Suitability of Hydroponically-Grown Rumex acetosa L. as Fresh-Cut Produce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation and Experimental Setup
2.2. Total Phenolic and Total Flavonoid Contents
2.3. Total Chlorophyll and Total Carotenoid Contents
2.4. Total Ascorbic Acid Content
2.5. Antioxidant Capacity Assay
2.6. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, N.J.; Choi, J.H.; Koo, B.S.; Ryu, S.Y.; Han, Y.H.; Lee, S.I.; Lee, D.U. Antimutagenicity and cytotoxicity of the constituents from the aerial parts of Rumex acetosa. Biol. Pharm. Bull. 2005, 28, 2158–2161. [Google Scholar] [CrossRef] [Green Version]
- Guarrera, P.M.; Savo, V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J. Ethnopharmacol. 2013, 146, 659–680. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Kucekova, Z.; Mlcek, J.; Humpolicek, P.; Rop, O.; Valasek, P.; Saha, P. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules 2011, 16, 9207–9217. [Google Scholar] [CrossRef] [PubMed]
- Schunko, C.; Grasser, S.; Vogl, C.R. Explaining the resurgent popularity of the wild: Motivations for wild plant gathering in the Biosphere Reserve Grosses Walsertal, Austria. J. Ethnobiol. Ethnomed. 2015, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Bicker, J.; Petereit, F.; Hensel, A. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L. Fitoterapia 2009, 80, 483–495. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agricultural, Food and Forestry Policies. Italian Ministerial Decree n. 3746/2014. Gazzetta Ufficiale della Repubblica Italiana, 12 Agosto 2014; Ministry of Agricultural, Food and Forestry Policies: Rome, Italy, 2014.
- Watada, A.E.; Qi, L. Quality of fresh-cut produce. Postharvest Biol. Technol. 1999, 15, 201–205. [Google Scholar] [CrossRef]
- Yano, M.; Saijo, R. New preservation method for shredded cabbage with special reference to non-browning cultivar. J. Jpn. Soc. Cold Reserv. Food 1987, 13, 11–15. [Google Scholar]
- Landi, M.; Degl’Innocenti, E.; Guglielminetti, L.; Guidi, L. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce. J. Sci. Food Agric. 2013, 93, 1814–1819. [Google Scholar] [CrossRef]
- Orsini, F.; Fecondini, M.; Mezzetti, M.; Michelon, N.; Gianquinto, G. Simplified hydroponic floating systems for vegetable production in Trujillo, Peru. In Proceedings of the II International Conference on Landscape and Urban Horticulture, Bologna, Italy, 9–13 June 2009. [Google Scholar]
- Incrocci, L.; Lorenzini, O.; Malorgio, F.; Pardossi, A.; Tognoni, F. Valutazione quanti-qualitativa della produzione di rucola (Eruca vesicaria L. Cav.) e basilico (Ocimum basilicum L.) ottenuta in suolo e floating system utilizzando acque irrigue con differenti contenuti di NaCl. Italus Hortus 2001, 8, 92–97. [Google Scholar]
- Cantos, E.; Tudela, J.A.; Gil, M.I.; Espín, J.C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J. Agric. Food Chem. 2002, 50, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- García-Gimeno, R.M.; Zurera-Cosano, G. Determination of ready-to-eat vegetable salad shelf-life. Int. J. Food Microbiol. 1997, 36, 31–38. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Z.; Song, J.; Liu, X.; Jiao, X. Effects of different mowing treatments and stubble heights on the compensatory growth and quality of lettuce (Lactuca sativa L.). J. Hortic. Sci. Biotech. 2018, 93, 537–544. [Google Scholar] [CrossRef]
- Dewanto, V.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Li, M.; Ma, F.; Liang, D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simulataneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. ActaBiog. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pernice, R.; Scuderi, D.; Napolitano, A.; Fogliano, V.; Leonardi, C. Polyphenol composition and qualitative characteristics of fresh-cut lettuce in relation to cultivar, mulching, and storage. J. Hortic. Sci. Biotechnol. 2007, 82, 420–427. [Google Scholar] [CrossRef]
- Degl’Innocenti, E.; Pardossi, A.; Tognoni, F.; Guidi, L. Physiological basis of sensitivity to enzymatic browning in ‘lettuce’, ‘escarole’ and ‘rocket salad’ when stored as fresh-cut products. Food Chem. 2007, 104, 209–215. [Google Scholar] [CrossRef]
- Amodio, M.L.; Derossi, A.; Colelli, G. Modeling phenolic content during storage of cut fruit and vegetables: A consecutive reaction mechanism. J. Food Eng. 2014, 140, 1–8. [Google Scholar] [CrossRef]
- Bottino, A.; Degl’Innocenti, E.; Guidi, L.; Graziani, G.; Fogliano, V. Bioactive compounds during storage of fresh-cut spinach: The role of endogenous ascorbic acid in the improvement of product quality. J. Agric. Food Chem. 2009, 57, 2925–2931. [Google Scholar] [CrossRef]
- Castaner, M.; Gil, M.I.; Ruiz, M.V. Browning susceptibility of minimally processed ‘Baby’ and ‘Romaine’ lettuces. Eur. Food Res. Technol. 1999, 209, 52–56. [Google Scholar] [CrossRef]
- Ferrante, A.; Incrocci, L.; Maggini, R.; Serra, G.; Tognoni, F. Colour changes of fresh-cut leafy vegetables during storage. J. Food Agric. Environ. 2004, 2, 40–44. [Google Scholar]
- Matile, P.; Schellenberg, M.; Vicentini, F. Localization of chlorophyllase in the chloroplast envelope. Planta 1997, 201, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, S.Å.M.; Gertsson, U.E.; Olsson, M.E. Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). Sci. Food Agric. 2005, 86, 346–355. [Google Scholar] [CrossRef]
- Tsironi, T.; Dermesonlouoglou, E.; Giannoglou, M.; Gogou, E.; Katsaros, G.; Taoukis, P. Shelf-life prediction models for ready-to-eat fresh cut salads: Testing in real cold chain. Int. J. Food Microbiol. 2017, 240, 131–140. [Google Scholar] [CrossRef]
- Phillips, K.M.; Tarrago-Trani, M.T.; McGinty, R.C.; Rasor, A.S.; Haytowitz, D.B.; Pehrsson, P.R. Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. Sci. Food Agric. 2018, 98, 4191–4204. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Antioxidant potential and polyphenol content of selected food. Int. J. Food Prop. 2011, 14, 300–308. [Google Scholar] [CrossRef]
- Kongwong, P.; Boonyakiat, D.; Poonlarp, P. Extending the shelf life and qualities of baby cos lettuce using commercial precooling systems. Posthar. Biol. Tecnol. 2019, 150, 60–70. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Guidi, L. Suitability of Hydroponically-Grown Rumex acetosa L. as Fresh-Cut Produce. Horticulturae 2020, 6, 4. https://doi.org/10.3390/horticulturae6010004
Ceccanti C, Landi M, Incrocci L, Pardossi A, Guidi L. Suitability of Hydroponically-Grown Rumex acetosa L. as Fresh-Cut Produce. Horticulturae. 2020; 6(1):4. https://doi.org/10.3390/horticulturae6010004
Chicago/Turabian StyleCeccanti, Costanza, Marco Landi, Luca Incrocci, Alberto Pardossi, and Lucia Guidi. 2020. "Suitability of Hydroponically-Grown Rumex acetosa L. as Fresh-Cut Produce" Horticulturae 6, no. 1: 4. https://doi.org/10.3390/horticulturae6010004
APA StyleCeccanti, C., Landi, M., Incrocci, L., Pardossi, A., & Guidi, L. (2020). Suitability of Hydroponically-Grown Rumex acetosa L. as Fresh-Cut Produce. Horticulturae, 6(1), 4. https://doi.org/10.3390/horticulturae6010004