Innovation in Propagation of Fruit, Vegetable and Ornamental Plants
Abstract
:1. Introduction
2. Papers in This Special Issue
2.1. Fruit Crops
2.2. Vegetable Crops
2.3. Ornalmental and Medicinal Crops
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marino, S.R.; Williamson, J.G.; Olmstead, J.W.; Harmon, P.F. Vegetative growth of three southern highbush blueberry cultivars obtained from micropropagation and softwood cuttings in two Florida locations. HortScience 2014, 49, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Meiners, J.; Schwab, M.; Szankowski, I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult. 2007, 89, 169–176. [Google Scholar] [CrossRef]
- Del Valle-Echevarria, A.R.; Kantar, M.B.; Branca, J.; Moore, S.; Frederiksen, M.K.; Hagen, L.; Hussain, T.; Baumler, D.J. Aeroponic Cloning of Capsicum spp. Horticulturae 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- King, S.R.; Davis, A.R.; Liu, W.; Levi, A. Grafting for disease resistance. HortScience 2008, 43, 1673–1676. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.R.; Murashige, T. Tissue culture propagation of tropical foliage plants. In Vitro Cell. Dev. Biol. Anim. 1976, 12, 797–813. [Google Scholar] [CrossRef]
- Vinterhalter, D. In vitro Propagation of Green-Foliaged Dracaena-Fragrans Ker. Plant Cell Tissue Org. 1989, 17, 13–19. [Google Scholar]
- Vinterhalter, D.; Vinterhalter, B. Micropropagation of Dracaena Species. In Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 1997; Volume 40, pp. 131–146. [Google Scholar]
- Tian, L.; Tan, H.Y.; Zhang, L. Stem segment culture and tube propagation of Dracaena saneriana cv. virscens. Acta Hortic. Sin. 1999, 26, 133–134. [Google Scholar]
- Blanco, M.; Valverde, R.; Gomez, L. Micropropagation of Dracaena deremensis. Agron. Costarric. 2004, 28, 7–15. [Google Scholar]
- Koyama, R.; Aparecido Ribeiro Júnior, W.; Mariani Zeffa, D.; Tadeu Faria, R.; Mitsuharu Saito, H.; Simões Azeredo Gonçalves, L.; Ruffo Roberto, S. Association of indolebutyric acid with Azospirillum brasilense in the rooting of herbaceous blueberry cuttings. Horticulturae 2019, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Mariosa, T.N.; Melloni, E.G.P.; Melloni, R.; Ferreira, G.M.R.; Souza, S.M.P.; Silva, L.F.O. Rhizobacteria and development of seedlings from semi-hardwood cuttings of olive (Olea europaea L.). Revista de Ciências Agrárias 2017, 60, 302–306. [Google Scholar] [CrossRef]
- Khademian, R.; Asghari, B.; Sedaghati, B.; Yaghoubian, Y. Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Ind. Crops. Prod. 2019, 136, 129–139. [Google Scholar] [CrossRef]
- Cassán, F.; Diaz-Zorita, M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 2016, 103, 117–130. [Google Scholar] [CrossRef]
- Molina, R.; Rivera, D.; Mora, V.; López, G.; Rosas, S.; Spaepen, S.; Vanderleyden, J.; Cassán, F. Regulation of IAA biosynthesis in Azospirillum brasilense under environmental stress conditions. Curr. Microbiol. 2018, 75, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.; Mora, V.; Lopez, G.; Rosas, S.; Spaepen, S.; Vanderleyden, J.; Cassan, F. New insights into indole-3-acetic acid metabolism in Azospirillum brasilense. J. Appl. Microbiol. Biochem. 2018, 125, 1774–1785. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; de la Osa, C.; Valderrama-Fernández, R.; Nogueira, M.A.; Megías, M.; Hungria, M. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol. 2018, 200, 1191–1203. [Google Scholar] [CrossRef]
- Gradziel, T.; Lampinen, B.; Preece, J.E. Propagation from basal epicormic meristems remediates an aging-related disorder in almond clones. Horticulturae 2019, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Kester, D.E. The clone in Horticulture. HortScience 1983, 18, 831–837. [Google Scholar]
- Skowcroft, W.R. Somaclonal Variation, the Myth of Clonal Uniformity. In Genetic Flux in Plants; Hohn, B., Dennis, E.S., Eds.; Springer: New York, NY, USA, 1985; pp. 217–245. [Google Scholar]
- Skirvin, R.M.; McPheeters, K.D.; Norton, M. Sources and frequency of somaclonal variation. HortScience 1994, 29, 1232–1237. [Google Scholar] [CrossRef]
- D’Aquila, P.; Rose, G.; Bellizzi, D.; Passarino, G. Epigenetics and aging. Maturitas 2013, 74, 130–136. [Google Scholar] [CrossRef]
- Fraga, M.F.; Rodriguez, R.; Canal, M.J. Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol. 2002, 22, 813–816. [Google Scholar] [CrossRef] [Green Version]
- Kester Dale, E.; Asay, R.N. Variability in noninfectious bud-failure of ‘Nonpareil’ almond. Location and environment. J. Am. Soc. Hortic. Sci. 1978, 103, 377–382. [Google Scholar]
- Fenton, C.A.L.; Kuniyuki, A.H.; Kester, D.E. Search for a viroid etiology for noninfectious bud failure in almond. HortScience 1988, 23, 1050–1053. [Google Scholar]
- Kester, D.E.; Gradziel, T.M. Genetic Disorders. In Almond Production Manual; Micke, W.C., Ed.; University of California: Oakland, CA, USA, 1996; pp. 76–87. [Google Scholar]
- Kester, D.E. Noninfectious Bud-Failure in Almond. In Virus Diseases and Disorders of Stone Fruits in North America; Fulton, R.W., Ed.; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1976; pp. 278–283. [Google Scholar]
- Kester, D.E. Noninfectious bud-failure, a nontransmissable inherited disorder in almond. I. Pattern of phenotypic inheritance. Proc. Am. Soc. Hortic. Sci. 1968, 92, 7–15. [Google Scholar]
- Kester, D.E. Noninfectious bud-failure, a nontransmissable inherited disorder in almond II. Progeny tests for bud-failure. Proc. Am. Soc. Hortic. Sci. 1968, 92, 16–28. [Google Scholar]
- Schuchovski, C.S.; Biasi, L.A. In Vitro establishment of ‘Delite’ rabbiteye blueberry microshoots. Horticulturae 2019, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Debnath, S.C. A scale-up system for lowbush blueberry micropropagation using a bioreactor. HortScience 2009, 44, 1962–1966. [Google Scholar] [CrossRef] [Green Version]
- Debnath, S.C. Temporary immersion and stationary bioreactors for mass propagation of true-to-type highbush, half-high, and hybrid blueberries (Vaccinium spp.). J. Hortic. Sci. Biotechnol. 2017, 92, 72–80. [Google Scholar] [CrossRef]
- Poletto, T.; Stefenon, V.M.; Poletto, I.; Muniz, M.F.B. Pecan propagation: Seed mass as a reliable tool for seed selection. Horticulturae 2018, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Cargnelutti Filho, A.; Poletto, T.; Muniz, M.F.B.; Baggiotto, C.; Poletto, I.; Fronza, D. Sampling design for height and diameter evaluation of pecan seedlings. Ciênc. Rural 2014, 44, 2151–2156. [Google Scholar] [CrossRef] [Green Version]
- Poletto, I.; Muniz, M.F.B.; Poletto, T.; Stefenon, V.M.; Baggiotto, C.; Ceconi, D.E. Germination and development of pecan cultivar seedlings by seed stratification. Pesqui. Agropecu. Bras. 2015, 50, 1232–1235. [Google Scholar] [CrossRef] [Green Version]
- Pereira, W.A.; Pereira, S.M.A.; Dias, D.C.F.S. Influence of seed size and water restriction on germination of soybean seeds and on early development of seedlings. J. Seed Sci. 2013, 35, 316–322. [Google Scholar] [CrossRef]
- Bispo, J.S.; Costa, D.C.C.; Gomes, S.E.V.; Oliveira, G.M.; Matias, J.R.; Ribeiro, R.C.; Dantas, B.F. Size and vigor of Anadenanthera colubrina (Vell.) Brenan seeds harvested in Caatinga areas. J. Seed Sci. 2017, 39, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Dalkiliç, Z. Effects of drying on germination rate of pecan seeds. J. Food Agric. Environ. 2013, 11, 879–882. [Google Scholar]
- Henery, M.L.; Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 2001, 92, 479–490. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Yang, Y.; Zhong, C.; Notaguchi, M.; Yu, W. A Susceptible scion reduces rootstock tolerance to Ralstonia solanacearum in grafted eggplant. Horticulturae 2019, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Nakaho, K.; Inoue, H.; Takayama, T.; Miyagawa, H. Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. J. Gen. Plant Pathol. 2004, 70, 115–119. [Google Scholar] [CrossRef]
- Seemüller, E.; Harries, H. Plant Resistance. Phytoplasmas: Genomes, Plant Hosts and Vectors; CAB International: Oxfordshire, UK, 2010; pp. 147–169. [Google Scholar]
- Liu, Y.; Jiang, F.; Zhang, N.; Wang, H.; Ai, X. Relationship between osmoregulation and bacterial wilt resistance of grafted pepper. Acta Hortic. Sin. 2011, 38, 903–910. [Google Scholar]
- McAvoy, T.; Freeman, J.H.; Rideout, S.L.; Olson, S.M.; Paret, M.L. Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 2012, 47, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Ritter, E.; Angulo, B.; Riga, P.; Herran, C.; Relloso, J.; San Jose, M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 2001, 44, 127–135. [Google Scholar] [CrossRef]
- Galus, A.; Chenari Bouket, A.; Belbahri, L. In Vitro propagation and acclimatization of Dragon Tree (Dracaena draco). Horticulturae 2019, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Jura-Morawiec, J.; Tulik, M. Dragon’s blood secretion and its ecological significance. Chemoecology 2016, 26, 101–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Liu, J.; Deng, M.; Henny, R.J.; Chen, J.; Xie, J. Regeneration of Dracaena surculosa through indirect shoot organogenesis. HortScience 2010, 45, 1250–1254. [Google Scholar] [CrossRef] [Green Version]
- Sabatino, L.; D’Anna, F.; Iapichino, G. Improved propagation and growing techniques for oleander nursery production. Horticulturae 2019, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Pilon, P. Perennial Solutions: A Grower’s Guide to Perennial Production, 1st ed.; Ball Publishing: Batavia, IL, USA, 2005; p. 546. [Google Scholar]
- Mehraj, H.; Alam, M.M.; Habiba, S.U.; Mehbub, H. LEDs Combined with CHO sources and CCC priming PLB regeneration of Phalaenopsis. Horticulturae 2019, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Arditti, J.; Ernst, R. Micropropagation of Orchids; Wiley: New York, NY, USA, 1993; pp. 1–682. [Google Scholar]
- Sheelavanthmath, S.S.; Murthy, H.N.; Hema, B.P.; Hahn, E.J.; Paek, K.Y. High frequency of protocorm like bodies (PLBs) induction and plant regeneration from protocorm and leaf sections of Aerides crispum. Sci. Hortic. 2005, 106, 395–401. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberto, S.R.; Colombo, R.C. Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae 2020, 6, 23. https://doi.org/10.3390/horticulturae6020023
Roberto SR, Colombo RC. Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae. 2020; 6(2):23. https://doi.org/10.3390/horticulturae6020023
Chicago/Turabian StyleRoberto, Sergio Ruffo, and Ronan Carlos Colombo. 2020. "Innovation in Propagation of Fruit, Vegetable and Ornamental Plants" Horticulturae 6, no. 2: 23. https://doi.org/10.3390/horticulturae6020023
APA StyleRoberto, S. R., & Colombo, R. C. (2020). Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae, 6(2), 23. https://doi.org/10.3390/horticulturae6020023