Sole-Source LED Lighting and Fertility Impact Shoot and Root Tissue Mineral Elements in Chinese Kale (Brassica oleracea var. alboglabra)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chinese Kale Culture and Harvest
2.2. Chinese Kale Tissue Mineral Element Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engels, C.; Kirkby, E.; White, P. Mineral nutrition, yield and source-sink relationships. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Römheld, V. Diagnosis of deficiency and toxicity of nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: London, UK, 2012. [Google Scholar]
- McCree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Zuber, H. Structure of light-harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends Biochem. Sci. 1986, 11, 414–419. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W., III. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1996, 1, 21–26. [Google Scholar] [CrossRef]
- Mills, H.A.; Jones, J.B., Jr. Factors affecting plant composition. In Plant Analysis Handbook II; MicroMacro Publishing, Inc.: Athens, GA, USA, 1996. [Google Scholar]
- Glass, A.D.M. Environmental influences on ion absorption. In Plant Nutrition: An Introduction to Current Concepts; Jones and Bartlett Publishers, Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Barber, S.A. Potassium. In Soil Nutrient Bioavailability: A Mechanistic Approach; Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Zhao, X.; Wang, Y.L.; Qiao, X.R.; Wang, J.; Wang, L.D.; Xu, C.S.; Zhang, X. Phototropins function in high-intensity blue light induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol. 2013, 162, 1539–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Morrow, R.C. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow band light-emitting diode lighting. J. Am. Soc. Hortic. Sci. 2014, 139, 469–477. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Sams, C.E. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light-emitting diodes. J. Am. Soc. Hortic. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Fageria, N.K.; Paiva, A.Q.; Silveira, A.; Pomella, A.W.V.; Machado, R.C.R. Light intensity effects on growth and micronutrient uptake by tropical legume cover crops. J. Plant Nutr. 2006, 29, 1959–1974. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn. 1950, 347, 1–32. [Google Scholar]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J. Agri. Food Chem. 2013, 61, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Kopsell, D.A.; Sams, C.E.; Morrow, R.C. Interaction of light quality and fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese kale. J. Sci. Food Agric. 2017, 97, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, Q.; Song, W.; Want, L.; Gou, W.; Xue, X. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Hortic. 2013, 223, 44–52. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Ying, Q.; Zheng, Y. Intensity of sole-source light-emitting diodes affect growth, yield, and quality of Brassicaceae microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Taulavuori, K.; Pyysalo, A.; Taulavuori, E.; Julkunen-Tiitto, R. Response of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot. 2018, 150, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; He, D.; Niu, G.; Zhai, H. Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci. Hortic. 2019, 248, 138–144. [Google Scholar] [CrossRef]
- Samuloiene, G.; Urbonaviciute, A.; Duchovskis, P.; Bliznikas, Z.; Vitta, P.; Zukauskas, A. Decrease in nitrate concentrations in leafy vegetables under a solid-state illuminator. HortScience 2009, 44, 1857–1860. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Yu, J.; Liu, H. Accumulation and primary metabolism of nitrate in lettuce (Lactuca sativa L. var. Youmaicai) grown under three different light sources. Comm. Soil Sci. Plant Anal. 2016, 47, 1994–2002. [Google Scholar] [CrossRef]
- Bian, Z.; Cheng, R.; Wang, Y.; Yang, Q.; Lu, C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Gerovac, J.R.; Craver, J.K.; Boldt, J.K.; Lopez, R.C. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience 2016, 51, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Metallo, R.M.; Kopsell, D.A.; Sams, C.E.; Bumgarner, N.R. Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Sci. Hortic. 2018, 235, 189–197. [Google Scholar] [CrossRef]
Ca | K | Mg | P | S | B | Cu | Fe | Mn | Mo | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
Light source b | mg/g dry mass c | µg/g dry mass c | |||||||||
¼ Strength fertility d | |||||||||||
Fluorescent/Incandescent | 15.01 c | 13.32 e | 2.70 e | 4.03 d | 4.56 d | 53.11 bc | 2.56 a | 33.03 c | 57.74 b | 1.29 d | 17.70 b |
10% blue/90% red LED | 22.46 a | 34.36 bc | 4.04 ab | 6.73 abc | 9.48 a | 51.89 bc | 3.22 a | 51.39 a | 110.78 a | 2.36 a | 31.61 a |
20% blue/80% red LED | 18.79 b | 23.28 d | 3.37 cd | 5.92 c | 6.59 c | 51.93 bc | 2.93 a | 42.51 abc | 71.50 b | 1.68 cd | 28.41 a |
40% blue/60% red LED | 20.87 ab | 30.12 c | 3.95 ab | 7.03 ab | 7.92 b | 56.22 ab | 3.36 a | 50.29 a | 76.65 b | 2.07 abc | 26.95 a |
½ Strength fertility d | |||||||||||
Fluorescent/Incandescent | 15.05 c | 20.72 d | 2.90 de | 4.43 d | 5.62 cd | 51.27 bc | 2.93 a | 33.56 bc | 74.61 b | 1.56 cd | 18.86 b |
10% blue/90% red LED | 18.84 b | 36.80 ab | 3.60 bc | 6.43 bc | 8.70 ab | 50.31 c | 3.34 a | 46.50 ab | 117.94 a | 1.78 bcd | 31.52 a |
20% blue/80% red LED | 22.78 a | 41.74 a | 4.45 a | 7.43 a | 9.12 ab | 58.73 a | 3.08 a | 54.85 a | 136.66 a | 2.24 ab | 30.20 a |
40% blue/60% red LED | 22.03 a | 39.01 ab | 4.19 a | 6.89 ab | 9.00 ab | 53.54 abc | 3.11 a | 51.98 a | 119.77 a | 1.97 abc | 32.17 a |
SEα = 0.05 e | 1.17 | 2.42 | 0.26 | 0.50 | 0.48 | 2.32 | 0.32 | 5.53 | 10.69 | 0.19 | 2.28 |
Correlation coefficients f | −0.47 ** | −0.50 ** | −0.40 ** | −0.39 ** | −0.64 *** | 0.01 ns | −0.11 ns | −0.34 ns | −0.26 * | −0.37 ** | −0.59 *** |
Source of variation g | |||||||||||
Light | *** | *** | *** | *** | *** | ns | ns | ** | *** | ** | *** |
Fertility | ns | *** | ns | ns | ** | ns | ns | ns | *** | ns | ns |
Light x fertility | ** | ** | ** | * | ** | ns | ns | ns | * | * | ns |
Ca | K | Mg | P | S | B | Cu | Fe | Mn | Mo | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|
Light source b | mg/g dry mass c | µg/g dry mass c | |||||||||
¼ Strength fertility d | |||||||||||
Fluorescent/Incandescent | 4.62 a | 10.86 c | 5.01 abc | 3.85 b | 5.30 b | 41.67 b | 15.77 a | 101.23 bc | 202.24 b | 1.10 d | 32.52 d |
10% blue/90% red LED | 4.75 a | 30.31 ab | 4.59 bc | 5.78 a | 11.02 a | 70.61 a | 18.50 a | 93.24 c | 487.78 ab | 2.05 a | 70.43 ab |
20% blue/80% red LED | 5.00 a | 18.58 bc | 5.37 ab | 5.18 ab | 6.14 b | 39.06 b | 17.49 a | 75.94 c | 274.91 b | 1.36 cd | 42.28 cd |
40% blue/60% red LED | 5.16 a | 16.11 c | 6.37 a | 5.84 a | 5.32 b | 37.29 b | 13.06 a | 86.52 c | 290.36 b | 1.55 abcd | 35.86 d |
½ Strength fertility d | |||||||||||
Fluorescent/Incandescent | 4.94 a | 13.73 c | 5.41 ab | 6.67 a | 6.08 b | 32.96 b | 18.08 a | 152.69 a | 483.31 ab | 1.39 cd | 37.74 d |
10% blue/90% red LED | 3.79 a | 37.80 a | 4.44 d | 6.01 a | 9.24 ab | 52.10 ab | 14.71 a | 150.84 a | 704.97 a | 1.49 bcd | 77.23 a |
20% blue/80% red LED | 4.72 a | 40.06 a | 3.70 cd | 6.53 a | 8.18 ab | 45.68 b | 13.40 a | 159.90 a | 719.74 a | 1.92 ab | 50.12 bcd |
40% blue/60% red LED | 4.37 a | 43.46 a | 3.43 cd | 6.37 a | 8.58 ab | 47.01 b | 13.25 a | 135.00 ab | 677.21 a | 1.77 abc | 62.79 abc |
SEα = 0.05e | 0.89 | 4.34 | 0.86 | 0.68 | 1.44 | 10.47 | 3.10 | 24.10 | 104.00 | 0.22 | 8.98 |
Correlation coefficients f | 0.33 * | −0.47 ** | 0.50 ** | −0.22 ns | −0.58 *** | −0.46 ** | 0.30 * | 0.12 ns | −0.43 ** | −0.35 * | −0.53 ** |
Source of variation g | |||||||||||
Light | ns | *** | * | ns | * | * | ns | ns | ns | * | ** |
Fertility | ns | *** | *** | * | ns | ns | ns | *** | *** | ns | * |
Light x fertility | ns | * | * | ns | ns | ns | ns | ns | ns | * | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barickman, T.C.; Kopsell, D.A.; Sams, C.E.; Morrow, R.C. Sole-Source LED Lighting and Fertility Impact Shoot and Root Tissue Mineral Elements in Chinese Kale (Brassica oleracea var. alboglabra). Horticulturae 2020, 6, 40. https://doi.org/10.3390/horticulturae6030040
Barickman TC, Kopsell DA, Sams CE, Morrow RC. Sole-Source LED Lighting and Fertility Impact Shoot and Root Tissue Mineral Elements in Chinese Kale (Brassica oleracea var. alboglabra). Horticulturae. 2020; 6(3):40. https://doi.org/10.3390/horticulturae6030040
Chicago/Turabian StyleBarickman, T. Casey, Dean A. Kopsell, Carl E. Sams, and Robert C. Morrow. 2020. "Sole-Source LED Lighting and Fertility Impact Shoot and Root Tissue Mineral Elements in Chinese Kale (Brassica oleracea var. alboglabra)" Horticulturae 6, no. 3: 40. https://doi.org/10.3390/horticulturae6030040
APA StyleBarickman, T. C., Kopsell, D. A., Sams, C. E., & Morrow, R. C. (2020). Sole-Source LED Lighting and Fertility Impact Shoot and Root Tissue Mineral Elements in Chinese Kale (Brassica oleracea var. alboglabra). Horticulturae, 6(3), 40. https://doi.org/10.3390/horticulturae6030040