Naik, S.K.; Chand, P.K. Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci. Hortic. 2006, 108, 247–252. [Google Scholar] [CrossRef]
- Germanà, M.A.; Micheli, M.; Pulcini, L.; Standardi, A. Perspective of the encapsulation technology in the nursery activity of Citrus. Caryologia 2007, 60, 192–195. [Google Scholar]
- Daud, N.; Taha, R.M.; Hasbullah, N.A. Artificial seed production from encapsulated micro shoots of Saintpaulia ionantha Wendl. (African Violet). J. Appl. Sci. 2008, 8, 4662–4667. [Google Scholar]
- Sundararaj, S.G.; Agrawal, A.; Tyagi, R.K. Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci. Hortic. 2010, 125, 761–766. [Google Scholar]
- Nor Asmah, H.; Nor Hasnida, H.; Nashatul Zaimah, N.A.; Noraliza, A.; Nadiah Salmi, N. Synthetic seed technology for encapsulation and regrowth of in vitro-derived Acacia hybrid shoot and axillary buds. Afr. J. Biotechnol. 2011, 10, 7820–7824. [Google Scholar]
- Ozden-Tokatli, Y.; de Carlo, A.; Gumusel, F.; Pignattelli, S.; Lambardi, M. Development of encapsulation techniques for the production and conservation of synthetic seeds in ornamental plants. Propag. Ornam. Plants 2008, 8, 17–22. [Google Scholar]
- Singh, S.K.; Rai, M.K.; Asthana, P.; Sahoo, L. Alginate-encapsulation of nodal segments for propagation, short-term conservation and germplasm exchange and distribution of Eclipta alba (L.). Acta Physiol. Plant 2010, 32, 607–610. [Google Scholar] [CrossRef]
- Gonzalez-Arnao, M.T.; Engelmann, F. Cryopreservation of plant germplasm using the encapsulation-dehydration technique: Review and case study on sugarcane. CryoLetters 2006, 27, 155–168. [Google Scholar] [PubMed]
- Engelmann, F.; Arnao, M.T.G.; Wu, Y.; Escobar, R. Development of encapsulation dehydration. In Plant Cryopreservation: A Practical Guide; Reed, B., Ed.; Springer: New York, NY, USA, 2008; pp. 59–75. [Google Scholar]
- Padrò, M.D.A.; Frattarelli, A.; Sgueglia, A.; Condello, E.; Damiano, C.; Caboni, E. Cryopreservation of white mulberry (Morus alba L.) by encapsulation-dehydration and vitrification. Plant Cell Tissue Org. Cult. 2012, 108, 167–172. [Google Scholar]
- Hung, C.D.; Trueman, S.J. Encapsulation technology for short-term preservation and germplasm distribution of the African mahogany Khaya senegalensis. Plant Cell Tissue Org. Cult. 2011, 107, 397–405. [Google Scholar] [CrossRef]
- Hung, C.D.; Trueman, S.J. Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol. Plant 2012, 34, 117–128. [Google Scholar]
- Sakhanokho, H.F.; Pounders, C.T.; Blythe, E.K. Alginate encapsulation of Begonia microshoots for short-term storage and distribution. Sci. World J. 2013. [Google Scholar] [CrossRef]
- Srivastava, V.; Khan, S.A.; Banerjee, S. An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Org. Cult. 2009, 99, 193–198. [Google Scholar] [CrossRef]
Ion Exchange Time (Min) | Shoot Tips (%) | Average Regrowth Time (Days) | Nodal Segments (%) | Average Regrowth Time (Days) |
---|---|---|---|---|
20 | 53.3 ± 2.6 b | 18 | 46.7 ± 2.8 b | 25 |
30 | 96.7 ± 0.3 a | 15 | 85.3 ± 0.6 a | 25 |
40 | 33.7 ± 2.0 b | 19 | 31.2 ± 2.1 b | 26 |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benelli, C. Encapsulation of Shoot Tips and Nodal Segments for in Vitro Storage of “Kober 5BB” Grapevine Rootstock. Horticulturae 2016, 2, 10. https://doi.org/10.3390/horticulturae2030010
Benelli C. Encapsulation of Shoot Tips and Nodal Segments for in Vitro Storage of “Kober 5BB” Grapevine Rootstock. Horticulturae. 2016; 2(3):10. https://doi.org/10.3390/horticulturae2030010
Chicago/Turabian StyleBenelli, Carla. 2016. "Encapsulation of Shoot Tips and Nodal Segments for in Vitro Storage of “Kober 5BB” Grapevine Rootstock" Horticulturae 2, no. 3: 10. https://doi.org/10.3390/horticulturae2030010
APA StyleBenelli, C. (2016). Encapsulation of Shoot Tips and Nodal Segments for in Vitro Storage of “Kober 5BB” Grapevine Rootstock. Horticulturae, 2(3), 10. https://doi.org/10.3390/horticulturae2030010