Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nursery Production Survey
2.2. Greenhouse Experiment
2.2.1. Potting Media and Analysis
2.2.2. Germination Evaluation
2.2.3. Seedling Growth and Budding Evaluation
2.3. Statistical Analyses
3. Results and Discussion
3.1. Nursery Production Survey
3.2. Greenhouse Experiment
3.2.1. Potting Media Analysis
3.2.2. Germination Evaluation
3.2.3. Seedling Growth and Budding Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castle, W.S.; Tucker, D.P.H.; Krezdorn, A.H.; Youtsey, C.O. Rootstocks for Florida Citrus: Rootstock Selection, the First Step to Success; University of Florida, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 1993. [Google Scholar]
- Zhou, G.F.; Peng, S.A.; Liu, Y.Z.; Wei Han, Q.J.; Islam, M.Z. The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 2014, 28, 295–307. [Google Scholar] [CrossRef]
- Castle, W.S.; Wutscher, H.K.; Youtsey, C.O.; Pelosi, R.R. Citrumelos as rootstocks for Florida citrus. Proc. Fla. State Hort. Soc. 1988, 101, 28–33. [Google Scholar]
- Stover, E.; Inch, S.; Richardson, M.L.; Hall, D.G. Conventional citrus of some scion/rootstock combinations show field tolerance under high Huanglongbing disease pressure. HortScience 2016, 51, 127–132. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, F.; Syvertsen, J.P. Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedling is affected by CO2 enrichment during growth. J. Am. Soc. Hort. Sci. 2006, 131, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Cameron, J.W.; Soost, R.K.; Frost, H.B. The horticultural significance of the nucellar embryony in citrus. Int. Org. Citrus Virol. Conf. Proc. 1951, 1, 191–196. [Google Scholar]
- Grosser, J.W.; Gmitter, F.G.J. Protoplast fusion and citrus improvement. In Plant Breeding Reviews; Janick, J., Ed.; Timber Press, Inc: Portland, OR, USA, 1990; pp. 339–374. [Google Scholar]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Bassanezi, R.B.; Montesino, L.H.; Gasparoto, M.C.G.; Bergamin Filho, A.; Amorim, L. Yield loss caused by huanglongbing in different sweet orange cultivars in São Paulo, Brazil. Eur. J. Plant Path. 2011, 130, 577–586. [Google Scholar] [CrossRef]
- Tang, L.; Chhajed, S.; Vashisth, T. Preharvest fruit drop in huanglongbing-affected ‘Valencia’ sweet orange. J. Am. Soc. Hort. Sci. 2019, 144, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Vashisth, T.; Grosser, J. Comparison of controlled release fertilizer (CRF) for newly planted sweet orange trees under Huanglongbing prevalent conditions. J. Hort. 2018, 5, 244–249. [Google Scholar] [CrossRef]
- Vashisth, T.; Vincent, C. Living with yellow dragon disease. Citrus Ind. 2018, 99, 10–13. [Google Scholar]
- Gottwald, T.R.; Graham, J.H.; Irey, M.S.; McCollum, T.G.; Wood, B.W. Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Prot. 2012, 36, 73–82. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Tolerance of the trifoliate citrus hybrid US-897 (Citrus reticulata Blanco × Poncirus trifoliata L. Raf.) to Huanglongbing. HortScience 2011, 46, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Bowman, K.D.; McCollum, G.; Albrecht, U. Performance of ‘Valencia’ orange [Citrus sinensis (L.) Osbeck] on 17 rootstocks in a trial severely affected by huanglongbing. Sci. Hort. 2016, 201, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Citrus Budwood Annual Report 2015–2016; Bureau of Citrus Budwood Registration, Florida Department of Agriculture and Consumer Science: Winter Haven, FL, USA, 2016.
- Bowman, K.D.; Albrecht, U. Efficient propagation of citrus rootstocks by stem cuttings. Sci. Hort. 2017, 225, 681–688. [Google Scholar] [CrossRef]
- Boodley, J.W.; Sheldrake, R. Cornell Peat-Lite Mixes for Commercial Growing; Extension Publication of the New York State College of Agriculture and Life Sciences; A Statutory College of the State University, Cornell University: Ithaca, NY, USA, 1972. [Google Scholar]
- Bunt, A.C. Media and Mixes for Container-Grown Plants, 2nd ed.; Unwin Hyman: London, UK, 1988. [Google Scholar]
- Yu, Z.; Akridge, J.T.; Dana, M.N.; Lowenberg-DeBoer, J. An Economic evaluation of horticultural alfalfa as a substitute for sphagnum peat moss. Agribusiness 1990, 6, 443–462. [Google Scholar] [CrossRef]
- Ozores-Hampton, M.; Vavrina, C.S.; Obreza, T.A. Yard trimming-biosolids compost: Possible alternative to sphagnum peat moss in tomato transplant production. Compost Sci. Util. 1999, 7, 42–49. [Google Scholar] [CrossRef]
- Raviv, M.; Chen, Y.; Inbar, Y. Peat and peat substitutes as growth media for container-grown plants. In The Role of Organic Matter in Modern Agriculture; Springer: Dordrecht, The Netherlands, 1986; pp. 257–287. [Google Scholar]
- Stoffella, P.J.; Li, Y.; Calvert, D.V.; Graetz, D.A. Soilless growing media amended with sugarcane filtercake compost for citrus rootstock production. Compost Sci. Util. 1996, 4, 21–25. [Google Scholar] [CrossRef]
- Litvany, M.; Ozores-Hampton, M. Compost use in commercial citrus in Florida. HortTechnology 2002, 12, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Ozores-Hampton, M.; Obreza, T.A.; Hochmuth, G. Using composted wastes on Florida vegetable crops. HortTechnology 1998, 8, 130–137. [Google Scholar] [CrossRef]
- Roose, M.I. Rootstocks. In Citrus Production Manual; Ferguson, L., Grafton-Cardwell, E.E., Eds.; UCANR Publications: Riverside, CA, USA, 2014; Volume 3539. [Google Scholar]
- Mademba-Sy, F.; Lemerre-Desprez, Z.; Lebegin, S. Use of flying dragon trifoliate orange as dwarfing rootstock for citrus under tropical climatic conditions. HortScience 2012, 47, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Ranal, M.; De Santana, D.G. How and why to measure the germination process? Rev. Bras. Bot. 2006, 29. [Google Scholar] [CrossRef] [Green Version]
- Mazuela, P.; Salas, M.D.C.; Urrestarazu, M. Vegetable waste compost as substrate for melon. Commun. Soil Sci. Plant Anal. 2005, 36, 1557–1572. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Martínez, G.A.; del Carmen Salas, M. Almond shell waste: Possible local rockwool substitute in soilless crop culture. Sci. Hort. 2005, 103, 453–460. [Google Scholar] [CrossRef]
- Akhtar, M.; Javed, H.N.A.; Shahzad, K.; Arshad, M. Role of plant growth promoting rhizobacteria applied in combination with compost and mineral fertilizers to improve growth and yield of wheat (Triticum aestivum L.). Pak. J. Bot. 2009, 41, 381–390. [Google Scholar]
- Schmidt, H.P.; Kammann, C.; Niggli, C.; Evangelou, M.W.; Mackie, K.A.; Abiven, S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agric. Ecosys. Environ. 2014, 191, 117–123. [Google Scholar] [CrossRef]
- Leroy, B.L.M.; Herath, H.M.S.K.; Sleutel, S.; De Neve, S.; Gabriels, D.; Reheul, D.; Moens, M. The quality of exogenous organic matter: Short-term effects on soil physical properties and soil organic matter fractions. Soil Use Man. 2008, 24, 139–147. [Google Scholar] [CrossRef]
- Maust, B.E.; Williamson, J.G. Nitrogen nutrition of containerized citrus nursery plants. J. Am. Soc. Hort. Sci. 1994, 119, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Guazzelli, L.; Davies, F.S.; Ferguson, J.J.; Castle, W.S. Nitrogen nutrition and growth of ‘Hamlin’ orange nursery trees on Swingle citrumelo rootstock. HortTechnology 1995, 5, 147–151. [Google Scholar] [CrossRef]
- Ma, P.Q.; Tang, X.L.; Wen, W.; Wei, Y.R.; Peng, C.J. Effects of the stroma nutritive soil on the growth of the citrus seedling. South China Fruits 2000, 29, 6–7. [Google Scholar]
Rank | 2016 | 2015 | 2014 | 2013 | 2012 |
---|---|---|---|---|---|
1 | Kuharske | Kuharske | Swingle | Swingle | Swingle |
2 | X-639 | X-639 | Kuharske | Sour Orange | Kuharske |
3 | Sour Orange | Swingle | Sour Orange | Kuharske | Sour Orange |
4 | US-897 | Sour Orange | X-639 | Carrizo | Carrizo |
5 | Swingle | Cleopatra | US-802 | US-812 | X-639 |
6 | US-942 | US-802 | US-812 | X-639 | Volkamer |
7 | US-802 | US-897 | US-897 | US-897 | Cleopatra |
8 | US-812 | US-942 | Cleopatra | Cleopatra | US-802 |
9 | Cleopatra | US-812 | Carrizo | US-802 | US-812 |
10 | UFR-04 | C-35 Citrange | Volkamer | Volkamer | Kinkoji |
Treatments | Peat Moss (%) | Perlite (%) | Vermiculite (%) | Compost (%) |
---|---|---|---|---|
T1 | 50 | 40 | 10 | 0 |
T2 | 37.5 | 40 | 10 | 12.5 |
T3 | 25 | 40 | 10 | 25 |
T4 | 12.5 | 40 | 10 | 37.5 |
T5 | 0 | 40 | 10 | 50 |
Characteristic | T1 | T2 | T3 | T4 | T5 | p-Value |
---|---|---|---|---|---|---|
pH | 6.0 | 5.9 | 6.1 | 6.4 | 6.7 | ns |
EC (dSm-2) | 0.56 c | 1.25 bc | 2.13 bc | 2.91 b | 4.06 a | <0.001 |
OM (%) | 34.6 ab | 39.0 a | 33.1 b | 32.3 b | 28.5 c | ns |
N (ppm) | 39.55 c | 45.15 c | 78.75 b | 75.25 b | 112.70 a | <0.001 |
P (ppm) | 3.70 c | 20.78 a | 19.73 a | 20.25 a | 9.57 b | 0.032 |
K (ppm) | 10.1 e | 48.3 d | 102.1 c | 175.6 b | 252.7 a | <0.001 |
Mg (ppm) | 5.66 c | 17.82 c | 34.94 bc | 44.41 b | 61.58 a | 0.027 |
Ca (ppm) | 12.63 d | 30.00 c | 58.78 bc | 79.16 b | 121.40 a | 0.012 |
S (ppm) | 39.02 d | 61.12 cd | 85.84 bc | 107.10 b | 147.80 a | 0.006 |
B (ppm) | 0.14 d | 0.33 c | 0.48 bc | 0.58 b | 0.88 a | 0.034 |
Zn (ppm) | 0.02 | 0.06 | 0.03 | 0.03 | 0.05 | ns |
Mn (ppm) | 0.03 | 0.07 | 0.09 | 0.07 | 0.03 | ns |
Fe (ppm) | 0.17 | 0.4 | 0.13 | 0.26 | 0.02 | ns |
Cu (ppm) | 0.01 | 0.02 | 0.03 | 0.04 | 0.03 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vashisth, T.; Chun, C.; Ozores Hampton, M. Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants. Horticulturae 2020, 6, 8. https://doi.org/10.3390/horticulturae6010008
Vashisth T, Chun C, Ozores Hampton M. Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants. Horticulturae. 2020; 6(1):8. https://doi.org/10.3390/horticulturae6010008
Chicago/Turabian StyleVashisth, Tripti, Changpin Chun, and Monica Ozores Hampton. 2020. "Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants" Horticulturae 6, no. 1: 8. https://doi.org/10.3390/horticulturae6010008
APA StyleVashisth, T., Chun, C., & Ozores Hampton, M. (2020). Florida Citrus Nursery Trends and Strategies to Enhance Production of Field-Transplant Ready Citrus Plants. Horticulturae, 6(1), 8. https://doi.org/10.3390/horticulturae6010008