Suitability of Borago officinalis for Minimal Processing as Fresh-Cut Produce
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tyler, V.E. The Honest Herbal, 3rd ed.; Haworth Press: New York, NY, USA, 1993; pp. 51–53. [Google Scholar]
- Hassan Gilani, A.; Bashir, S.; Khan, A. Pharmacological basis for the use of Borago officinalis in gastro intestinal, respiratory and cardiovascular disorders. J. Ethnopharmacol. 2007, 114, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V. Leafy Spices; CRC Press Inc.: Boca Raton, FL, USA, 1990. [Google Scholar]
- Bandoniene, D.; Murkovic, M. The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on line HPLC-DPPH method. J. Biochem. Biophys. Method. 2002, 53, 45–49. [Google Scholar] [CrossRef]
- Duke, J.A. Handbook of Phytochemical Constituents of GRAS Herbs and other Economical Plants; CRC Press: London, UK, 1992. [Google Scholar]
- Gudej, P.; Tomczyk, M. Chromatographic analysis of polyphenolic compounds from the herbs of Borago officinalis (L). Herba Polon. 1996, 42, 252–256. [Google Scholar]
- Larson, K.M.; Roby, M.R.; Stermitz, F.R. Unsaturated pyrrolizidines from borage (Borago officinalis), a common garden herb. J. Nat. Prod. 1984, 47, 747–748. [Google Scholar] [CrossRef]
- Abolhassani, M. Antibacterial effect of Borage (Echium amoenum) on Staphylococcus aureus. Braz. J. Infect. Dis. 2004, 8, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of some Indian medicinal plants for their antimicrobial properties. J. Ethnopharmacol. 1998, 62, 183–193. [Google Scholar] [CrossRef]
- Miceli, A.; Aleo, A.; Corona, O.; Sardina, M.T.; Mammina, C.; Settanni, L. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control. 2014, 40, 157–164. [Google Scholar] [CrossRef]
- Río-Celestino, M.D.; Font, R.; deHaro-Bailón, A. Distribution of fatty acids in edible organs and seed fractions of borage (Borago officinalis L.). J. Sci. Food Agric. 2008, 88, 248–255. [Google Scholar] [CrossRef]
- Van Gool, C.J.; Thijs, C.; Henquet, C.J.; van Houwelingen, A.C.; Dagnelie, P.C.; Schrander, J.; Menheere, P.; van den Brandt, P.A. γ-Linolenic acid supplementation for prophylaxis of atopic dermatitis—A randomized controlled trial in infants at high familial risk. Am. J. Clin. Nutr. 2003, 77, 943–951. [Google Scholar] [CrossRef]
- Miceli, A.; Francesca, N.; Moschetti, G.; Settanni, L. The influence of addition of Borago officinalis with antibacterial activity on the sensory quality of fresh pasta. Int. J. Gastron. Food Sci. 2015, 2, 93–97. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color. Flavor. Texture. and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels. Instrumental and Sensory Measurement. and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Brocklehurst, T.F.; Zaman-Wong, C.M.; Lund, B.M. A note on the microbiology of retail packs of prepared salad vegetables. J. Appl. Bacteriol. 1987, 63, 409–415. [Google Scholar] [PubMed]
- Krasaekoopt, W.; Bhandari, B. Fresh-Cut Vegetables. In Handbook of Vegetables and Vegetable Processing; Sinha, N.K., Ed.; John Wiley & Sons: Hobaken, NJ, USA, 2011; pp. 221–242. [Google Scholar]
- European Parliament and the Council of European Union. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs; OJ L 139; European Parliament/The Council of European Union: Brussels, Belgium, 2004. [Google Scholar]
- Ministry of Agricultural, Food and Forestry Policies. Italian Ministerial Decree n. 3746/2014. Gazzetta Ufficiale della Repubblica Italiana, 12 Agosto 2014; Ministry of Agricultural, Food and Forestry Policies: Rome, Italy, 2014.
- Garcìa-Gimeno, R.M.; Zurera-Cosano, G. Determination of ready-to-eat vegetable salad shelf-life. Int. J. Food Microbiol. 1997, 36, 31–38. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. Hortic. Sci. 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Del-Toro-Sánchez, L.; Alvarez-Parrilla, E.; González-Aguilar, G.A. High relative humidity in package of fresh-cut fruits and vegetables: Advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J. Food Sci. 2008, 73, R41–R47. [Google Scholar] [CrossRef] [PubMed]
- Paull, R. Effect of temperature and relative humidity on fresh commodity quality. Postharvest Biol. Technol. 1999, 15, 263–277. [Google Scholar] [CrossRef]
- Nunes, C.N.; Emond, J.P. Relationship between weight loss and visual quality of fruits and vegetables. Proc. Fla. State Hortic. Soc. 2007, 120, 235–245. [Google Scholar]
- Robinson, J.E.; Browne, K.M.; Burton, W.G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 1975, 81, 399–408. [Google Scholar] [CrossRef]
- Roura, S.I.; Davidovich, L.A.; Del Valle, C.E. Postharvest changes in fresh Swiss chard (Beta vulgaris, type cycla) under different storage conditions. J. Food Qual. 2000, 23, 137–147. [Google Scholar] [CrossRef]
- Roura, S.I.; Davidovich, L.A.; Del Valle, C.E. Quality loss in minimally processed Swiss chard related to amount of damaged area. Lebensm. Wiss. Technol. 2000, 33, 53–59. [Google Scholar] [CrossRef]
- Alfonzo, A.; Gaglio, R.; Miceli, A.; Francesca, N.; Di Gerlando, R.; Moschetti, G.; Settanni, L. Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiol. 2018, 73, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Gaglio, R.; Francesca, N.; Ciminata, A.; Moschetti, G.; Settanni, L. Evolution of shelf life parameters of ready-to eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Scientia Hortic. 2019, 247, 175–183. [Google Scholar] [CrossRef]
- Miceli, A.; Romano, C.; Moncada, A.; D’Anna, F.; Vetrano, F. Effect of cold storage on the quality of minimally processed cauliflower. Carpath. J. Food Sci. Technol. 2015, 7, 70–74. [Google Scholar]
- Miceli, A.; Vetrano, F.; Romano, C. Effect of hot air treatment on minimally processed cauliflower. Acta Hortic. 2013, 1005, 309–314. [Google Scholar] [CrossRef]
- Eheart, M.S.; Odland, D. Storage of fresh broccoli and green beans. J. Am. Diet. Assoc. 1972, 60, 402–406. [Google Scholar] [PubMed]
- Wu, Y.; Perry, A.K.; Klein, B.P. Vitamin C and B-carotene in fresh and frozen green beans and broccoli in a simulated system. J. Food Qual. 1992, 15, 87–96. [Google Scholar] [CrossRef]
- Esteve, M.; Farre, R.; Frigola, A. Changes in ascorbic acid content of green asparagus during the harvesting period and storage. J. Agric. Food Chem. 1995, 43, 2058–2061. [Google Scholar] [CrossRef]
- Howard, L.A.; Wong, A.D.; Perry, A.K.; Klein, B.P. β-Carotene and ascorbic acid retention in fresh and processed vegetables. J. Food Sci. 1999, 64, 929–936. [Google Scholar] [CrossRef]
- Miceli, A.; Miceli, C. Effect of nitrogen fertilization on the quality of Swiss chard at harvest and during storage as minimally processed produce. J. Food Qual. 2014, 37, 125–134. [Google Scholar] [CrossRef]
- Miceli, A.; Vetrano, F.; Sabatino, L.; D’Anna, F.; Moncada, A. Influence of pre-harvest gibberellic acid treatments on post-harvest quality of minimally processed leaf lettuce and rocket. Horticulturae 2019, 5, 63. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F.; Todaro, E. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 1999, 79, 1882–1888. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Ferrante, A.; Incrocci, L.; Serra, G. Quality changes during storage of fresh-cut or intact Swiss chard leafy vegetables. J. Food Agric. Environ. 2008, 6, 60–62. [Google Scholar]
- Moncada, A.; Miceli, A.; Sabatino, L.; Iapichino, G.; D’Anna, F.; Vetrano, F. Effect of molybdenum rate on yield and quality of lettuce, escarole, and curly endive grown in a floating system. Agronomy 2018, 8, 171. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Sabatino, L.; Vetrano, F. Effect of Gibberellic Acid on Growth, Yield, and Quality of Leaf Lettuce and Rocket Grown in a Floating System. Agronomy 2019, 9, 382. [Google Scholar] [CrossRef]
- La Scalia, G.; Aiello, G.; Miceli, A.; Nasca, A.; Alfonzo, A.; Settanni, L. Effect of vibration on the quality of strawberry fruits caused by simulated transport. J. Food Process. Eng. 2016, 39, 140–156. [Google Scholar] [CrossRef]
- Able, A.J.; Wong, L.S.; Prasad, A.; O’Hare, T.J. The physiology of senescence in detached pak choy leaves (Brassica rapa var. chinensis) during storage at different temperatures. Postharvest Biol. Technol. 2005, 35, 271–278. [Google Scholar]
- Koukounaras, A.; Siomos, A.S.; Sfakiotakis, E. Postharvest CO2 and ethylene production and quality of rocket (Eruca sativa Mill.) leaves as affected by leaf age and storage temperature. Postharvest Biol. Technol. 2007, 46, 167–173. [Google Scholar] [CrossRef]
- Yamauchi, N.; Watada, A.E. Regulated chlorophyll degradation in spinach leaves during storage. J. Am. Soc. Hortic. Sci. 1991, 116, 58–62. [Google Scholar] [CrossRef]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on color. ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Cefola, M.; Carbone, V.; Minasi, P.; Pace, B. Phenolic profiles and postharvest quality changes of fresh-cut radicchio (Cichorium intybus L.): Nutrient value in fresh vs. stored leaves. J. Food Compos. Anal. 2016, 51, 76–84. [Google Scholar] [CrossRef]
- Gaglio, R.; Miceli, A.; Sardina, M.T.; Francesca, N.; Moschetti, G.; Settanni, L. Evaluation of microbiological and physico-chemical parameters of retail ready-to-eat mono-varietal salads. J. Food Process. Preserv. 2019, e13955. [Google Scholar] [CrossRef]
Source of Variance | Weight Loss | TSS | TA z | N-NO3 | Ascorbic Acid | |
---|---|---|---|---|---|---|
(g 100 g−1) | (°Brix) | (mg 100 g−1 FW) | (mg kg−1 FW) | (mg 100 g−1 FW) | ||
Temperature | ||||||
2 °C | 1.4 y | 4.6b y | 213.1b | 343.3 | 93.7 | |
6 °C | 3.1 | 4.8a | 229.6a | 337.4 | 97.5 | |
Storage time | ||||||
0 d | 4.2b | 183.2c | 329.3 | 59.5c | ||
7 d | 1.5 | 4.6ab | 209.0b | 329.5 | 98.8b | |
14 d | 2.5 | 4.9a | 253.6a | 326.0 | 100.3b | |
21 d | 2.8 | 5.0a | 239.5a | 376.5 | 123.8a | |
Temperature x Storage | ||||||
2 °C | 0 d | 4.2 | 183.2 | 329.3 | 59.5 | |
7 d | 0.8c | 4.5 | 197.3 | 340.7 | 98.3 | |
14 d | 1.6b | 4.7 | 251.6 | 308.0 | 99.0 | |
21 d | 1.8b | 4.8 | 258.4 | 395.0 | 117.8 | |
6 °C | 0 d | 4.2 | 183.2 | 329.3 | 59.5 | |
7 d | 2.2b | 4.7 | 220.7 | 318.3 | 99.2 | |
14 d | 3.4a | 5.1 | 253.6 | 344.0 | 101.6 | |
21 d | 3.8a | 5.2 | 260.7 | 358.0 | 129.8 | |
Significance | ||||||
Temperature | *** x | * | * | ns | ns | |
Storage | *** | ** | *** | ns | ** | |
Temperature x Storage | * | ns | ns | ns | ns |
Source of Variance | L* | a* | b* | Chroma | Hue° | ΔE | OQ | |
---|---|---|---|---|---|---|---|---|
Temperature | ||||||||
2 °C | 38.9 z | −14.3 | 18.3 | 23.3 | 128.4 | 5.5 | 4.4 | |
6 °C | 40.3 | −15.0 | 20.1 | 25.1 | 127.3 | 7.7 | 3.9 | |
Storage time | ||||||||
0 d | −14.3 | 18.0 | 23.0 | 128.6 | 5.0 | |||
7 d | 39.0 | −13.9 | 16.9 | 21.9 | 129.6 | 4.9 | 4.8 | |
14 d | 41.0 | −14.9 | 19.9 | 24.9 | 127.2 | 6.5 | 3.8 | |
21 d | 42.6 | −15.5 | 22.1 | 27.1 | 126.0 | 8.5 | 2.8 | |
Temperature x Storage | ||||||||
2 °C | 0 d | 36.0d | −14.3ab | 18.0cd | 23.0cd | 128.6ab | 5.0a | |
7 d | 38.5c | −13.4a | 16.3d | 21.1d | 129.7a | 4.8c | 4.8ab | |
14 d | 39.7c | −14.6b | 18.7c | 23.7c | 128.1b | 5.2c | 4.3b | |
21 d | 41.5b | −14.9b | 20.3bc | 25.3bc | 127.2c | 6.6bc | 3.3c | |
6 °C | 0 d | 36.0d | −14.3ab | 18.0cd | 23.0cd | 128.6ab | 5.0a | |
7 d | 39.4c | −14.3ab | 17.5cd | 22.6cd | 129.5ab | 5.1c | 4.8ab | |
14 d | 42.2ab | −15.2b | 21.0b | 26.0b | 126.3bc | 7.7b | 3.3c | |
21 d | 43.7a | −16.1c | 23.9a | 28.9a | 124.7d | 10.3a | 2.3d | |
Significance x | ||||||||
Temperature | *** | *** | *** | *** | *** | *** | *** | |
Storage | *** | *** | *** | *** | *** | *** | *** | |
Temperature x Storage | ** | * | ** | ** | ** | *** | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miceli, C.; Moncada, A.; Vetrano, F.; D’Anna, F.; Miceli, A. Suitability of Borago officinalis for Minimal Processing as Fresh-Cut Produce. Horticulturae 2019, 5, 66. https://doi.org/10.3390/horticulturae5040066
Miceli C, Moncada A, Vetrano F, D’Anna F, Miceli A. Suitability of Borago officinalis for Minimal Processing as Fresh-Cut Produce. Horticulturae. 2019; 5(4):66. https://doi.org/10.3390/horticulturae5040066
Chicago/Turabian StyleMiceli, Claudia, Alessandra Moncada, Filippo Vetrano, Fabio D’Anna, and Alessandro Miceli. 2019. "Suitability of Borago officinalis for Minimal Processing as Fresh-Cut Produce" Horticulturae 5, no. 4: 66. https://doi.org/10.3390/horticulturae5040066
APA StyleMiceli, C., Moncada, A., Vetrano, F., D’Anna, F., & Miceli, A. (2019). Suitability of Borago officinalis for Minimal Processing as Fresh-Cut Produce. Horticulturae, 5(4), 66. https://doi.org/10.3390/horticulturae5040066