Effect of LED Lighting and Gibberellic Acid Supplementation on Potted Ornamentals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Culture
2.2. Experimental Arrangement
2.3. Harvesting and Measurements
2.4. Statistical Analysis
3. Results
3.1. Liatris spicata ‘Kobold’
3.2. Dahlia spp.‘Karma Serena’
3.3. Lilium Asiatic ‘Yellow Cocotte’
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nelson, P. Greenhouse Operation and Management, 7th ed.; Pearson: Boston, MA, USA, 2012. [Google Scholar]
- Morrow, R. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef]
- Bourget, C. An introduction to light-emitting diodes. HortScience 2008, 43, 1944–1946. [Google Scholar] [CrossRef]
- Bessho, M.; Shimizu, K. Latest trends in LED lighting. Electron. Commum. Jpn. 2012, 95, 315–320. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for Energy Efficient Greenhouse Lighting. Available online: https://arxiv.org/abs/1406.3016 (accessed on 9 October 2017).
- Briggs, W.R.; Christie, J.M. Phototropin 1 and phototropin 2: Two versatile plant blue-light receptors. Trends Plant Sci. 2002, 7, 204–209. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Kim, H.H.; Wheeler, R.M.; Sager, J.C.; Yorio, N.C.; Goins, G.D. Light-emitting diodes as an illumination source for plants: A review of research at Kennedy Space Center. Habitation (Elmsford) 2005, 10, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Lee, C.; Chakrabarty, D.; Paek, K. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul. 2002, 38, 225–230. [Google Scholar] [CrossRef]
- Craig, D.S.; Runkle, E.S. A moderate to high red to far-red light ratio from light-emitting diodes controls flowering of short-day plants. J. Am. Soc. Hortic. Sci. 2013, 138, 167–172. [Google Scholar] [CrossRef]
- Kohyama, F.; Whitman, C.; Runkle, E.S. Comparing flowering responses of long-day plants under incandescent and two commercial light-emitting diode lamps. HortTechnology 2014, 24, 490–495. [Google Scholar] [CrossRef]
- Meng, Q.; Runkle, E.S. Controlling flowering of photoperiodic ornamental crops with light-emitting diode lamps: A coordinated grower trial. HortTechnology 2014, 24, 702–711. [Google Scholar] [CrossRef]
- Nishidate, K.; Kanayama, Y.; Nishiyama, M.; Yamamoto, T.; Hamaguchi, Y.; Kanahama, K. Far-red light supplemented with weak red light promotes flowering of Gypsophila paniculata. J. Jpn. Soc. Hortic. Sci. 2012, 81, 198–203. [Google Scholar] [CrossRef]
- Yamada, A.; Tanigawa, T.; Suyama, T.; Matsuno, T.; Kunitake, T. Red:Far-red light ratio and far-red light integral promote or retard growth and flowering in Eustoma grandiflorum (Raf.) Shinn. Sci. Hortic. 2009, 120, 101–106. [Google Scholar] [CrossRef]
- Hu, J.; Mitchum, M.G.; Barnaby, N.; Ayele, B.T.; Ogawa, M.; Nam, E.; Lai, W.C.; Hanada, A.; Alonso, J.M.; Ecker, J.R.; et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 2008, 20, 320–336. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal. Behav. 2013, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Weigel, D. Move on up, its time for change: Mobile signals controlling photoperiod-dependent flowering. Genes Dev. 2007, 21, 2371–2384. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.J.; Doreen, J.; Ohteki, T. Effect of gibberellic acid ‘quick-dip’ and storage on the yield and quality of blooms from hybrid Zantedeschia tubers. Sci. Hortic. 1994, 57, 133–142. [Google Scholar] [CrossRef]
- Delvadia, D.V.; Ahlawat, T.R.; Meena, B.J. Effect of different GA3 concentration and frequency on growth, flowering and yield in Gaillardia (Gaillardia pulchella Foug.) cv. Lorenziana. J. Hortic. Sci. 2009, 4, 81–84. [Google Scholar]
- Ranwala, A.P.; Legnani, G.; Reitmeier, M.; Stewart, B.B.; Miller, W.B. Efficacy of plant growth retardants as preplant bulb dips for height control in LA and oriental hybrid lilies. HortTechnology 2002, 12, 426–431. [Google Scholar] [CrossRef]
- Dissanayake, P.; George, D.L.; Gupta, M.L. Effect of light, gibberellic acid and abscisic acid on germination of guayule (Parthenium argentatum Gray) seed. Ind. Crop Prod. 2010, 32, 111–117. [Google Scholar] [CrossRef]
- Toyomasue, T.; Tsuji, H.; Yamane, H.; Nakayama, M.; Yamaguchi, I.; Murofushi, N.; Takahasi, N.; Inoue, Y. Light effect on endogenous levels of gibberellins in photoblastic lettuce seeds. J. Plant Growth Regul. 1993, 12, 85–90. [Google Scholar] [CrossRef]
- Lona, F.; Bocchi, A. Luterferenza dell’acido gibberellieo nell’effecto della lute rossa e rosso-estrema sull’allungamento dell fusto di Perilla ocy~noides L. L’ateneo Parmense 1956, 7, 645–649. [Google Scholar]
- Lockhart, J. A reversal of the light inhibition of pea stem growth by the gibberellins. Proc. Natl. Acad. Sci. USA 1956, 42, 841–848. [Google Scholar] [CrossRef]
- Borthwick, H.A.; Hendricks, S.B.; Parker, M.W. The reaction controlling floral initiation. Proc. Natl. Acad. Sci. USA 1952, 38, 929–934. [Google Scholar] [CrossRef]
- Cathey, H.M.; Borthwick, H.A. Photoreversibility of floral initiation in Chrysanthemum. Bot. Gaz. 1957, 119, 71–76. [Google Scholar] [CrossRef]
- Downs, R.J.; Borthwick, H.A.; Piringer, A.A. Comparison of incandescent and fluorescent lamps for lengthening photoperiods. Proc. Am. Soc. Hortic. Sci. 1958, 71, 568–578. [Google Scholar]
- Miyashita, Y.; Kitaya, Y.; Kubota, C.; Kozai, T.; Kimura, T. Effects of red and far-red light on the growth and morphology of potato plantlets in-vitro: Using light emitting diodes as a light source for micropropagation. Acta Hortic. 1995, 393, 189–194. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 2015, 50, 522–529. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Asp, H.; Larsson-Jonsson, E.H.; Schussler, H.K. Plant developmental consequences of lighting from above or below in the production of poinsettia. Eur. J. Hortic. Sci. 2015, 80, 51–55. [Google Scholar] [CrossRef]
- Bieleski, R.; Elgar, J.; Heyes, J.; Woolf, A. Flower opening in Asiatic lily is a rapid process controlled by dark-light cycling. Ann. Bot. 2000, 86, 1169–1174. [Google Scholar] [CrossRef]
- Jones, R.L.; Phillips, I.D. Organs of gibberellin synthesis in light-grown sunflower plants. Plant Physiol. 1966, 41, 1381–1386. [Google Scholar] [CrossRef]
- Feng, S.; Martinez, C.; Gusmaroli, G.; Wang, Y.; Zhou, J.; Wang, F. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 2008, 451, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J.; Murase, K.; Rieu, I. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 2006, 18, 3399–3414. [Google Scholar] [CrossRef]
- Bulyalert, O. Effect of Gibberellic Acid on Growth and Flowering of Liatris Corm (Liatris spicata) c.v. Florist Violet Propagated from Seed (Abstract). Available online: http://agris.fao.org/agris-search/search.do?recordID=TH9220028 (accessed on 9 October 2017).
- Pudelska, K.; Podgajna, E. Decorative value of three dahlia cultivars (Dahlia cultorum Thorsr. et Reis) treated with gibberellin. Mod. Phytomorphol. 2013, 4, 83–86. [Google Scholar]
- Rabiza-Swider, J.; Skutnik, E.; Jedrzejuk, A.; Lukaszewska, A.; Lewandowska, K. The effect of GA3 and the standard preservative on keeping qualities of cut LA hybrid lily Richmond. Acta Sci. Pol. Hortorum Cultus. 2015, 14, 51–64. [Google Scholar]
- Schmidt, C.; Bellé, A.B.; Nardi, C.; Toledo, A.K. The gibberellic acid (GA3) in the cut chrysanthemum (Dedranthema grandiflora Tzevelev.) Viking: Planting summer/autumn. Ciência Rural 2003, 33, 267–274. [Google Scholar] [CrossRef]
- Zalewska, M.; Żabicka, A.; Wojciechowska, I. The influence of gibberellic acid on the growth and flowering of cascade chrysanthemum cultivars in outside glasshouse. Zesz. Probl. Post. Nauk. Roln. 2008, 525, 525–533. [Google Scholar]
- Bergmann, B.A.; Dole, J.M.; McCall, I. Gibberellic acid shows promise for promoting flower stem length in four field-grown cut flowers. HortTechnology 2016, 26, 287–292. [Google Scholar]
- Bultynck, L.; Lambers, H. Effects of applied gibberellic acid and paclobbutraol on leaf expansion and biomass allocation in two Aegilops species with contrasting leaf elongation rates. Physiol. Plant. 2004, 122, 143–151. [Google Scholar] [CrossRef]
- Pobudkiewicz, A.; Nowak, J. The effect of gibberellic acid on growth and flowering of Gerbera jamesonii Bolus. Folia Hortic. 1992, 4, 35–42. [Google Scholar]
- Chen, J.; Henny, R.J.; McConnell, D.B.; Caldwell, R.D. Gibberellic acid affects growth and flowering of Philodendron Black Cardinal. J. Plant Growth Regul. 2003, 41, 1–6. [Google Scholar] [CrossRef]
- Dobrowolska, A.; Janicka, D. The effect of growth regulators on flowering and decorative value of Impatiens hawkeri W. Bull belonging to Riviera group. Rocz. AR Pozn. Ogrodn. 2007, 41, 35–39. [Google Scholar]
- Yamaguchi, S.; Kamiya, Y. Gibberellins and light-simulated seed germination. J. Plant Growth Regul. 2001, 20, 369–376. [Google Scholar] [CrossRef]
- Vince, D. Gibberellic acid and light inhibition of stem elongation. Planta (Berlin) 1967, 75, 291–308. [Google Scholar] [CrossRef]
- Tan, Z.G.; Qian, Y.L. Light intensity affects gibberellic acid content in Kentucky bluegrass. HortScience 2003, 38, 113–116. [Google Scholar] [CrossRef]
- Williams, E.A.; Morgan, P.W. Floral initiation in sorghum hastened by gibberellic acid and far-red light. Planta 1979, 145, 269–272. [Google Scholar] [CrossRef]
- White, J.W.; Chen, H.; Beattie, D.J. Gibberellin, light, and low temperature effects on flowering of Aquilegia. HortScience 1990, 25, 1422–1424. [Google Scholar]
Cultivar | Source | Height (cm) | Width (cm) | Shoot Dry Weight (g) | Flowers/Spikes Number z | Flower Diameter | Days to Anthesis | Flowering (%) |
---|---|---|---|---|---|---|---|---|
‘Kobold’ | Light | **** y | **** | **** | **** | - x | **** | ns |
GA3 | ns | ** | * | * | - | ns | ns | |
Light × GA3 | ns | ns | ns | ns | - | ns | ns | |
‘Karma Serena’ | Light | **** | **** | **** | **** | ns | **** | ns |
GA3 | **** | ns | ns | ** | * | ns | ns | |
Light × GA3 | ns | ns | ns | * | ns | ns | * | |
‘Yellow Cocotte’ | Light | ns | ns | ns | ns | ns | ns | ns |
GA3 | ns | ns | ns | ns | ns | ns | ns | |
Light × GA3 | ns | ns | ns | ns | * | ns | * |
Light Type | Height (cm) | Width (cm) | Shoot Dry Weight (g) | Flower Measurements z | Days to Anthesis | Flowering (%) |
---|---|---|---|---|---|---|
‘Kobold’ | ||||||
Control | 47.3b y | 35.2c | 13.9b | 3.5a | 88a | 96a |
LED | 64.7a | 49.4a | 17.2b | 2.3bc | 70b | 100a |
Halogen | 52.1b | 40.9b | 22.0a | 3.1ab | 73b | 98a |
LED + Halogen | 65.9a | 44.9ab | 16.8b | 1.8c | 77ab | 98a |
‘Karma Serena’ | ||||||
Control | 58.9b | 32.5c | 9.1d | 7.1a | 46c | - x |
LED | 67.1b | 43.9b | 35.0c | 7.1a | 61b | - |
Halogen | 95.8a | 46.7b | 43.6b | 8.5a | 74a | - |
LED + Halogen | 85.9a | 56.9a | 52.9a | 7.9a | 80a | - |
‘Yellow Cocotte’ | ||||||
Control | 45.5a | 15.0a | 4.0a | 2.4a | 54a | - |
LED | 44.5a | 19.6a | 3.5a | 2.0a | 47a | - |
Halogen | 38.4a | 16.3a | 4.2a | 2.0a | 43a | - |
LED + Halogen | 54.1a | 19.8a | 4.8a | 2.1a | 55a | - |
GA3 Rate (mg L−1) | Height (cm) | Width (cm) | Shoot Dry Weight (g) | Flower Measurements z | Days to Anthesis | Flowering (%) |
---|---|---|---|---|---|---|
‘Kobold’ | ||||||
0 | 59.7a y | 47.4a | 19.8a | 2.4ab | 77a | 98a |
50 | 59.5a | 43.2ab | 17.6ab | 2.3b | 76a | 94a |
170 | 54.6a | 40.6ab | 15.2b | 2.6ab | 78a | 100a |
250 | 56.3a | 39.3b | 17.3ab | 3.5a | 76a | 100a |
‘Karma Serena’ | ||||||
0 | 65.0b | 45.5a | 30.5a | 8.6a | 67a | - x |
50 | 81.0a | 45.7a | 35.8a | 7.3ab | 62a | - |
100 | 81.3a | 45.5a | 38.5a | 6.8b | 64a | - |
150 | 80.3a | 43.4a | 35.7a | 7.8ab | 69a | - |
‘Yellow Cocotte’ | ||||||
0 | 48.5a | 19.6a | 4.5a | 2.1a | - x | - x |
40 | 47.2a | 16.8a | 4.4a | 2.4a | - | - |
140 | 42.9a | 17.3a | 3.9a | 2.0a | - | - |
340 | 43.4a | 17.0a | 3.7a | 2.0a | - | - |
Plant | Characteristic | Source | GA3 (mg L−1) | |||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | |||
‘Karma Serena’ | Flower number | Control | 3.1c z | 2.4b | 2.3b | 2.8a |
LED | 2.2c | 2.9b | 3.1ab | 3.1a | ||
Halogen | 6.6a | 5.4a | 4.4a | 3.7a | ||
LED + Halogen | 5.1b | 4.5a | 4.4a | 2.3a | ||
Flowering percent | Control | 100a | 100a | 100a | 100a | |
LED | 100a | 89b | 100a | 80b | ||
Halogen | 100a | 100a | 100a | 100a | ||
LED + Halogen | 100a | 100a | 80b | 100a | ||
‘Yellow Cocotte’ | 0 | 40 | 140 | 340 | ||
Flower diameter | Control | 8.9b | 9.2b | 9.7a | 9.7b | |
LED | 10.4a | 9.8b | 10.4a | 10.1ab | ||
Halogen | 9.8b | 9.4b | 10.1a | 9.5b | ||
LED + Halogen | 10.5a | 10.7a | 10.0a | 10.9a | ||
Flowering percent | Control | 58b | 67b | 58bc | 75ab | |
LED | 100a | 67b | 75a | 50bc | ||
Halogen | 75ab | 75a | 33c | 33c | ||
LED + Halogen | 58b | 75a | 67ab | 100a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills-Ibibofori, T.; Dunn, B.L.; Maness, N.; Payton, M. Effect of LED Lighting and Gibberellic Acid Supplementation on Potted Ornamentals. Horticulturae 2019, 5, 51. https://doi.org/10.3390/horticulturae5030051
Mills-Ibibofori T, Dunn BL, Maness N, Payton M. Effect of LED Lighting and Gibberellic Acid Supplementation on Potted Ornamentals. Horticulturae. 2019; 5(3):51. https://doi.org/10.3390/horticulturae5030051
Chicago/Turabian StyleMills-Ibibofori, Taylor, Bruce L. Dunn, Niels Maness, and Mark Payton. 2019. "Effect of LED Lighting and Gibberellic Acid Supplementation on Potted Ornamentals" Horticulturae 5, no. 3: 51. https://doi.org/10.3390/horticulturae5030051
APA StyleMills-Ibibofori, T., Dunn, B. L., Maness, N., & Payton, M. (2019). Effect of LED Lighting and Gibberellic Acid Supplementation on Potted Ornamentals. Horticulturae, 5(3), 51. https://doi.org/10.3390/horticulturae5030051