Biochar—A Panacea for Agriculture or Just Carbon?
Abstract
:1. Introduction
“If you desire peace, cultivate justice, but at the same time cultivate the fields to produce more bread; otherwise there will be no peace” Norman Borlaug, Oslo, Norway, December 11, 1970. Nobel lecture.
2. Biochar and Soil
2.1. Biochar
2.2. Impact of Biochar on Soil
Physical Properties
2.3. Soil–Water Relations
2.4. Soil Tilth and Nutrient Status
- Organic waste feedstocks, such as animal manure and sewage sludge-derived BC, are rich in potassium and phosphorus, low in C levels, and low in surface area; additionally, eggshell-derived BC is elevated in calcium levels
- Wood-based BC is high in organic matter and surface area, while low in CEC and N, P, and K levels
- Crop residue-derived BC properties reside somewhere in between those of the two previous categories, with specific crops producing BC with different properties (e.g., wheat and rice BC is high in silicon content; soybean BC is high in N).
2.5. Soil Acidification
3. Biochemical Properties
3.1. Soil Organic Matter (SOM)
- Type of biomass used for production of BC
- Pyrolysis temperature
- Pre-existing SOM levels in the soil
3.2. Microbial Activity
3.2.1. Fungi
3.2.2. Bacteria
3.3. Abiotic and Biotic Stressors
3.3.1. Heavy Metals
3.3.2. Salt
3.3.3. Biotic Stress
4. Impact of Biochar on Crop Production
5. Conclusions and Future Opportunities
- Biomes underrepresented in the current biochar-associated literature, such as forests and perennial crops (the vast majority of BC studies are directed toward temperate and tropical areas);
- Effects of biochar on non-model crop species (present studies primarily focus on model organisms such as tomato, maize, rice, and wheat);
- Evaluation of BC in field studies to build upon the extensive greenhouse studies;
- Develop an understanding of the highly complex interactions between different soil types, different biochar types, and their impact on plant productivity
- Assessment of biochar-amended soil microbial activity through meta-genomics approaches;
- Longer-term experiments to understand characteristics of ‘aged’ BC to assess its temporally evolving properties in soils;
- Development of cost-effective ways to minimize environmental impacts by incorporating organic fertilizer amendments such as BC.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BC | biochar |
SOM | soil organic matter |
GHG | greenhouse gas |
CEC | cation exchange capacity |
FTIR | Fourier transform infrared spectroscopy |
SBBC | sugarcane bagasse biochar |
C | carbon |
N | nitrogen |
P | phosphorous |
K | potassium |
Ca | calcium |
Mg | magnesium |
Fe | iron |
Na | sodium |
Si | silicon |
Cd | cadmium |
Cu | copper |
Ni | nickel |
Pb | lead |
Zn | zinc |
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quéré, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Paris Agreement|UNFCCC. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 21 March 2020).
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A. Bioenergy and climate change mitigation: An assessment. GCB Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef] [Green Version]
- Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs; American Physical Society, 2011; Available online: https://www.aps.org/policy/reports/assessments/upload/dac2011.pdf (accessed on 21 March 2020).
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H.; Feng, X. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.O.; Smith, S.R. Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ. Int. 2011, 37, 226–247. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Ahmed, W.; Rauh, E.; Rock, C.; McLain, J.; Muenich, R.L. Comparing microbial risks from multiple sustainable waste streams applied for agricultural use: Biosolids, manure, and diverted urine. Curr. Opin. Environ. Sci. Health 2020, 14, 37–50. [Google Scholar] [CrossRef]
- Smith, N.J.H. The Amazon River Forest: A Natural History of Plants, Animals, and People. In OUP Catalogue; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Skjemstad, J.O.; Reicosky, D.C.; Wilts, A.R.; McGowan, J.A. Charcoal carbon in US agricultural soils. Soil Sci. Soc. Am. J. 2002, 66, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Zech, W.; Haumaier, L.; Reinhold, H. Ecological aspects of soil organic matter in tropical land use. Humic Subst. Soil Crop Sci. Sel. Read. 1990, 187–202. [Google Scholar] [CrossRef]
- Smith, N.J.H. Anthrosols and human carrying capacity in Amazonia. Ann. Assoc. Am. Geogr. 1980, 70, 553–566. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Al Arni, S. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energy 2018, 124, 197–201. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xinag, J.; Sun, L.; Yang, T.; Zhang, A.; Wang, Y.; Chen, G. Effects of Pyrolysis Temperature on Characteristics of Porosity in Biomass Chars. In Proceedings of the 2009 International Conference on Energy and Environment Technology(IEEE), Guilin, China, 16–18 October 2009; Volume 1, pp. 109–112. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: Abingdon, UK, 2015; ISBN 1134489536. [Google Scholar]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 581, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-H.; Xu, R.-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Brookes, P.C.; He, Y.; Xu, J. Increased agronomic and environmental value provided by biochars with varied physiochemical properties derived from swine manure blended with rice straw. J. Agric. Food Chem. 2014, 62, 10623–10631. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Flowers, M.D.; Lal, R. Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio. Soil Tillage Res. 1998, 48, 21–35. [Google Scholar] [CrossRef]
- Bruand, A.; Gilkes, R.J. Subsoil bulk density and organic carbon stock in relation to land use for a Western Australian Sodosol. Soil Res. 2002, 40, 999–1010. [Google Scholar] [CrossRef]
- Beutler, A.N.; Centurion, J.F.; da Silva, A.P.; da Centurion, M.A.P.C.; Leonel, C.L.; da Freddi, O.S. Soil compaction by machine traffic and least limiting water range related to soybean yield. Pesqui. Agropecu. Bras. 2008, 43, 1591–1600. [Google Scholar] [CrossRef]
- Ramazan, M.; Khan, G.D.; Hanif, M.; Ali, S. Impact of soil compaction on root length and yield of corn (Zea mays) under irrigated condition. Middle-East J. Sci. Res. 2012, 11, 382–385. [Google Scholar]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Obour, P.B.; Danso, E.O.; Yakubu, A.; Abenney-Mickson, S.; Sabi, E.B.; Darrah, Y.K.; Arthur, E. Water Retention, Air Exchange and Pore Structure Characteristics after Three Years of Rice Straw Biochar Application to an Acrisol. Soil Sci. Soc. Am. J. 2019, 83, 1664–1671. [Google Scholar] [CrossRef]
- de Jesus Duarte, S.; Glaser, B.; Pellegrino Cerri, C. Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, F.G.A.; Zhuravel, A.; Silva, F.C.; Amaro, A.; Ben-Hur, M.; Keizer, J.J. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma 2019, 347, 194–202. [Google Scholar] [CrossRef]
- Rahim, H.U.; Mian, I.A.; Arif, M.; Rahim, Z.U.; Ahmad, S.; Khan, Z.; Zada, L.; Khan, M.A.; Haris, M. 3. Residual effect of biochar and summer legumes on soil physical properties and wheat growth. Pure Appl. Biol. 2019, 8, 16–26. [Google Scholar] [CrossRef]
- You, J.; Sun, L.; Liu, X.; Hu, X.; Xu, Q. Effects of sewage sludge biochar on soil characteristics and crop yield in Loamy sand soil. Pol. J. Environ. Stud. 2019, 28. [Google Scholar] [CrossRef]
- Duarte, S.D.J.; Glaser, B.; De Lima, R.P.; Cerri, C.P. Chemical, Physical, and Hydraulic Properties as Affected by One Year of Miscanthus Biochar Interaction with Sandy and Loamy Tropical Soils. Soil Syst. 2019, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Nikravesh, I.; Boroomandnasab, S.; Abd Ali Naseri, A.S.M. Wheat Straw Biochar Application to Loam-Sand Soil: Impact on Yield Components of Summer Maize and Some Soil Properties. World 2019, 8, 54–60. [Google Scholar]
- Zhou, H.; Fang, H.; Zhang, Q.; Wang, Q.; Chen, C.; Mooney, S.J.; Peng, X.; Du, Z. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci. 2019, 70, 291–300. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, Y.; Chen, G.; Wang, X.; Zhang, R. Improvement of physical and hydraulic properties of desert soil with amendment of different biochars. J. Soils Sediments 2019, 19, 2984–2996. [Google Scholar] [CrossRef]
- Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; de Nowina, K.R. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crop. Res. 2019, 235, 18–26. [Google Scholar] [CrossRef]
- Badawi, M.A. Production of Biochar from Date Palm Fronds and its Effects on Soil Properties. By-Prod. Palm Trees Appl. 2019, 11, 159. [Google Scholar]
- Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Pereira Junior, J.D.; da Luz, J.M.R. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolito, J.A.; Lehrsch, G.A. Biochar, manure, and sawdust alter long-term water retention dynamics in degraded soil. Soil Sci. Soc. Am. J. 2019, 83, 1491–1501. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Xiu, L.; Zhang, W.; Sun, Y.; Wu, D.; Meng, J.; Chen, W. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 2019, 173, 481–493. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V.; Igaz, D. Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam haplic luvisol. J. Ecol. Eng. 2019, 20, 31–38. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Zheng, H.; Jiang, Z.; Xing, B. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Sci. Total Environ. 2020, 713, 136635. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Parikh, S.J.; Scow, K.M. Impact of biochar on water retention of two agricultural soils—A multi-scale analysis. Geoderma 2019, 340, 185–191. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Rathke, S.J.; Karlen, D.L. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 2014, 230, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Usowicz, B.; Lipiec, J.; Łukowski, M.; Marczewski, W.; Usowicz, J. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Tillage Res. 2016, 164, 45–51. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.-X.; Zhang, H.-P.; Li, X.-Y.; Shen, Y.-F.; Li, S.-Q. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci. 2016, 67, 495–507. [Google Scholar] [CrossRef]
- Pratiwi, E.P.A.; Shinogi, Y. Rice husk biochar application to paddy soil and its effects on soil physical properties, plant growth, and methane emission. Paddy Water Environ. 2016, 14, 521–532. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Han, M.Y.; Peng, K.; Zhou, S.L.; Shao, L.; Wu, X.F.; Wei, W.D.; Liu, S.Y.; Li, Z.; Li, J.S.; et al. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 2018, 613, 931–943. [Google Scholar] [CrossRef]
- Fischer, B.M.C.; Manzoni, S.; Morillas, L.; Garcia, M.; Johnson, M.S.; Lyon, S.W. Improving agricultural water use efficiency with biochar—A synthesis of biochar effects on water storage and fluxes across scales. Sci. Total Environ. 2019, 657, 853–862. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Kandhro, M.N.; Chen, Z.; Guo, D.; Jogi, Q.; et al. Recent developments in biochar as an effective tool for agricultural soil management: A review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Obia, A.; Cornelissen, G.; Martinsen, V.; Smebye, A.B.; Mulder, J. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil Tillage Res. 2020, 197. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Lei, O.; Zhang, R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sediments 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef]
- Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; De Freitas, R.A.; Mangrich, A.S. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures. Materials 2019, 12, 1732. [Google Scholar] [CrossRef] [Green Version]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 2017, 307, 114–121. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2019. [Google Scholar] [CrossRef]
- Marshall, J.; Muhlack, R.; Morton, B.J.; Dunnigan, L.; Chittleborough, D.; Kwong, C.W. Pyrolysis Temperature Effects on Biochar–Water Interactions and Application for Improved Water Holding Capacity in Vineyard Soils. Soil Syst. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cai, X. Climate change impacts on global agricultural land availability. Environ. Res. Lett. 2011, 6, 014014. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Hussain, A.; Sooch, S.S.; Kang, J.S.; Sharma, S.; Dheri, G.S. Rice straw biochar improves soil fertility, growth, and yield of rice-wheat system on a sandy loam soil. Exp. Agric. 2019, 56, 118–131. [Google Scholar] [CrossRef]
- Khan, M.; Fatima, K.; Ahmad, R.; Younas, R.; Rizwan, M.; Azam, M.; Abadin, Z.; ul Ali, S. Comparative effect of mesquite biochar, farmyard manure, and chemical fertilizers on soil fertility and growth of onion (Allium cepa L.). Arab. J. Geosci. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, J.; Sun, P.; Cheng, Z.; Shen, G. Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system. J. Clean. Prod. 2018, 172, 2009–2018. [Google Scholar] [CrossRef]
- Qiu, G.; Zhao, Y.; Wang, H.; Tan, X.; Chen, F.; Hu, X. Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: Mechanisms and potential applications for phosphate removal. Environ. Sci. Pollut. Res. 2019, 26, 6565–6575. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Nizami, A.S.; Aburiazaiza, A.S.; Barakat, M.A.; Ismail, I.M.I.; Rashid, M.I. Optimization of food waste compost with the use of biochar. J. Environ. Manag. 2018, 216, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Solaiman, Z.M.; Abbott, L.K.; Murphy, D.V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Sci. Rep. 2019, 9, 5062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panwar, N.L.; Pawar, A.; Salvi, B.L. Comprehensive review on production and utilization of biochar. SN Appl. Sci. 2019, 1, 168. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Lian, F.; Wang, Z.; Xing, B. The role of biochars in sustainable crop production and soil resiliency. J. Exp. Bot. 2020, 71, 520–542. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Billa, S.F.; Angwafo, T.E.; Ngome, A.F. Agro-environmental characterization of biochar issued from crop wastes in the humid forest zone of Cameroon. Int. J. Recycl. Org. Waste Agric. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; DeLuca, T.H. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biol. Biochem. 2018, 126, 144–150. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Song, L.; Song, X.; Hänninen, H.; Wu, J. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition. For. Ecol. Manag. 2017, 391, 321–329. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Joseph, U.E.; Toluwase, A.O.; Kehinde, E.O.; Omasan, E.E.; Tolulope, A.Y.; George, O.O.; Zhao, C.; Hongyan, W. Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Arch. Agron. Soil Sci. 2019, 1–12. [Google Scholar] [CrossRef]
- Khademalrasoul, A.; Kuhn, N.J.; Elsgaard, L.; Hu, Y.; Iversen, B.V.; Heckrath, G. Short-term Effects of Biochar Application on Soil Loss During a Rainfall-Runoff Simulation. Soil Sci. 2019, 184, 17–24. [Google Scholar] [CrossRef]
- Soinne, H.; Hovi, J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 2014, 219, 162–167. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Kimber, S.; Van Zwieten, L. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 2012, 357, 369–380. [Google Scholar] [CrossRef]
- Jien, S.-H.; Wang, C.-S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Shah, H.S.; Awad, Y.M.; Kumar, S.; Ok, Y.S. Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environ. Earth Sci. 2015, 74, 2463–2473. [Google Scholar] [CrossRef]
- Inyang, M.; Dickenson, E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef]
- Shi, R.; Ni, N.; Nkoh, J.N.; Li, J.; Xu, R.; Qian, W. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 2019, 234, 43–51. [Google Scholar] [CrossRef]
- Wang, J.; Sun, N.; Xu, M.; Wang, S.; Zhang, J.; Cai, Z.; Cheng, Y. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil. Geoderma 2019, 337, 710–717. [Google Scholar] [CrossRef]
- Conyers, M.K.; Mullen, C.L.; Scott, B.J.; Poile, G.J.; Braysher, B.D. Long-term benefits of limestone applications to soil properties and to cereal crop yields in southern and central New South Wales. Aust. J. Exp. Agric. 2003, 43, 71–78. [Google Scholar] [CrossRef]
- Guodao, Y.J.L.L.L. Research on Soil Acidification and Acidic Soil’s Melioration. J. South China Univ. Trop. Agric. 2006, 1, 21–28. [Google Scholar]
- Zhang, H.; Dao, T.H.; Basta, N.T.; Dayton, E.A.; Daniel, T.C. Remediation techniques for manure nutrient loaded soils. Am. Soc. Agric. Biol. Eng. 2006. [Google Scholar] [CrossRef]
- Palviainen, M.; Berninger, F.; Bruckman, V.J.; Köster, K.; de Assumpção, C.R.M.; Aaltonen, H.; Makita, N.; Mishra, A.; Kulmala, L.; Adamczyk, B.; et al. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant Soil 2018, 425, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Senbayram, M.; Zang, H.; Ugurlar, F.; Aydemir, S.; Brüggemann, N.; Kuzyakov, Y.; Bol, R.; Blagodatskaya, E. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Appl. Soil Ecol. 2018, 129, 121–127. [Google Scholar] [CrossRef]
- Si, L.; Xie, Y.; Ma, Q.; Wu, L. The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field. Sustainability 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zhao, A.; Yuan, J.; Jiang, J. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J. Soils Sediments 2012, 12, 494–502. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I. Biochar Application to Soils—A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission Publication Office: Luxembourg, 2010; Volume 24099, p. 162. [Google Scholar]
- Qian, L.; Chen, B. Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles. Environ. Sci. Technol. 2013, 47, 8759–8768. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Thompson, M.L.; Lawrinenko, M. Characterization and quantification of biochar alkalinity. Chemosphere 2017, 167, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Yu, L.; Yu, M.; Afzal, M.; Dai, Z.; Brookes, P.; Xu, J. Nitrogen combined with biochar changed the feedback mechanism between soil nitrification and Cd availability in an acidic soil. J. Hazard. Mater. 2019, 390, 121631. [Google Scholar] [CrossRef]
- Gondek, K.; Mierzwa-Hersztek, M.; Kopeć, M.; Sikora, J.; Głąb, T.; Szczurowska, K. Influence of Biochar Application on Reduced Acidification of Sandy Soil, Increased Cation Exchange Capacity, and the Content of Available Forms of K, Mg, and P. Pol. J. Environ. Stud. 2019, 28, 1–9. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Ji, G.; Zhang, Y.; Xiang, J.; Anwar, S.; Zhu, D. Effect of Rice-straw Biochar Application on Rice (Oryza sativa L.) Root Growth and Nitrogen Utilization in Acidified Paddy Soil. Int. J. Agric. Biol. 2018, 20, 2529–2536. [Google Scholar]
- Shi, R.; Li, J.; Jiang, J.; Kamran, M.A.; Xu, R.; Qian, W. Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials. Environ. Sci. Pollut. Res. 2018, 25, 9662–9672. [Google Scholar] [CrossRef]
- Shi, R.; Hong, Z.; Li, J.; Jiang, J.; Kamran, M.A.; Xu, R.; Qian, W. Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. J. Environ. Manag. 2018, 210, 171–179. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Tian, Y.; Zhang, H.; Cheng, Y.; Zhang, J. A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations. Eur. J. Soil Biol. 2018, 88, 36–40. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Klimkowicz-Pawlas, A.; Baran, A.; Bajda, T. Sewage sludge biochars management—Ecotoxicity, mobility of heavy metals, and soil microbial biomass. Environ. Toxicol. Chem. 2018, 37, 1197–1207. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Zhao, S.; Ta, N.; Li, Z.; Yang, Y.; Zhang, X.; Liu, D.; Zhang, A.; Wang, X. Varying pyrolysis temperature impacts application effects of biochar on soil labile organic carbon and humic fractions. Appl. Soil Ecol. 2018, 123, 484–493. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, C.; Qiu, Y.; Tigabu, M.; Ma, X. Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation. J. For. Res. 2019, 30, 1913–1923. [Google Scholar] [CrossRef]
- Cui, J.; Ge, T.; Kuzyakov, Y.; Nie, M.; Fang, C.; Tang, B.; Zhou, C. Interactions between biochar and litter priming: A three-source 14C and δ13C partitioning study. Soil Biol. Biochem. 2017, 104, 49–58. [Google Scholar] [CrossRef]
- Maestrini, B.; Herrmann, A.M.; Nannipieri, P.; Schmidt, M.W.I.; Abiven, S. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol. Biochem. 2014, 69, 291–301. [Google Scholar] [CrossRef]
- Ventura, M.; Alberti, G.; Panzacchi, P.; Delle Vedove, G.; Miglietta, F.; Tonon, G. Biochar mineralization and priming effect in a poplar short rotation coppice from a 3-year field experiment. Biol. Fertil. Soils 2019, 55, 67–78. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- De Figueiredo, C.C.; Farias, W.M.; de Melo, B.A.; Chagas, J.K.M.; Vale, A.T.; Coser, T.R. Labile and stable pools of organic matter in soil amended with sewage sludge biochar. Arch. Agron. Soil Sci. 2019, 65, 770–781. [Google Scholar] [CrossRef]
- Ji, X.; Abakumov, E.; Xie, X.; Wei, D.; Tang, R.; Ding, J.; Cheng, Y.; Chen, J. Preferential Alternatives to Returning All Crop Residues as Biochar to the Crop Field? A Three-Source 13C and 14C Partitioning Study. J. Agric. Food Chem. 2019, 67, 11322–11330. [Google Scholar] [CrossRef] [PubMed]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Schofield, H.K.; Pettitt, T.R.; Tappin, A.D.; Rollinson, G.K.; Fitzsimons, M.F. Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Sci. Total Environ. 2019, 690, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M.F.; Riba, M.; Alcañiz, J.M. Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Sci. Total Environ. 2019, 660, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Orlova, N.; Abakumov, E.; Orlova, E.; Yakkonen, K.; Shahnazarova, V. Soil organic matter alteration under biochar amendment: Study in the incubation experiment on the Podzol soils of the Leningrad region (Russia). J. Soils Sediments 2019, 19, 2708–2716. [Google Scholar] [CrossRef]
- Kammoun-Rigane, M.; Hlel, H.; Medhioub, K. Biochars Induced Changes in the Physicochemical Characteristics of Technosols: Effects of Feedstock and Pyrolysis Temperature. In Recent Advances in Geo-Environmental Engineering, Geomechanics and Geotechnics, and Geohazards; Springer: Berlin/Heidelberg, Germany, 2019; pp. 109–111. [Google Scholar]
- Raiesi, F.; Khadem, A. Short-term effects of maize residue biochar on kinetic and thermodynamic parameters of soil β-glucosidase. Biochar 2019, 1, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Lehman, R.; Cambardella, C.; Stott, D.; Acosta-Martinez, V.; Manter, D.; Buyer, J.; Maul, J.; Smith, J.; Collins, H.; Halvorson, J.; et al. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation. Sustainability 2015, 7, 988–1027. [Google Scholar] [CrossRef] [Green Version]
- Morrow, J.G.; Huggins, D.R.; Carpenter-Boggs, L.A.; Reganold, J.P. Evaluating Measures to Assess Soil Health in Long-Term Agroecosystem Trials. Soil Sci. Soc. Am. J. 2016, 80, 450. [Google Scholar] [CrossRef]
- Muhammad, N.; Dai, Z.; Xiao, K.; Meng, J.; Brookes, P.C.; Liu, X.; Wang, H.; Wu, J.; Xu, J. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 2014, 226, 270–278. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, N.; Tang, H.; Adams, J.M.; Sun, B.; Liang, Y. Straw biochar strengthens the life strategies and network of rhizosphere fungi in manure fertilized soils. Soil Ecol. Lett. 2019, 1, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jing, Y.; Xiang, Y.; Zhang, R.; Lu, H. Responses of soil microbial community structure changes and activities to biochar addition: A meta-analysis. Sci. Total Environ. 2018, 643, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Xi, X.; Zheng, Q.; Liang, G.; Zhou, W.; Wang, X. Soil nutrient and microbial activity responses to two years after maize straw biochar application in a calcareous soil. Ecotoxicol. Environ. Saf. 2019, 180, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, X.; Zheng, J.; Zhang, X.; Liu, X.; Bian, R.; Li, L.; Cheng, K.; Zheng, J.; Pan, G. Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol. Fertil. Soils 2018, 54, 175–188. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, M.; Wang, J.; Liu, X.; Guo, W.; Zheng, J.; Bian, R.; Wang, G.; Zhang, X.; Cheng, K.; et al. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. GCB Bioenergy 2019, 11, 1408–1420. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Dungait, J.A.J.; Zhao, X.; Brookes, P.C.; Durenkamp, M.; Li, G.; Lin, Q. Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil. Land Degrad. Dev. 2018, 29, 2183–2188. [Google Scholar] [CrossRef]
- Du, Y.; Wu, J.; Anane, P.-S.; Wu, Y.; Wang, C.; Liu, S. Effects of Different Biochars on Physicochemical Properties and Fungal Communities of Black Soil. Pol. J. Environ. Stud. 2019, 28, 3125–3132. [Google Scholar] [CrossRef]
- Bonanomi, G.; Ippolito, F.; Cesarano, G.; Vinale, F.; Lombardi, N.; Crasto, A.; Woo, S.L.; Scala, F. Biochar chemistry defined by 13C-CPMAS NMR explains opposite effects on soilborne microbes and crop plants. Appl. Soil Ecol. 2018, 124, 351–361. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, G.; Guo, X.; Sun, Z.; Li, T. The Effects of Rice Straw and Biochar Applications on the Microbial Community in a Soil with a History of Continuous Tomato Planting History. Agronomy 2018, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Paymaneh, Z.; Gryndler, M.; Konvalinková, T.; Benada, O.; Borovička, J.; Bukovská, P.; Püschel, D.; Řezáčová, V.; Sarcheshmehpour, M.; Jansa, J. Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition. Front. Microbiol. 2018, 9, 2862. [Google Scholar] [CrossRef] [Green Version]
- Dangi, S.; Gao, S.; Duan, Y.; Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol. 2019. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Shen, F.; Tian, D.; Zeng, Y.; Yang, G.; Zhang, Y.; Deng, S. Partitioning biochar properties to elucidate their contributions to bacterial and fungal community composition of purple soil. Sci. Total Environ. 2019, 648, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Yu, Y.; Shi, W.; Yao, H. Biochar suppresses N2O emissions and alters microbial communities in an acidic tea soil. Environ. Sci. Pollut. Res. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Enders, A.; Rodrigues, J.L.M.; Hanley, K.L.; Brookes, P.C.; Xu, J.; Lehmann, J. Soil fungal taxonomic and functional community composition as affected by biochar properties. Soil Biol. Biochem. 2018, 126, 159–167. [Google Scholar] [CrossRef]
- Nie, C.; Yang, X.; Niazi, N.K.; Xu, X.; Wen, Y.; Rinklebe, J.; Ok, Y.S.; Xu, S.; Wang, H. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 2018, 200, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, J.; Ye, C.; Zhu, P.; Ba, Q.; Pang, J.; Shu, L. Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area. Sci. Total Environ. 2018, 625, 1218–1224. [Google Scholar] [CrossRef]
- Yu, J.; Deem, L.M.; Crow, S.E.; Deenik, J.L.; Penton, C.R. Biochar application influences microbial assemblage complexity and composition due to soil and bioenergy crop type interactions. Soil Biol. Biochem. 2018, 117, 97–107. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Yu, L.; Pan, H.; Liu, H.; Liu, Y.; Di, H.; Li, Y.; Xu, J. Simultaneous measurement of bacterial abundance and composition in response to biochar in soybean field soil using 16S rRNA gene sequencing. Land Degrad. Dev. 2018, 29, 2172–2182. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Chi, Z.; Zheng, J.; Li, L.; Zhang, X.; Zheng, J.; Cheng, K.; Bian, R.; Pan, G. Biochar provided limited benefits for rice yield and greenhouse gas mitigation six years following an amendment in a fertile rice paddy. Catena 2019, 179, 20–28. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Wallace, H.M.; Xu, C.-Y.; (Van) Zwieten, L.; Weng, Z.H.; Xu, Z.; Che, R.; Tahmasbian, I.; Hu, H.-W.; Bai, S.H. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total Environ. 2018, 636, 142–151. [Google Scholar] [CrossRef]
- Cole, E.J.; Zandvakili, O.R.; Blanchard, J.; Xing, B.; Hashemi, M.; Etemadi, F. Investigating responses of soil bacterial community composition to hardwood biochar amendment using high-throughput PCR sequencing. Appl. Soil Ecol. 2019, 136, 80–85. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Xu, M.; Jiao, W.; Bian, Y.; Yang, X.; Gu, C.; Wang, F.; Jiang, X. Does Biochar Induce Similar Successions of Microbial Community Structures Among Different Soils? Bull. Environ. Contam. Toxicol. 2019, 103, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Cao, Y.; Zhou, B.; Wang, X.; Yang, Z.; Li, M.-H. Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations. Appl. Soil Ecol. 2019, 142, 155–165. [Google Scholar] [CrossRef]
- Han Weng, Z.; Van Zwieten, L.; Singh, B.P.; Tavakkoli, E.; Joseph, S.; Macdonald, L.M.; Rose, T.J.; Rose, M.T.; Kimber, S.W.L.; Morris, S.; et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Chang. 2017, 7, 371–376. [Google Scholar] [CrossRef]
- Brändli, R.C.; Hartnik, T.; Henriksen, T.; Cornelissen, G. Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 2008, 73, 1805–1810. [Google Scholar] [CrossRef]
- Jonker, M.T.O.; van der Heijden, S.A.; Kreitinger, J.P.; Hawthorne, S.B. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. Environ. Sci. Technol. 2007, 41, 7472–7478. [Google Scholar] [CrossRef]
- Kreitinger, J.P.; Quĩones-Rivera, A.; Neuhauser, E.F.; Alexander, M.; Hawthorne, S.B. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. Environ. Toxicol. Chem. Int. J. 2007, 26, 1809–1817. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Cui, L.; Pan, G.; Li, L.; Bian, R.; Liu, X.; Yan, J.; Quan, G.; Ding, C.; Chen, T.; Liu, Y. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: A five-year field experiment. Ecol. Eng. 2016, 93, 1–8. [Google Scholar] [CrossRef]
- Lomaglio, T.; Hattab-Hambli, N.; Miard, F.; Lebrun, M.; Nandillon, R.; Trupiano, D.; Scippa, G.S.; Gauthier, A.; Motelica-Heino, M.; Bourgerie, S. Cd, Pb, and Zn mobility and (bio) availability in contaminated soils from a former smelting site amended with biochar. Environ. Sci. Pollut. Res. 2018, 25, 25744–25756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Figueiredo, C.C.; Chagas, J.K.M.; da Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Prasher, S.; Elsayed, E.; Dhiman, J.; Mawof, A.; Patel, R. Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. J. Environ. Manag. 2019, 232, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, B.; Shafi, M.; Ma, J.; Guo, J.; Wu, J.; Ye, Z.; Liu, D.; Jin, H. Effects of biochar on growth, and heavy metals accumulation of moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere 2019, 219, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Malik, Z.; Parveen, A.; Huang, L.; Riaz, M.; Bashir, S.; Mustafa, A.; Abbasi, G.H.; Xue, B.; Ali, U. Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J. Plant Growth Regul. 2020, 39, 266–281. [Google Scholar] [CrossRef]
- Ghori, S.A.; Gul, S.; Tahir, S.; Sohail, M.; Batool, S.; Shahwani, M.N.; Bano, G. Wood-derived biochar influences nutrient use efficiency of heavy metals in spinach (Spinacia oleracea) under groundwater and wastewater irrigation. J. Environ. Eng. Landsc. Manag. 2019, 27, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Antonangelo, J.A.; Zhang, H. Heavy metal phytoavailability in a contaminated soil of northeastern Oklahoma as affected by biochar amendment. Environ. Sci. Pollut. Res. 2019, 26, 33582–33593. [Google Scholar] [CrossRef]
- Cui, L.; Noerpel, M.R.; Scheckel, K.G.; Ippolito, J.A. Wheat straw biochar reduces environmental cadmium bioavailability. Environ. Int. 2019, 126, 69–75. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef]
- Qian, T.-T.; Wu, P.; Qin, Q.-Y.; Huang, Y.-N.; Wang, Y.-J.; Zhou, D.-M. Screening of wheat straw biochars for the remediation of soils polluted with Zn (II) and Cd (II). J. Hazard. Mater. 2019, 362, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Derakhshan-Nejad, Z.; Jung, M.C. Remediation of multi-metal contaminated soil using biochars from rice husk and maple leaves. J. Mater. Cycles Waste Manag. 2019, 21, 457–468. [Google Scholar] [CrossRef]
- Andrey, G.; Rajput, V.; Tatiana, M.; Saglara, M.; Svetlana, S.; Igor, K.; Grigoryeva, T.V.; Vasily, C.; Iraida, A.; Vladislav, Z. The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils. Appl. Geochem. 2019, 104, 93–101. [Google Scholar] [CrossRef]
- Schaeffer, S.; Koepke, T.; Dhingra, A. Tobacco: A Model Plant for Understanding the Mechanism of Abiotic Stress Tolerance. In Improving Crop Resistance to Abiotic Stress; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 2, pp. 1169–1201. [Google Scholar]
- Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar]
- Lashari, M.S.; Liu, Y.; Li, L.; Pan, W.; Fu, J.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.; Yu, X. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crop. Res. 2013, 144, 113–118. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Biochar mitigates salinity stress in potato. J. Agron. Crop Sci. 2015, 201, 368–378. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag. 2015, 158, 61–68. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Naveed, M.; Zahir, Z.A.; Liu, F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 2015, 42, 770–781. [Google Scholar] [CrossRef]
- Lashari, M.S.; Ye, Y.; Ji, H.; Li, L.; Kibue, G.W.; Lu, H.; Zheng, J.; Pan, G. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. J. Sci. Food Agric. 2015, 95, 1321–1327. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, Z.; Huang, J.; Hussain, S.; Zhao, F.; Zhu, C.; Zhu, L.; Cao, X.; Jin, Q. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Tillage Res. 2019, 195, 104372. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Rady, M.M.; Taha, R.S.; Abd El Azeam, S.; Simpson, C.R.; Semida, W.M. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci. Hortic. 2020, 261, 108930. [Google Scholar] [CrossRef]
- Mingyi, H.; Zhang, Z.; Zhu, C.; Zhai, Y.; Peirong, L. Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Sci. Hortic. 2019, 250, 405–413. [Google Scholar] [CrossRef]
- Hafeez, F.; Rizwan, M.; Saqib, M.; Yasmeen, T.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Qayyum, M. Residual effect of biochar on growth, antioxidant defence and cadmium (Cd) accumulation in rice in a Cd contaminated saline soil. Pak. J. Agric. Sci. 2018, 56. [Google Scholar] [CrossRef]
- Nikpour-Rashidabad, N.; Tavasolee, A.; Torabian, S.; Farhangi-Abriz, S. The effect of biochar on the physiological, morphological and anatomical characteristics of mung bean roots after exposure to salt stress. Arch. Biol. Sci. 2019, 71, 14. [Google Scholar] [CrossRef] [Green Version]
- Aboshanab, W.; Osman, M.; Nessim, A.; Mohsen, A.; Elsaka, M. Evaluation of Biochar as a Soil Amendment for Alleviating the Harmful Effect of Salinity on Vigna unguiculata (L.) Walp. Egipt. J. Bot. 2019, 59, 617–631. [Google Scholar]
- Jaiswal, A.K.; Frenkel, O.; Tsechansky, L.; Elad, Y.; Graber, E.R. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar: A possible mechanism involved in soilborne disease suppression. Soil Biol. Biochem. 2018, 121, 59–66. [Google Scholar] [CrossRef]
- Harel, Y.M.; Elad, Y.; Rav-David, D.; Borenstein, M.; Shulchani, R.; Lew, B.; Graber, E.R. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 2012, 357, 245–257. [Google Scholar] [CrossRef]
- Kumar, A.; Elad, Y.; Tsechansky, L.; Abrol, V.; Lew, B.; Offenbach, R.; Graber, E.R. Biochar potential in intensive cultivation of Capsicum annuum L.(sweet pepper): Crop yield and plant protection. J. Sci. Food Agric. 2018, 98, 495–503. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Elad, Y.; Paudel, I.; Graber, E.R.; Cytryn, E.; Frenkel, O. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci. Rep. 2017, 7, 44382. [Google Scholar] [CrossRef]
- Knox, O.G.G.; Oghoro, C.O.; Burnett, F.J.; Fountaine, J.M. Biochar increases soil pH, but is as ineffective as liming at controlling clubroot. J. Plant Pathol. 2015, 97, 149–152. [Google Scholar]
- Bonanomi, G.; Ippolito, F.; Scala, F. A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. J. Plant Pathol. 2015, 97, 223–234. [Google Scholar]
- Jaiswal, A.K.; Graber, E.R.; Elad, Y.; Frenkel, O. Biochar as a management tool for soilborne diseases affecting early stage nursery seedling production. Crop Prot. 2019, 120, 34–42. [Google Scholar] [CrossRef]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef] [PubMed]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.H.D.N. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Prost, L.; Berthet, E.T.A.; Cerf, M.; Jeuffroy, M.-H.; Labatut, J.; Meynard, J.-M. Innovative design for agriculture in the move towards sustainability: Scientific challenges. Res. Eng. Des. 2017, 28, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Snapp, S.S.; Robertson, G.P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Natl. Acad. Sci. USA 2017, 114, 926–931. [Google Scholar] [CrossRef] [Green Version]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Sharpe, R.M.; Gustafson, L.; Hewitt, S.; Kilian, B.; Crabb, J.; Hendrickson, C.; Jiwan, D.; Andrews, P.; Dhingra, A. Concomitant phytonutrient and transcriptome analysis of mature fruit and leaf tissues of tomato (Solanum lycopersicum L. Cv. Oregon Spring) grown using organic and conventional fertilizer. PLoS ONE 2020, 15, e0227429. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.; Xia, Y.; Zhang, Y.; Wang, H.; Luo, X.; Xing, B. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant. Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.A.; Novak, J.M.; Collins, H.P.; Ippolito, J.A.; Karlen, D.L.; Lentz, R.D.; Sistani, K.R.; Spokas, K.; Van Pelt, R.S. Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma 2017, 289, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; van der Heijden, M.G.A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Amoakwah, E.; Arthur, E.; Frimpong, K.A.; Parikh, S.J.; Islam, R. Soil organic carbon storage and quality are impacted by corn cob biochar application on a tropical sandy loam. J. Soils Sediments 2020, 20, 1960–1969. [Google Scholar] [CrossRef]
- Fryda, L.; Visser, R.; Schmidt, J. Biochar Replaces Peat in Horticulture: Environmental Impact Assessment of Combined Biochar & Bioenergy Production. Detritus 2019, 5, 132–149. [Google Scholar] [CrossRef] [Green Version]
- Thi Thu Hien, T.; Shinogi, Y.; Taniguchi, T.; Hien, T.T.T.; Shinogi, Y.; Taniguchi, T. The Different Expressions of Draft Cherry Tomato Growth, Yield, Quality under Bamboo and Rice Husk Biochars Application to Clay Loamy Soil. Agric. Sci. 2017, 08, 934–948. [Google Scholar] [CrossRef] [Green Version]
- Woldetsadik, D.; Drechsel, P.; Marschner, B.; Itanna, F.; Gebrekidan, H. Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils. Environ. Syst. Res. 2018, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Cai, Z.; Zhang, Y.; Liu, G.; Luo, X.; Zheng, H. Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere 2019, 224, 151–161. [Google Scholar] [CrossRef]
- Velez, T.I.; Moonilall, N.I.; Reed, S.; Jayachandran, K.; Scinto, L.J. Impact of melaleuca quinquenervia biochar on phaseolus vulgaris growth, soil nutrients, and microbial gas flux. J. Environ. Qual. 2018, 47, 1487–1495. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Schoenau, J.J. Addition of Biochar to a Sandy Desert Soil: Effect on Crop Growth, Water Retention and Selected Properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Nzediegwu, C.; Prasher, S.; Elsayed, E.; Dhiman, J.; Mawof, A.; Patel, R. Effect of Biochar on the Yield of Potatoes Cultivated Under Wastewater Irrigation for Two Seasons. J. Soil Sci. Plant Nutr. 2019, 19, 865–877. [Google Scholar] [CrossRef]
- Griffin, D.E.; Wang, D.; Parikh, S.J.; Scow, K.M. Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agric. Ecosyst. Environ. 2017, 236, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shangguan, Z. Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions. J. Soils Sediments 2018, 18, 3235–3243. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agric. Water Manag. 2019, 217, 165–178. [Google Scholar] [CrossRef]
- Kang, S.-W.; Kim, S.-H.; Park, J.-H.; Seo, D.-C.; Ok, Y.S.; Cho, J.-S. Effect of biochar derived from barley straw on soil physicochemical properties, crop growth, and nitrous oxide emission in an upland field in South Korea. Environ. Sci. Pollut. Res. 2018, 25, 25813–25821. [Google Scholar] [CrossRef]
- Munda, S.; Bhaduri, D.; Mohanty, S.; Chatterjee, D.; Tripathi, R.; Shahid, M.; Kumar, U.; Bhattacharyya, P.; Kumar, A.; Adak, T.; et al. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenergy 2018, 115, 1–9. [Google Scholar] [CrossRef]
- Faria, W.M.; de Figueiredo, C.C.; Coser, T.R.; Vale, A.T.; Schneider, B.G. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment. Arch. Agron. Soil Sci. 2018, 64, 505–519. [Google Scholar] [CrossRef]
- Sarma, B.; Borkotoki, B.; Narzari, R.; Kataki, R.; Gogoi, N. Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil. J. Clean. Prod. 2017, 152, 157–166. [Google Scholar] [CrossRef]
- Takaragawa, H.; Yabuta, S.; Watanabe, K.; Kawamitsu, Y. Effects of Application of Bagasse- and Sunflower Residue-derived Biochar to Soil on Growth and Yield of Oilseed Sunflower. Trop. Agric. Dev. 2017, 61, 32–39. [Google Scholar] [CrossRef]
- Hood-Nowotny, R.; Watzinger, A.; Wawra, A.; Soja, G. The Impact of Biochar Incorporation on Inorganic Nitrogen Fertilizer Plant Uptake; An Opportunity for Carbon Sequestration in Temperate Agriculture. Geosciences 2018, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Boersma, M.; Wrobel-Tobiszewska, A.; Murphy, L.; Eyles, A. Impact of biochar application on the productivity of a temperate vegetable cropping system. N. Z. J. Crop Hortic. Sci. 2017, 45, 277–288. [Google Scholar] [CrossRef]
- Artiola, J.F.; Rasmussen, C.; Freitas, R. Effects of a Biochar-Amended Alkaline Soil on the Growth of Romaine Lettuce and Bermudagrass. Soil Sci. 2012, 177, 561–570. [Google Scholar] [CrossRef]
- Azeem, M.; Hayat, R.; Hussain, Q.; Ahmed, M.; Pan, G.; Ibrahim Tahir, M.; Imran, M.; Irfan, M.; Mehmood-ul-Hassan. Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil Tillage Res. 2019, 186, 172–182. [Google Scholar] [CrossRef]
- Rezaie, N.; Razzaghi, F.; Sepaskhah, A.R. Different Levels of Irrigation Water Salinity and Biochar Influence on Faba Bean Yield, Water Productivity, and Ions Uptake. Commun. Soil Sci. Plant Anal. 2019, 50, 611–626. [Google Scholar] [CrossRef]
- El-Naggar, A.; El-Naggar, A.H.; Shaheen, S.M.; Sarkar, B.; Chang, S.X.; Tsang, D.C.W.; Rinklebe, J.; Ok, Y.S. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: A review. J. Environ. Manag. 2019, 241, 458–467. [Google Scholar] [CrossRef]
- Lima, I.M.; White, P.M., Jr. Sugarcane bagasse and leaf residue biochars as soil amendment for increased sugar and cane yields. Int. Sugar J. 2017, 119, 382–390. [Google Scholar]
- Jay, C.N.; Fitzgerald, J.D.; Hipps, N.A.; Atkinson, C.J. Why short-term biochar application has no yield benefits: Evidence from three field-grown crops. Soil Use Manag. 2015, 31, 241–250. [Google Scholar] [CrossRef]
- Ogbe, V.B.; Jayeoba, O.J.; Amana, S.M. Effect of Rice Husk as an Amendment On The Physico-Chemical Properties of Sandy-Loam Soil In Lafia, Southern-Guinea Savannah, Nigeria. Prod. Agric. Technol. 2015, 11, 44–55. [Google Scholar] [CrossRef]
- Farrell, M.; Macdonald, L.M.; Butler, G.; Chirino-Valle, I.; Condron, L.M. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol. Fertil. Soils 2014, 50, 169–178. [Google Scholar] [CrossRef]
- Marra, R.; Vinale, F.; Cesarano, G.; Lombardi, N.; d’Errico, G.; Crasto, A.; Mazzei, P.; Piccolo, A.; Incerti, G.; Woo, S.L.; et al. Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE 2018, 13, e0198728. [Google Scholar] [CrossRef] [PubMed]
- Intani, K.; Latif, S.; Islam, M.; Müller, J. Phytotoxicity of Corncob Biochar before and after Heat Treatment and Washing. Sustainability 2018, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Paetsch, L.; Mueller, C.W.; Kögel-Knabner, I.; Von Lützow, M.; Girardin, C.; Rumpel, C. Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hersh, B.; Mirkouei, A.; Sessions, J.; Rezaie, B.; You, Y. A review and future directions on enhancing sustainability benefits across food-energy-water systems: The potential role of biochar-derived products. AIMS Environ. Sci. 2019, 6, 379–416. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Li, X.; Liu, F. Effects of Biochar Amendment, CO2 Elevation and Drought on Leaf Gas Exchange, Biomass Production and Water Use Efficiency in Maize. Pak. J. Bot. 2018, 50, 1347–1353. [Google Scholar]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef]
- Ok, Y.S.; Tsang, D.C.W.; Bolan, N.; Novak, J.M. Biochar from Biomass and Waste: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Novak, J.M.; Johnson, M.G.; Spokas, K.A. Concentration and Release of Phosphorus and Potassium From Lignocellulosic- and Manure-Based Biochars for Fertilizer Reuse. Front. Sustain. Food Syst. 2018, 2, 54. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Hussain, Q.; Usman, A.R.A.; Ahmad, M.; Abduljabbar, A.; Sallam, A.S.; Ok, Y.S. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev. 2018, 29, 2124–2161. [Google Scholar] [CrossRef]
- Nair, A.; Lang, K.; Snyder, D. Impact of Biochar and Fertility Management on Potato Production; Iowa State University Research and Demostration Farms Progress Reports; 2018; Available online: https://lib.dr.iastate.edu/farmprogressreports/vol2017/iss1/71/ (accessed on 21 March 2020).
- Youssef, M.; Al-Easily, I.A.S.; Nawar, D.A.S. Impact of Biochar Addition on Productivity and Tubers Quality of Some Potato Cultivars Under Sandy Soil Conditions. Egypt. J. Hortic. 2017, 44, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Gámiz, B.; Velarde, P.; Spokas, K.A.; Celis, R.; Cox, L. Changes in sorption and bioavailability of herbicides in soil amended with fresh and aged biochar. Geoderma 2019, 337, 341–349. [Google Scholar] [CrossRef] [Green Version]
Exp. Type | BC Feedstock | Pyrolysis Temp. (°C) | Soil Type | Bulk Density | Available Water Content | Total Porosity | BC Application Rates | Ref. |
---|---|---|---|---|---|---|---|---|
Lab | Agricultural residues | 450 | Loamy | Slightly decreased | Slightly increased | Increased | 0.46% (W/W) | [37] |
Sandy | Slightly decreased | Slightly increased | Increased | |||||
Lab | Woody residues | 620 | Sandy loam | Decreased | Increased | N/A | 1%, 5%, 10% and 20% (V/V) | [38] |
Sandy | Decreased | Increased | ||||||
Field | N/A | N/A | N/A | Decreased | Increased | Increased | 5 and 10 tons ha−1 | [39] |
Field | Sewage sludge | 700–850 | Loamy sand | Decreased | N/A | N/A | 20, 40, and 60 tons ha−1 | [40] |
Lab | Agricultural residues | 450 | Sandy loam | Decreased | No effect | Increased | 27.5 tons ha−1 | [41] |
Clay loam | Decreased | Increased | Increased | |||||
Field | Agricultural residues | 200–600 | Loam sand | Decreased | N/A | Increased | 10, 25, and 50 tons ha−1 | [42] |
Field | Agricultural residues | 360 | Sandy loam | Decreased | N/A | Increased | 4.5 and 9 tons ha−1 | [43] |
Lab | Agricultural residues | 300 and 700 | Desert | Decreased | Increased | Increased | 5% (W/W) | [44] |
Field | Woody residues | N/A | N/A | Decreased | Increased | Increased | 55 tons ha−1 | [45] |
Lab | Agricultural residues | 350–650 | Sandy | N/A | Increased | N/A | 1%, 2%, 3%, and 4% (W/W) | [46] |
Lab | Woody residues | 350 | Sandy loam | Decreased | Increased | Increased | 2%, 4%, and 6% (W/W) | [47] |
Field | Woody residues | 500 | Silt loam | Decreased | Increased | Increased | 24 and 46 tons ha−1 | [48] |
Field | Agricultural residues | 550–600 | Clay loam | Decreased | N/A | Increased | 10, 20, and 30 tons ha−1 | [49] |
Yard | Agricultural residues | 400–450 | Planosol | Decreased | Increased | Increased | 1%, 2%, and 3% (W/W) | [50] |
Field | Agricultural residues | 550 | Haplic Luvisol | Decreased | Increased | Increased | 10 and 20 tons ha−1 | [51] |
Lab | Forest residue | 450 | Desert sandy | Decreased | Increased | Increased | 39.5, 58.7, and 65 tons ha−1 | [52] |
Field | Agricultural residues | 550 | Sandy clay loam | No difference | Decreased | No difference | 5.5, 16.5, and 33 tons ha−1 | [36] |
Field | Woody residues | 580 | Luvisol | Decreased | Increased | Increased | 25- and 50-tons ha−1 | [53] |
Exp. Type | Soil Type | BC Feedstock | Pyrolysis Temperature (°C) | Effect of Biochar Amendment | BC Application Rates | Reference |
---|---|---|---|---|---|---|
Lab | Ultisols | Crop residue | 400 | Inhibited soil re-acidification and increased pH buffering capacity | 3% (W/W) | [105] |
Lab | Ferrosol | Crop residue | 450 | Promoted nitrification and inhibited re-acidification of Cd-contaminated soils | 3% (W/W) | [119] |
Lab | Sandy | Pig manure and poultry litter | 300 | Decreased soil acidification and increased cation exchange capacity | 0.5 %, 1%, and 2% (W/W) | [120] |
Lab | Ultisols | Crop residue | 400 | Increased soil pH buffering capacity and increased the resistance of soils to re-acidification | 3% and 5% (W/W) | [123] |
Oxisol | ||||||
Lab | Ultisols | Crop residue | 400 | Increased soil pH, neutralized soil acidity, increased soil pH-buffering capacity, and increased resistance of soils to re-acidification | 1% and 3% (W/W) | [124] |
Lab | N/A | Crop residue | 500 | Biochar significantly promoted rice growth and the yield increased in acidified soil | 2% (W/W) | [122] |
Lab | Oxisols | Crop residue | N/A | Alleviated soil acidification | 1%, 2% and 5% (W/W) | [125] |
Lab | Loamy sand | Sewage sludge | 300 | Reduced soil acidification | 0.5%, 1% and 2% (W/W) | [126] |
Exp. Type | Soil Type | BC Feedstock | Pyrolysis Temperature (°C) | Effect of Biochar Amendment | BC Application Rates | Reference |
---|---|---|---|---|---|---|
Lab | Acidic red loam | Forest residue | 550 | Decomposition of SOC(soil organic carbon) declined and reduced mineralization of SOM | 1% and 3% (W/W) | [131] |
Field | Sandy loam | Crop residue | Gasification at 1200 | Reduced SOM degradation by 16%. | 30 tons ha−1 | [134] |
Lab | Podzol Antric | Woody biomass | 550 | Increased the SOM mineralization | 1% (W/W) | [141] |
Field | Sandy | Crop residue | 350 | Increased soil organic matter and N | 5% (W/W) | [142] |
450 | Decreased organic matter and N content | |||||
Field | N/A | Sewage sludge biochar | N/A | SOM are increased | 16.5 tons ha−1 | [136] |
Field | Plaggic Anthrosols | Crop residue | 350 | Positive priming | N/A | [137] |
Field | Silt loams | Woody biomass | 900 | Increased soil organic matter, soil pH, phosphorus, potassium, sulfur, and the shoot and root biomass of wheat | 12, 24.6, and 49.3 tons ha−1 | [138] |
Field | Sandy loam | Crop residue | 450 to 500 | Decrease of SOM mineralization, reduce soil microbial biomass | 5.5 tons ha−1 | [140] |
Lab | Sandy loam | Woody biomass | 450 | Increased organic carbon retention and promoted carbon sequestration | 2%, 5%, and 10% (W/W) | [139] |
Field | Sandy loam | Crop residue | 360 | SOC increased after biochar application and did not contribute to soil aggregation | 4.5 and 9 tons ha−1 year−1 | [43] |
Lab | Sandy loam | Crop residue | 600 | Significantly increased SOM, microbial respiration, and microbial biomass | 0.5% and 1% (W/W) | [143] |
Exp. Type | Soil Type | BC Feedstock | Pyrolysis Temperature (°C) | Effect of Biochar Amendment | BC Application Rates | Reference |
---|---|---|---|---|---|---|
Lab | N/A | Wood, bamboo, rice straw, and walnut shell | 500 | Reduced Zn, Cd, Cu, and Pb solubility | 5% (W/W) | [182] |
Lab | Aridisols | Woodchip-derived biochar | 300 | Reduced extractable Cd, Pd, Ni, and Cu. Improved antioxidant enzyme activity. Increased rapeseed fresh shoot biomass, fresh root biomass, total chlorophyll, total pigments, carotenoids, and lycopene concentration | 1% and 2% (W/W) | [183] |
Lab | Sandy loam soil | Wood derived biochar | 350–500 | Reduction in the accumulation of Cu and Zn in spinach | 5% and 10% (W/W) | [184] |
Lab | N/A | Switchgrass and poultry litter | 700 | Decreased the Zn, Cd, and Pb bio-accessibility | 0.5%, 1.0%, 2.0%, and 4.0% (W/W) | [185] |
Lab | Paddy soil | Wheat straw | 450 | Reduced soil Cd bioavailability | 5% and 15% (W/W) | [186] |
Lab | Clay soil | Corncob biochar | 600 | Reduced lead leaching | 5% (W/W) | [187] |
Lab | N/A | Wheat straw | 350–650 | Lower temperature BC led to increased Zn (II) and Cd (II) immobilization acidic condition, and higher temperature BC led to increased Zn (II) and Cd (II) immobilization alkaline condition | N/A | [188] |
Lab | N/A | Manure | 500 | Promoted Zn and Cd precipitation and reduced total Cd and Zn concentrations in switchgrass shoots and roots | 0%, 2.5%, and 5%, (W/W) | [189] |
Poultry litter | 500 | |||||
Lodgepole pine | 500–700 | Reduced Zn concentration in roots | ||||
Lab | N/A | Rice husk biochar | 550 | Decreased leaching of Cd, Cu, Pb, and Zn | 0.5%, 1%, and 2% (W/W) | [190] |
Maple leaf biochar | ||||||
Lab | Stagnic Phaeozem | Pine wood | N/A | Decreased heavy metal accumulation in above-ground parts of Hordeum vulgare | 2.5% (W/W) | [191] |
Exp. Type | Soil Type | BC Feedstock | Pyrolysis Temp. (°C) | Effect of Biochar Amendment | BC Application Rates | References |
---|---|---|---|---|---|---|
Lab | Loam clay | Rice straw | 300–600 | Reduced bulk density, electrical conductivity, exchangeable Na+ and Cl−. Reduced salt accumulation in rice seedlings. | 0.3% (W/W) | [199] |
Field | N/A | Citrus wood | N/A | Improved plant growth and productivity. Improved nutrient concentration in soil, dehydration tolerance, and water retention. | 5 and 10 tons ha−1 | [200] |
Lab | Coastal soil | Wood chips | 600 | Improved photosynthetic performance and alleviated oxidative damage and salt stress. | 5% (W/W) | [201] |
Lab | Sandy clay loam | Rice straw | 450 | Mitigated oxidative and salt stress. Reduced Cd and Na concentration in plant. | 3% and 5% (W/W) | [202] |
Lab | N/A | Maple residues | 560 | Improved plant growth and xylem structure. Reduced salinity and plant stress hormones. | 5% and 10% (W/W) | [203] |
Lab | N/A | Rice straw | 300 | Increased seed germination rates of cowpea. Increased photosynthetic efficiency and photosynthetic pigments. | N/A | [204] |
Crop Productivity | Soil type, Experiment Type, Length | Biochar Feedstock | Pyrolysis Temp °C, Residence Time, Application Rate | References | |||
---|---|---|---|---|---|---|---|
Crop Tested | Productivity | Beneficial | Detrimental | ||||
Cherry tomato (Solanum lycopersicum) | Bamboo BC increased tomato yields | Both BCs improved tomato quality with increased total sugars | Rice husk BC did not improve total N % | Clay loamy | Rice husk and bamboo | 500 | [225] |
Greenhouse | 1 h | ||||||
Short-term ≤ 1 year | 2% and 5% (w/w) | ||||||
Lettuce (Lactuca sativa) | For both soils, BC rates of 20 and 30 t/ha−1 significantly increased above-ground biomass | Effective fertilizer for lettuce production at least for two growing cycles | Biosolid BC could increase harmful soil elements such as heavy metals | Silty loam and sandy loam | Fecal matter | 450 | [226] |
Greenhouse | 1 h | ||||||
Short-term ≤ 1 year | 10, 20, and 30 t/ha | ||||||
Chrysanthemum (Glebionis coronaria, cv. ‘Crown Daisy’) Leaf lettuce | 3% BC significantly decreased yields No effect | BC increased WHC(water holding capacity) and SOM | Higher BC application reduced plant productivity | Pedocals, silt-clay | Peanut shells | 350 | [227] |
Greenhouse | 3 h | ||||||
Short-term ≤ 1 year | 0%, 1.5%, 3%, and 5% (w/w) = to 0, 37.5, 75, and 125 t/ha in the field | ||||||
Beans | Bean yields were significantly reduced with BC application | Increased germination rate in BC-amended soils | Significant decreases in some macro and micronutrients | Krome loamy | Melaleuca quinquenervia (Broad-leaved paperbark) hardwood | 350 | [228] |
Greenhouse | 7 h | ||||||
Short-term ≤ 1 year | 2% and 5% (w/w) | ||||||
Wheat (cv. ‘Yecora Rojo’) | 300 °C BC with NPK increased yields | Increased soil water retention and decreased bulk density | BC alone decreased yields with BC produced at higher temp° (400, 500, 600 °C) | Loamy sand | Date palm tree residues | 300, 400, 500, and 600 | [229] |
Greenhouse | 4 h | ||||||
Short-term ≤ 1 year | 8 t/ha | ||||||
Potatoes (Solanum tuberosum L., cv. ‘Russet Burbank’) | No significant differences in yield | BC increased soil CEC | BC had no effect on leaf greenness rate or photosystem activity | Sandy | Green plantain peels | 450–500 | [230] |
Field Study | 18–25 min | ||||||
Long-term, 2 years | 13.5 t/ha (1% w/w) | ||||||
Tomato & Maize (Zea mays) | BC does not have a significant long-term effect on yield | Increased K+, Ca2+, and PO4-P in the soil in year 2 | Delayed nutrient availability from BC and short-lived effects | Rincon silty clay loam | Walnut shells | 900 | [231] |
Field Study | 1–2 h | ||||||
Long-term, 4 years | 10 t/ha | ||||||
Winter wheat (cv. ‘Xiaoyan no. 22’) | Low levels (1%, 2%) of BC had a positive effect on wheat yields | Total nitrogen and SOC increased with BC applications | Under drought conditions, BC addition decreased the availability of nutrients | Silty-clay | Apple wood | 450 | [232] |
Outdoor pot study | 8 h | ||||||
Short-term ≤ 1 year | 1%, 2%, 4%, and 6% (w/w) | ||||||
Maize | BC and fertilizer led to a significant increase in maize yield | BC improved soil water-holding capacity | BC alone had no effect on maize yields | Sandy clay loam | Maize cobs | 500 | [233] |
Field Study | 1 h | ||||||
Short-term ≤ 1 year | 20 t/ha | ||||||
Chinese cabbage (Brassica rapa) | BC significantly improved crop yields | BC increased soil pH and CEC | BC did not affect the soil bulk density and porosity | Loamy | Barley straw | 400 | [234] |
Field Study | 1 h | ||||||
Short-term ≤ 1 year | 10 t/ha | ||||||
Radish (Raphanus sativus L. cv. French Breakfast) | Increased yields in second year | Reduced bulk density and increased porosity, moisture content, soil pH | No effect on first-year growth | Alfisol or Luvisol | Local hardwoods (Parkis biglosa, Khaya senegalensis, Prosopis africana and Terminalia glaucescens) | 580 | [53] |
Field Study | 24 h | ||||||
Long-term, 2 years | 25 and 50 t/ha | ||||||
Rice (cv. ‘Naveen’) | Increased grain yield up to 24% | Increased total organic C in soils | Microbial carbon use efficiency decreased due to BC addition | Sandy clay loam | Rice husk | 350 | [235] |
Field Study | 6 h | ||||||
Long-term, 3 years | 0.5, 1, 2, 4, 8, 10 t/ha | ||||||
Maize (cv. ‘hybrid LG 6030’) | Increased corn yields | Increased P levels during the two years of cultivation | BC was unable to supply the necessary K for further crop production | Red-Yellow Latosol with clayey texture | Sewage sludge | 300 and 500 | [236] |
Field Study | 30 min | ||||||
Long-term, 2 years | 15 Mg/ha | ||||||
Okra (Abelmoschus esculentus L., cv. ‘OH-397’) | Increased yields vs. controls | Significant increase in SOC and microbial activity | Lower benefit cost ratios for BC compared to controls | Inceptisol with sandy loam texture | Mixed local hardwoods | 450 | [237] |
Field Study | 4 h | ||||||
Long-term, 2 years | 5 t/ha | ||||||
Rice (Oryza sativa L.) & Wheat (Triticum ssp.) | Not affected | BC amendment increased the soil water-holding capacity, soil nutrients, and SOC | Short-term effects and BC alone did not increase yields | Hydragric Anthrosol, sandy | Wheat straw | 350–550 | [166] |
Field Study | 2–3 h | ||||||
Long-term, 6 years | 20 and 40 t/ha | ||||||
Sunflower (Helianthus annuus L., cv. ‘Embrapa 122/V2000’) | Sunflower seed and oil yield declined | Increased levels of most soil minerals and total carbon levels | Nitrogen levels in leaves and the nitrogen uptake of the entire plant decreased with biochar application | Dark red soil, Typic Hapludalfs | Sugarcane bagasse and sunflower residues | 500–600 | [238] |
Field Study | 1 h | ||||||
Short-term ≤ 1 year | 1% (w/w) | ||||||
Spring barley (Hordeum vulgare L.) | Increased yields with BC + NPK | Increased soil water status in BC amended soils in the first year; increased soil carbon status | BC only decreased yields for both crops compared to control NPK plants | Sandy loamy silt; calcareous Chernozem on loess | Hardwood | 550 | [239] |
Field Study | 2 h | ||||||
Sunflower | No difference vs. controls | Long-term, 2 years | 72 t/ha | ||||
Rice (Oryza sativa L.) & Wheat (Triticum ssp.) | Not affected | BC amendment increased the soil water-holding capacity, soil nutrients, and SOC | Short-term effects and BC alone did not increase yields | Hydragric Anthrosol, sandy | Wheat straw | 350–550 | [166] |
Field Study | 2–3 h | ||||||
Long-term, 6 years | 20 and 40 t/ha | ||||||
Cauliflower (Brassica oleracea, cv. ‘Desire’) | No significant improvement in crop yield | No negative effects to crop productivity or soil quality | Soil moisture and bulk density not affected by BC additions | Ferralsol | Woody Eucalyptus ‘Blue Mallee’ | 550 | [240] |
Pea (Pisum sativum, cv. ‘Ashton’) | Field Study | 30 min | |||||
Broccoli ‘Ironman’ | Short-term, 1 year | 10 t/ha |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae 2020, 6, 37. https://doi.org/10.3390/horticulturae6030037
Tenic E, Ghogare R, Dhingra A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae. 2020; 6(3):37. https://doi.org/10.3390/horticulturae6030037
Chicago/Turabian StyleTenic, Elvir, Rishikesh Ghogare, and Amit Dhingra. 2020. "Biochar—A Panacea for Agriculture or Just Carbon?" Horticulturae 6, no. 3: 37. https://doi.org/10.3390/horticulturae6030037
APA StyleTenic, E., Ghogare, R., & Dhingra, A. (2020). Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae, 6(3), 37. https://doi.org/10.3390/horticulturae6030037