Seed Germination and Seedling Growth on Knitted Fabrics as New Substrates for Hydroponic Systems
Abstract
:1. Introduction
2. Materials and Methods
- -
- Chive (Allium schoenoprasum; Kiepenkerl, Bruno Nebelung GmbH, Everswinkel, Germany)
- -
- Dill (Anethum graveolens; Kiepenkerl)
- -
- Beet (Beta vulgaris; Gartenland GmbH Aschersleben, Essen, Germany)
- -
- Kohlrabi (Brassica oleracea; Gartenland GmbH Aschersleben)
- -
- Savoy cabbage (Brassica oleracea; Vertriebsgesellschaft Quedlinburger Saatgut mbH, Aschersleben, Germany)
- -
- Chinese cabbage (Brassica rapa; Kiepenkerl)
- -
- Pumpkin (Cucurbita maxima; Quedlinburger Saatgut)
- -
- Carrot (Daucus carota; Gartenland)
- -
- Lettuce (Lactuca sativa; Kiepenkerl)
- -
- Common basil (Ocimum basilicum; Quedlinburger Saatgut)
- -
- Garden parsley (Petroselinum crispum; Gartenland)
- -
- Spinach A (Spinacia oleracea; Kiepenkerl)
- -
- Spinach B (Spinacia oleracea; Quedlinburger Saatgut)
- -
- Corn (Zea mays ssp. mays L.; Floraself, Hornbach Baumarkt AG, Bornheim, Germany).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Januszkiewicz, K.; Jarmusz, M. Envisioning urban farming for food security during the climate change era. Vertical farm within highly urbanized areas. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 052094. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Colla, G. Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Front. Plant Sci. 2018, 8, 2255. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; D’Anna, F.; D’Anna, F.; Iapichino, G.; Moncada, A.; D’Anna, E.; De Pasquale, C. Interactive effects of genotype and molybdenum supply on yield and overall fruit quality of tomato. Front. Plant Sci. 2019, 9, 1922. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, L.; Ntatsi, G.; Iapichino, G.; D’Anna, F.; De Pasquale, C. Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic System. Agronomy 2019, 9, 207. [Google Scholar] [CrossRef]
- Despommier, D. Farming up the city: The rise of urban vertical farms. Trends Biotechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef]
- Al-Chalabi, M. Vertical farming: Skyscraper sustainability? Sustain. Cities Soc. 2015, 18, 74–77. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; Mc-Ainsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Pinstrup-Anderson, P. Is it time to take vertical indoor farming seriously? Glob. Food Secur. 2018, 17, 233–235. [Google Scholar] [CrossRef]
- Agrilution–Your Vertical Farming System. Available online: https://agrilution.com/ (accessed on 28 July 2019).
- Lennard, W.; Ward, J. A comparison of plant growth rates between an NFT hydroponic system and an NFT aquaponic System. Horticulturae 2019, 5, 27. [Google Scholar] [CrossRef]
- Camara-Zapata, J.M.; Brotons-Martinez, J.M.; Simon-Grao, S.; Martinez-Nicolas, J.J.; Garcia-Sanchez, F. Cost-benefit analysis of tomato in soilless culture systems with saline water under greenhouse conditions. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef]
- Rodriguez-Ortega, W.M.; Martinez, V.; Nieves, M.; Simon, I.; Lidon, V.; Fernandez-Zapata, J.C.; Martinez-Nicolas, J.J.; Camara-Zapata, J.M.; Garcia-Sanchez, F. Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Sci. Rep. 2019, 9, 6733. [Google Scholar] [CrossRef] [PubMed]
- Vinci, G.; Rapa, M. Hydroponic cultivation: Life cycle assessment of substrate choice. Br. Food J. 2019, 121, 1801–1812. [Google Scholar] [CrossRef]
- Ehrmann, A. On the possible use of textile fabrics for vertical farming. Tekstilec 2019, 62, 34–41. [Google Scholar] [CrossRef]
- Großerhode, C.; Wehlage, D.; Grothe, T.; Grimmelsmann, N.; Fuchs, S.; Hartmann, J.; Mazur, P.; Reschke, V.; Siemens, H.; Rattenholl, A.; et al. Investigation of microalgae growth on electrospun nanofiber mats. AIMS Bioeng. 2017, 4, 376–385. [Google Scholar] [CrossRef]
- Sabantina, L.; Kinzel, F.; Hauser, T.; Többer, A.; Klöcker, M.; Döpke, C.; Böttjer, R.; Wehlage, D.; Rattenholl, A.; Ehrmann, A. Comparative study of Pleurotus ostreatus mushroom grown on modified PAN nanofiber mats. Nanomaterials 2019, 9, 475. [Google Scholar] [CrossRef]
- Helberg, J.; Klöcker, M.; Sabantina, L.; Storck, J.L.; Böttjer, R.; Brockhagen, B.; Kinzel, F.; Rattenholl, A.; Ehrmann, A. Growth of Pleurotus ostreatus on different textile materials for vertical farming. Materials 2019, 12, 2270. [Google Scholar] [CrossRef]
- Böttjer, R.; Storck, J.L.; Vahle, D.; Brockhagen, B.; Grothe, T.; Herbst, S.; Dietz, K.-J.; Rattenholl, A.; Gudermann, F.; Ehrmann, A. Influence of textile and environmental parameters on plant growth on vertically mounted knitted fabrics. Tekstilec 2019, 62, 200–207. [Google Scholar] [CrossRef]
- Zhu, F. Modification of konjac glucomannan for diverse applications. Food Chem. 2018, 256, 419–426. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, S.; Lv, H.; Pei, X.J.; Gao, M.J.; Chen, S.N.; Hu, J.; Zhou, Y.; Liu, Y.C. A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: With Konjac glucomannan as an example. Carbohydr. Polym. 2019, 215, 130–136. [Google Scholar] [CrossRef]
- Oh, S.; Moon, K.H.; Song, E.Y.; Son, I.-C.; Koh, S.C. Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Hortic. Environ. Biotechnol. 2015, 56, 159–166. [Google Scholar] [CrossRef]
- Christie, J.M. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 2007, 58, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Idikut, L. The effects of light, temperature and salinity on seed germination of three maize forms. Green. J. Agric. Sci. 2013, 3, 246–253. [Google Scholar] [CrossRef]
- Motsa, M.M.; Slabbert, M.M.; van Averbeke, W.; Morey, L. Effect of light and temperature on seed germination of selected African leafy vegetables. S. Afr. J. Bot. 2015, 99, 29–35. [Google Scholar] [CrossRef]
- Hunter, J.R. Some Factors Affecting Germination in Sugar Beet Seeds (Beta vulgaris L.). Ph.D. Thesis, State College of Agriculture and Applied Sciences, East Lansing, MI, USA, 1951. [Google Scholar]
- Elis, R.H. Handbook of Seed Technology for Genebanks: Compendium of Specific Germination; International Board for Plant Genetic Resources: Rome, Italy, 1985. [Google Scholar]
- Ingram, D.S.; Vince-Prue, D.; Gregory, P.J. Chapter 9: Raising Plants from Seed. In Science and the Garden: The Scientific Basis of Horticultural Practice; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Reilly, A. Starting Seeds Indoors; Storey Publishing, LLC: North Adams, MA, USA, 1988. [Google Scholar]
- Di Girolami, G.; Barbanti, L. Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital. J. Agron. 2012, 7, 178–188. [Google Scholar] [CrossRef]
- Nagy, F.; Schafer, E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 2002, 53, 329–355. [Google Scholar] [CrossRef]
Parameter | Stitch Size 3 | Stitch Size 5 | Stitch Size 7 |
---|---|---|---|
Thickness (mm) | 1.78 | 1.82 | 1.85 |
Areal weight (g/m2) | 211 | 196 | 181 |
Stitch length (mm) | 10.3 | 12.0 | 13.7 |
Course density (cm−1) | 5.1 | 4.4 | 3.7 |
Wale density (cm−1) | 4.6 | 4.4 | 4.1 |
Species | Individual Seed Mass (mg) | Group | Requirement of Light for Germination |
---|---|---|---|
Corn | 145 ± 16 | Monocots | No [23] |
Pumpkin | 107 ± 8 | Dicots | No [24] |
Beet | 16 ± 6 | Dicots | No [25] |
Spinach A | 17.5 ± 1.6 | Dicots | No [26] |
Spinach B | 17.3 ± 1.3 | Dicots | No [26] |
Kohlrabi | 3.1 ± 0.9 | Dicots | Yes [26] |
Savoy cabbage | 2.4 ± 0.4 | Dicots | No [26] |
Chinese cabbage | 2.8 ± 0.3 | Dicots | No [26] |
Lettuce | 1.2 ± 0.3 | Dicots | Yes [27,28,29] |
Garden parsley | 1.9 ± 0.3 | Dicots | No [26] |
Common basil | 1.7 ± 0.3 | Dicots | Yes [26] |
Chive | 1.48 ± 0.22 | Monocots | No [26] |
Dill | 1.30 ± 0.23 | Dicots | Yes [28] |
Carrot | 0.86 ± 0.18 | Dicots | Yes [26] |
Species | Stitch Size 3 | Stitch Size 5 | Stitch Size 7 | Average |
---|---|---|---|---|
% Germination | ||||
Dill | 100 | 100 | 100 | 100 a z |
Savoy cabbage | 100 | 100 | 100 | 100 a |
Carrot | 100 | 100 | 100 | 100 a |
Lettuce | 100 | 100 | 100 | 100 a |
Pumpkin | 100 | 100 | 100 | 100 |
Corn | 100 | 100 | 100 | 100 |
Kohlrabi | 67 | 83 | 83 | 77 ± 10 ab |
Chive | 67 | 67 | 67 | 67 b |
Chinese cabbage | 67 | 67 | 67 | 67 b |
Beet | 67 | 33 | 100 | 67 ± 34 abc |
Garden parsley | 67 | 56 | 67 | 63 ± 6 b |
Common basil | 83 | 50 | 50 | 61 ± 19 abc |
Spinach A | 33 | 33 | 45 | 37 ± 7 c |
Spinach B | 50 | 17 | 17 | 28 ± 19 c |
Average | 77 ± 27 a | 70 ± 32 a | 77 ± 31 a |
Species | Stitch Size 3 | Stitch Size 5 | Stitch Size 7 | Average |
---|---|---|---|---|
Fresh Mass (g) | ||||
Pumpkin | 0.45 | 1.07 * | 1.64 * | 1.1 ± 0.6 |
Corn | 0.24 | 0.71 | 0.63 | 0.53 ± 0.25 |
Spinach A | 0.16 | 0.17 | 0.12 | 0.15 ± 0.03 |
Kohlrabi | 0.20 | 0.12 | 0.14 | 0.15 ± 0.04 |
Chinese cabbage | 0.127 | 0.127 | 0.145 | 0.133 ± 0.010 |
Savoy cabbage | 0.17 | 0.10 | 0.09 | 0.12 ± 0.04 |
Beet | 0.10 | 0.16 | 0.09 | 0.12 ± 0.04 |
Spinach B | 0.09 | 0.07 | 0.10 | 0.087 ± 0.015 |
Common basil | 0.045 | 0.069 | 0.087 | 0.067 ± 0.021 |
Lettuce | 0.041 | 0.041 | 0.067 | 0.050 ± 0.015 |
Carrot | 0.027 | 0.028 | 0.018 | 0.024 ± 0.005 |
Garden parsley | 0.021 | 0.022 | 0.028 | 0.024 ± 0.004 |
Chive | 0.028 | 0.022 | 0.017 | 0.022 ± 0.006 |
Dill | 0.01 | 0.013 | 0.013 | 0.012 ± 0.002 |
Average (w/o pumpkin) | 0.085 ± 0.063 a z | 0.091 ± 0.070 a | 0.086 ± 0.059 a |
Species | Stitch Size 3 | Stitch Size 5 | Stitch Size 7 | Average |
---|---|---|---|---|
Dry Mass (g) | ||||
Pumpkin | 0.029 | 0.088 | 0.104 | 0.07 ± 0.04 |
Corn | 0.021 | 0.064 | 0.058 | 0.048 ± 0.023 |
Spinach A | 0.012 | 0.027 | 0.013 | 0.017 ± 0.008 |
Savoy cabbage | 0.018 | 0.011 | 0.009 | 0.013 ± 0.005 |
Chinese cabbage | 0.014 | 0.012 | 0.012 | 0.0127 ± 0.0012 |
Kohlrabi | 0.017 | 0.010 | 0.010 | 0.012 ± 0.004 |
Spinach B | 0.017 | 0.010 | 0.010 | 0.012 ± 0.004 |
Beet | 0.0053 | 0.0065 | 0.0085 | 0.0068 ± 0.0016 |
Lettuce | 0.0057 | 0.0052 | 0.0057 | 0.0055 ± 0.0003 |
Common basil | 0.0034 | 0.0043 | 0.0077 | 0.0051 ± 0.0023 |
Carrot | 0.0037 | 0.0038 | 0.0017 | 0.0031 ± 0.0012 |
Garden parsley | 0.0028 | 0.0028 | 0.0037 | 0.0031 ± 0.0005 |
Chive | 0.0027 | 0.0020 | 0.0015 | 0.0021 ± 0.0006 |
Dill | 0.0013 | 0.0015 | 0.0015 | 0.00143 ± 0.00012 |
Average (w/o pumpkin) | 0.010 ± 0.007 a z | 0.012 ± 0.017 a | 0.011 ± 0.015 a |
Species | Stitch Size 3 | Stitch Size 5 | Stitch Size 7 | Average |
---|---|---|---|---|
Dry Mass/Fresh Mass (%) | ||||
Spinach B | 18.89 | 14.29 | 10.00 | 14 ± 4 |
Garden parsley | 13.33 | 12.73 | 13.21 | 13.1 ± 0.3 |
Carrot | 13.70 | 13.57 | 9.44 | 12.2. ± 2.4 |
Dill | 13.00 | 11.54 | 11.54 | 12.0 ± 0.8 |
Lettuce | 13.90 | 12.68 | 8.51 | 11.7. ± 2.8 |
Spinach A | 7.50 | 15.88 | 10.83 | 11 ± 4 |
Savoy cabbage | 10.59 | 11.00 | 10.00 | 10.5 ± 0.5 |
Chinese cabbage | 11.02 | 9.45 | 8.28 | 9.6 ± 1.4 |
Chive | 9.64 | 9.09 | 8.82 | 9.2 ± 0.4 |
Corn | 8.82 | 8.99 | 9.22 | 9.01 ± 0.20 |
Kohlrabi | 8.50 | 8.33 | 7.14 | 8.0 ± 0.7 |
Common basil | 7.56 | 6.23 | 8.85 | 7.5 ± 1.3 |
Pumpkin | 6.44 | 8.22 | 6.34 | 7.0 ± 1.1 |
Beet | 5.30 | 4.06 | 9.44 | 6.3 ± 2.8 |
Average (w/o pumpkin) | 10 ± 4 a Z | 10 ± 3 a | 9.4 ± 1.7 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storck, J.L.; Böttjer, R.; Vahle, D.; Brockhagen, B.; Grothe, T.; Dietz, K.-J.; Rattenholl, A.; Gudermann, F.; Ehrmann, A. Seed Germination and Seedling Growth on Knitted Fabrics as New Substrates for Hydroponic Systems. Horticulturae 2019, 5, 73. https://doi.org/10.3390/horticulturae5040073
Storck JL, Böttjer R, Vahle D, Brockhagen B, Grothe T, Dietz K-J, Rattenholl A, Gudermann F, Ehrmann A. Seed Germination and Seedling Growth on Knitted Fabrics as New Substrates for Hydroponic Systems. Horticulturae. 2019; 5(4):73. https://doi.org/10.3390/horticulturae5040073
Chicago/Turabian StyleStorck, Jan Lukas, Robin Böttjer, Dominik Vahle, Bennet Brockhagen, Timo Grothe, Karl-Josef Dietz, Anke Rattenholl, Frank Gudermann, and Andrea Ehrmann. 2019. "Seed Germination and Seedling Growth on Knitted Fabrics as New Substrates for Hydroponic Systems" Horticulturae 5, no. 4: 73. https://doi.org/10.3390/horticulturae5040073
APA StyleStorck, J. L., Böttjer, R., Vahle, D., Brockhagen, B., Grothe, T., Dietz, K. -J., Rattenholl, A., Gudermann, F., & Ehrmann, A. (2019). Seed Germination and Seedling Growth on Knitted Fabrics as New Substrates for Hydroponic Systems. Horticulturae, 5(4), 73. https://doi.org/10.3390/horticulturae5040073