Genetic Variation in Response to N, P, or K Deprivation in Baby Leaf Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Quantification of Fresh Weigh, Pigments, and N, P, K
2.3. Data Analyses
2.4. Data Transformation
3. Results
3.1. Effect of Treatments
3.2. Fresh Weight
3.3. Chlorophyll Content Index (SPAD)
3.4. Anthocyanin Content Index (ACI)
3.5. Nitrogen Content
3.6. Phosphorus Content
3.7. Potassium Content
3.8. Correlations Between Traits
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Simko, I.; Hayes, R.J.; Mou, B.; McCreight, J.D. Lettuce and Spinach. In Yield Gains in Major U.S. Field Crops; CSSA Special Publications; Smith, S., Diers, B., Specht, J., Carver, B., Eds.; American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.: Madison, WI, USA, 2014; pp. 53–86. [Google Scholar]
- Saini, R.K.; Ko, E.Y.; Keum, Y.-S. Minimally processed ready-to-eat baby-leaf vegetables: Production, processing, storage, microbial safety, and nutritional potential. Food Rev. Int. 2017, 33, 644–663. [Google Scholar] [CrossRef]
- Mou, B. Nutrient content of lettuce and its improvement. Curr. Nutr. Food Sci. 2009, 5, 242–248. [Google Scholar] [CrossRef]
- Simko, I. Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce. Food Sci. Nutr. 2019, 7, 3317–3326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sytar, O.; Zivcak, M.; Bruckova, K.; Brestic, M.; Hemmerich, I.; Rauh, C.; Simko, I. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci. Hortic. 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Becker, C.; Urlić, B.; Špika, M.J.; Kläring, H.-P.; Krumbein, A.; Baldermann, S.; Ban, S.G.; Perica, S.; Schwarz, D. Nitrogen limited red and green leaf lettuce accumulate flavonoid glycosides, caffeic acid derivatives, and sucrose while losing chlorophylls, β-carotene and xanthophylls. PLoS ONE 2015, 10, e0142867. [Google Scholar] [CrossRef]
- Gruda, N.; Savvas, D.; Colla, G.; Rouphael, Y. Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables–A review. Eur. J. Hortic. Sci. 2018, 83. [Google Scholar] [CrossRef]
- Hoque, M.M.; Ajwa, H.; Othman, M.; Smith, R.; Cahn, M. Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience 2010, 45, 1539–1544. [Google Scholar] [CrossRef] [Green Version]
- Mampholo, B.M.; Maboko, M.; Soundy, P.; Sivakumar, D. Postharvest responses of hydroponically grown lettuce varieties to nitrogen application rate. J. Integr. Agric. 2019, 18, 2272–2283. [Google Scholar] [CrossRef]
- Lecompte, F.; Abro, M.; Nicot, P. Can plant sugars mediate the effect of nitrogen fertilization on lettuce susceptibility to two necrotrophic pathogens: Botrytis cinerea and Sclerotinia sclerotiorum? Plant Soil 2013, 369, 387–401. [Google Scholar] [CrossRef]
- Vorholt, J.A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Brandl, M.; Amundson, R. Leaf age as a risk factor in contamination of lettuce with Escherichia coli O157: H7 and Salmonella enterica. Appl. Environ. Microbiol. 2008, 74, 2298–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemadodzi, L.E.; Araya, H.; Nkomo, M.; Ngezimana, W.; Mudau, N.F. Nitrogen, phosphorus, and potassium effects on the physiology and biomass yield of baby spinach (Spinacia oleracea L.). J. Plant Nutr. 2017, 40, 2033–2044. [Google Scholar] [CrossRef]
- Fontes, P.; Pereira, P.; Conde, R. Critical chlorophyll, total nitrogen, and nitrate-nitrogen in leaves associated to maximum lettuce yield. J. Plant Nutr. 1997, 20, 1061–1068. [Google Scholar] [CrossRef]
- Boldt, J.K.; Meyer, M.H.; Erwin, J.E. Foliar anthocyanins: A horticultural review. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2014, 42, 209–252. [Google Scholar]
- Lawanson, A.; Akindele, B.; Fasalojo, P.; Akpe, B. Time-course of anthocyanin formation during deficiencies of nitrogen, phosphorus and potassium in seedlings of Zea mays Linn. var. ES 1. Z. Pflanzenphysiol. 1972, 66, 251–253. [Google Scholar] [CrossRef]
- Yuan, Y.; Chiu, L.-W.; Li, L. Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 2009, 230, 1141–1153. [Google Scholar] [CrossRef]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Verzeaux, J.; Hirel, B.; Dubois, F.; Lea, P.J.; Tétu, T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 2017, 264, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Parry, C.; Blonquist, J.M., Jr.; Bugbee, B. In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef]
- Van den Berg, A.K.; Perkins, T.D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves. HortScience 2005, 40, 685–686. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.O. Extractable Chloride, Nitrate, Orthophosphate, Potassium, and Sulfate-Sulfur in Plant Tissue: 2% Acetic Acid Extraction. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 115–118. [Google Scholar]
- Prokopy, W.R. Phosphorus in Acetic Acid Extracts; Lachat Instruments: Milwaukee, WI, USA, 1995. [Google Scholar]
- Jones, B.J.J. Extraction of Chloride (Cl), Nitrate (NO3), Orthophosphate (PO4), Potassium (K), and Sulfate (SO4) from Plant Tissue Using 2% Acetic Acid. In Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001; pp. 228–229. [Google Scholar]
- Nakagawa, S.; Cuthill, I.C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 2007, 82, 591–605. [Google Scholar] [CrossRef]
- Poorter, H.; Garnier, E. Plant growth analysis: An evaluation of experimental design and computational methods. J. Exp. Bot. 1996, 47, 1343–1351. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W.A.; Poorter, H. Avoiding bias in calculations of relative growth rate. Ann. Bot. 2002, 90, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerkhoff, A.J.; Enquist, B. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521. [Google Scholar] [CrossRef]
- Johnstone, P.; Hartz, T.; Cahn, M.; Johnstone, M. Lettuce response to phosphorus fertilization in high phosphorus soils. HortScience 2005, 40, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Mampholo, B.M.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J. Food Qual. 2016, 39, 805–815. [Google Scholar] [CrossRef]
- Zhang, G.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. Plant growth and photosynthesis response to low potassium conditions in three lettuce (Lactuca sativa) types. Hortic. J. 2017. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, M.; Yamauchi, T.; Takahama, M.; Goto, M.; Mikano, S.; Yamaguchi, Y.; Tanaka, Y.; Ohno, S.; Koeda, S.; Doi, M. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla. Plant Cell Rep. 2013, 32, 601–609. [Google Scholar] [CrossRef]
- Simko, I.; Hayes, R.J.; Furbank, R.T. Non-destructive phenotyping of lettuce plants in early stages of development with optical sensors. Front. Plant Sci. 2016, 7, 1985. [Google Scholar] [CrossRef] [Green Version]
- Gurdon, C.; Poulev, A.; Armas, I.; Satorov, S.; Tsai, M.; Raskin, I. Genetic and phytochemical characterization of lettuce flavonoid biosynthesis mutants. Sci. Rep. 2019, 9, 3305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamo, B.E.; Hayes, R.J.; Truco, M.J.; Puri, K.D.; Michelmore, R.W.; Subbarao, K.V.; Simko, I. The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theor. Appl. Genet. 2019, 132, 2439–2460. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Tao, R.; Liu, W.; Yu, C.; Yue, Z.; He, S.; Lavelle, D.; Zhang, W.; Zhang, L.; An, G. Characterization of four polymorphic genes controlling red leaf colour in lettuce that have undergone disruptive selection since domestication. Plant Biotechnol. J. 2020, 18, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ercoli, L.; Mariotti, M.; Masoni, A.; Massantini, F. Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. Eur. J. Agron. 1993, 2, 113–117. [Google Scholar] [CrossRef]
- Makino, A.; Osmond, B. Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol. 1991, 96, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Lavakush; Yadav, J.; Verma, J.P.; Jaiswal, D.K.; Kumar, A. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol. Eng. 2014, 62, 123–128. [Google Scholar] [CrossRef]
- Vafadar, F.; Amooaghaie, R.; Otroshy, M. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J. Plant Interact. 2014, 9, 128–136. [Google Scholar] [CrossRef]
Treatment | Ammonium Nitrate z (g) | Phosphate y (g) | Potash x (g) | Micronutrients w (mL) |
---|---|---|---|---|
NPK (control) | 6 | 3 | 2.3 | 3 |
nPK | 2 | 3 | 2.3 | 3 |
PK | 0 | 3 | 2.3 | 3 |
NK | 6 | 0 | 2.3 | 3 |
NP | 6 | 3 | 0 | 3 |
Descriptor | Lb FW | Lb SPAD | Lb ACI | Lb N | Lb P | Lb K |
---|---|---|---|---|---|---|
Effect Size | ω 2 z | |||||
Model | 0.937 *** | 0.726 *** | 0.908 *** | 0.894 *** | 0.922 *** | 0.847 *** |
Accession | 0.076 *** | 0.377 *** | 0.725 *** | 0.108 *** | 0.031 *** | 0.320 *** |
Treatment | 0.852 *** | 0.316 *** | 0.037 *** | 0.759 *** | 0.892 *** | 0.435 *** |
Interaction | 0.009 * | 0.032 * | 0.146 *** | 0.027 *** | 0.000 | 0.092 *** |
Accessions | Mean y | |||||
Annapolis | 3.68 b | 5.08 ab | 5.48 a | 1.88 bc | −1.21 ab | 1.79 b |
B. Barrage | 3.88 ab | 4.83 b | 2.30 f | 1.54 d | −1.65 c | 1.47 c |
Darkland | 4.16 a | 5.01 b | 2.73 de | 1.50 d | −1.49 bc | 1.57 c |
Eruption | 4.00 ab | 4.92 b | 4.26 b | 1.84 c | −1.16 a | 2.24 a |
La Brillante | 3.86 ab | 4.40 c | 1.75 g | 2.07 ab | −1.09 a | 2.14 a |
Merlot | 3.82 ab | 4.32 c | 3.73 c | 1.95 bc | −1.03 a | 2.11 a |
Salinas | 3.75 b | 4.93 b | 2.39 ef | 1.94 bc | −1.26 ab | 2.12 a |
UC96US23 | 2.63 c | 5.28 a | 2.96 d | 2.18 a | −1.17 a | 2.16 a |
Treatments | Mean | |||||
NPK | 5.03 a | 5.02 a | 3.06 bc | 2.16 b | −0.60 a | 2.22 a |
nPK | 4.53 b | 4.94 ab | 3.07 bc | 1.80 c | −0.71 a | 2.28 a |
PK | 1.60 d | 4.32 c | 2.94 c | 0.78 d | −1.26 b | 1.95 b |
NK | 2.42 c | 4.85 b | 3.70 a | 2.36 a | −3.18 c | 1.94 b |
NP | 5.02 a | 5.11 a | 3.23 b | 2.21 b | −0.53 a | 1.36 c |
Accession | Treatment z | Lb FW | Lb SPAD | Lb ACI | Lb N | Lb P | Lb K |
---|---|---|---|---|---|---|---|
Annapolis | NPK | 4.97 a–ey | 5.28 a–f | 4.69 b–e | 2.17 b–g | −0.62 a–d | 2.12 a–i |
B. Barrage | NPK | 5.37 a–d | 5.15 a–g | 2.62 j–o | 1.59 g–j | −1.11 b–f | 1.76 g–m |
Darkland | NPK | 5.93 a | 5.31 a–e | 3.07 h–l | 1.77 e–i | −0.74 a–f | 1.87 e–m |
Eruption | NPK | 5.13 a–d | 5.06 a–g | 3.63 e–j | 2.21 a–f | −0.52 a–c | 2.21 a–h |
La Brillante | NPK | 5.02 a–d | 4.72 c–j | 1.93 m–p | 2.54 a–c | −0.33 ab | 2.57 a |
Merlot | NPK | 4.86 a–f | 4.28 h–l | 2.80 i–n | 2.37 a–e | −0.21 a | 2.43 a–d |
Salinas | NPK | 5.09 a–d | 5.01 a–h | 2.45 k–p | 2.22 a–f | −0.63 a–d | 2.41 a–e |
UC96US23 | NPK | 3.90 e–h | 5.39 a–d | 3.29 g–k | 2.38 a–d | −0.61 a–d | 2.36 a–f |
Annapolis | nPK | 4.43 c–g | 5.13 a–g | 4.96 b–d | 1.86 d–i | −0.60 a–d | 1.97 c–l |
B. Barrage | nPK | 4.27 d–g | 5.01 a–h | 2.44 k–p | 1.55 h–j | −1.02 a–f | 1.84 f–m |
Darkland | nPK | 4.69 b–g | 5.16 a–g | 2.61 j–o | 1.36 i–k | −0.90 a–f | 2.20 a–h |
Eruption | nPK | 4.92 a–f | 5.05 a–g | 4.00 d–h | 1.72 f–i | −0.69 a–e | 2.55 ab |
La Brillante | nPK | 4.68 b–g | 4.46 g–l | 1.69 n–p | 1.96 c–h | −0.59 a–d | 2.50 a–c |
Merlot | nPK | 4.66 b–g | 4.22 i–l | 3.13 h–l | 1.98 c–h | −0.53 a–c | 2.42 a–d |
Salinas | nPK | 4.72 b–g | 5.09 a–g | 2.61 j–o | 1.82 d–i | −0.79 a–f | 2.42 a–d |
UC96US23 | nPK | 3.83 f–i | 5.44 a–c | 3.16 h–l | 2.15 b–h | −0.58 a–d | 2.33 a–f |
Annapolis | PK | 1.43 m–n | 4.55 f–k | 5.78 b | 1.11 j–l | −1.06 a–f | 2.14 a–i |
B. Barrage | PK | 2.10 k–m | 4.15 j–l | 1.50 o–p | 0.39 m–n | −1.57 f | 1.41 m–o |
Darkland | PK | 1.85 k–n | 4.13 j–l | 1.72 n–p | 0.28 n | −1.49 ef | 1.17 n–p |
Eruption | PK | 1.78 l–n | 4.46 g–l | 4.59 c–f | 0.88 k–m | −1.06 a–f | 2.60 a |
La Brillante | PK | 1.40 m–n | 3.95 k–l | 1.38 p | 0.88 k–n | −1.21 c–f | 1.92 d–m |
Merlot | PK | 1.71 l–n | 3.82 l | 4.42 c–g | 0.91 k–m | −1.08 b–f | 2.30 a–g |
Salinas | PK | 1.74 l–n | 4.66 d–k | 2.04 l–p | 0.75 l–n | −1.39 d–f | 1.90 d–m |
UC96US23 | PK | 0.80 n | 4.81 b–j | 2.11 l–p | 1.07 j–l | −1.26 c–f | 2.19 a–h |
Annapolis | NK | 2.31 k–m | 5.09 a–g | 7.08 a | 2.21 a–f | −3.22 g | 1.74 h–m |
B. Barrage | NK | 2.54 k–l | 4.60 e–k | 2.04 l–p | 2.22 a–f | −3.65 g | 1.48 l–o |
Darkland | NK | 2.77 i–l | 4.98 a–h | 2.76 j–n | 2.26 a–f | −3.56 g | 1.51 k–n |
Eruption | NK | 2.88 h–k | 4.95 a–h | 5.26 bc | 2.21 a–f | −3.03 g | 2.33 a–f |
La Brillante | NK | 2.73 j–l | 4.45 g–l | 1.92 m–p | 2.73 ab | −2.89 g | 2.06 a–j |
Merlot | NK | 2.91 h–k | 4.58 e–k | 5.22 bc | 2.12 c–h | −3.00 g | 1.94 d–m |
Salinas | NK | 2.37 k–m | 4.98 a–h | 2.48 j–p | 2.36 a–e | −3.26 g | 2.03 b–k |
UC96US23 | NK | 0.89 n | 5.16 a–g | 2.81 i–n | 2.78 a | −2.85 g | 2.40 a–e |
Annapolis | NP | 5.27 a–d | 5.37 a–d | 4.88 b–d | 2.04 c–h | −0.55 a–d | 0.96 op |
B. Barrage | NP | 5.12 a–d | 5.27 a–f | 2.89 h–m | 1.96 c–i | −0.91 a–f | 0.84 p |
Darkland | NP | 5.53 ab | 5.49 ab | 3.49 f–k | 1.86 d–i | −0.74 a–f | 1.10 n–p |
Eruption | NP | 5.31 a–d | 5.10 a–g | 3.84 d–i | 2.19 a–g | −0.50 a–c | 1.50 k–o |
La Brillante | NP | 5.44 a–c | 4.44 g–l | 1.83 m–p | 2.23 a–f | −0.44 a–c | 1.63 i–n |
Merlot | NP | 4.94 a–e | 4.70 d–j | 3.10 h–l | 2.38 a–d | −0.31 ab | 1.47 l–o |
Salinas | NP | 4.82 b–f | 4.91 a–i | 2.38 k–p | 2.55 a–c | −0.23 a | 1.86 f–m |
UC96US23 | NP | 3.73 g–j | 5.58 a | 3.45 f–k | 2.50 a–c | −0.56 a–d | 1.54 j–n |
Treatmentz | Accessiony | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trait 1 | Trait 2 | All | NPK | nPK | PK | NK | NP | Annapolis | B. Barrage | Darkland | Eruption | La Brillante | Merlot | Salinas | UC96US23 |
Lb FW | Lb SPAD | 0.41 **x | 0.08 | −0.25 | −0.15 | −0.32 | −0.29 | 0.81 ** | 0.82 ** | 0.78 ** | 0.58 ** | 0.57 ** | 0.45 * | 0.44 | 0.79 ** |
Lb FW | Lb ACI | −0.03 | −0.05 | −0.09 | −0.06 | −0.02 | 0.14 | −0.71 ** | 0.81 ** | 0.75 ** | −0.72 ** | 0.44 | −0.62 ** | 0.37 | 0.79 ** |
Lb FW | Lb N | 0.40 ** | −0.51 ** | −0.31 | −0.48 ** | −0.54 ** | −0.43* | 0.51 * | 0.39 | 0.44 | 0.62 ** | 0.55 * | 0.78 ** | 0.56 * | 0.35 |
Lb FW | Lb P | 0.56 ** | −0.23 | −0.19 | −0.17 | −0.17 | −0.20 | 0.55 * | 0.62 ** | 0.58 ** | 0.54 * | 0.61 ** | 0.56 * | 0.68 ** | 0.77 ** |
Lb FW | Lb K | −0.11 | −0.46 ** | 0.09 | −0.32 | −0.30 | −0.33 | −0.43 | −0.05 | 0.29 | −0.52 * | 0.21 | −0.14 | 0.43 | −0.23 |
Lb SPAD | Lb ACI | 0.30 ** | 0.54 ** | 0.34 | 0.10 | 0.69 ** | 0.31 | −0.22 | 0.92 ** | 0.82 ** | −0.14 | 0.80 ** | 0.30 | 0.69 ** | 0.85 ** |
Lb SPAD | Lb N | 0.41 ** | −0.28 | −0.18 | 0.17 | −0.20 | 0.05 | 0.65 ** | 0.55 * | 0.71 ** | 0.61 ** | 0.67 ** | 0.54 * | 0.38 | 0.54 * |
Lb SPAD | Lb P | 0.09 | −0.36 * | −0.21 | −0.13 | −0.29 | 0.04 | 0.11 | 0.42 | 0.24 | 0.14 | 0.21 | −0.16 | −0.03 | 0.38 |
Lb SPAD | Lb K | −0.14 | −0.35 * | −0.27 | 0.12 | −0.41 * | 0.20 | −0.50 * | −0.08 | 0.25 | −0.26 | 0.42 | −0.55 * | 0.26 | −0.40 |
Lb ACI | Lb N | 0.11 | −0.01 | 0.04 | 0.50 ** | −0.23 | −0.47 ** | −0.02 | 0.59 ** | 0.75 ** | −0.12 | 0.75 ** | −0.39 | 0.32 | 0.69 ** |
Lb ACI | Lb P | −0.11 | 0.01 | 0.11 | 0.49 ** | −0.11 | 0.09 | −0.86 ** | 0.42 | 0.21 | −0.75 ** | 0.01 | −0.76 ** | −0.10 | 0.40 |
Lb ACI | Lb K | 0.04 | −0.18 | −0.20 | 0.62 ** | −0.42 * | 0.04 | 0.08 | −0.17 | 0.08 | 0.37 | 0.26 | −0.15 | 0.12 | −0.30 |
Lb N | Lb P | −0.02 | 0.90 ** | 0.87 ** | 0.83 ** | 0.87 ** | 0.74 ** | −0.11 | −0.25 | −0.26 | −0.05 | −0.12 | 0.21 | 0.08 | −0.13 |
Lb N | Lb K | 0.19 * | 0.97 ** | 0.62 ** | 0.86 ** | 0.87 ** | 0.65 ** | −0.16 | −0.01 | 0.26 | −0.39 | 0.33 | −0.18 | 0.27 | 0.09 |
Lb P | Lb K | 0.18 * | 0.88 ** | 0.72 ** | 0.77 ** | 0.81 ** | 0.88 ** | 0.05 | 0.05 | 0.24 | −0.13 | 0.30 | 0.23 | 0.29 | −0.22 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simko, I. Genetic Variation in Response to N, P, or K Deprivation in Baby Leaf Lettuce. Horticulturae 2020, 6, 15. https://doi.org/10.3390/horticulturae6010015
Simko I. Genetic Variation in Response to N, P, or K Deprivation in Baby Leaf Lettuce. Horticulturae. 2020; 6(1):15. https://doi.org/10.3390/horticulturae6010015
Chicago/Turabian StyleSimko, Ivan. 2020. "Genetic Variation in Response to N, P, or K Deprivation in Baby Leaf Lettuce" Horticulturae 6, no. 1: 15. https://doi.org/10.3390/horticulturae6010015
APA StyleSimko, I. (2020). Genetic Variation in Response to N, P, or K Deprivation in Baby Leaf Lettuce. Horticulturae, 6(1), 15. https://doi.org/10.3390/horticulturae6010015