Total Coliform and Generic E. coli Levels, and Salmonella Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, Q.; Gooneratne, R.; Hussain, M. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, K.M.; Hall, A.J.; Gould, L.H. Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012. Epidemiol. Infect. 2015, 143, 3011–3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. Outbreaks associated with fresh produce: Incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 78–141. [Google Scholar] [CrossRef]
- Food and Drug Administration. Investigation Summary: Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Fall 2018 Multi-State Outbreak of E. coli O157:H7; Food and Drug Administration: Maryland, MD, USA, 2019.
- Food and Drug Administration. FDA Investigated Multistate Outbreak of E. coli O157:H7 Infections Linked to Romaine Lettuce from Yuma Growing Region; Center for Food Safety and Applied Nutrition: Washington, DC, USA, 2018.
- Arnade, C.; Calvin, L.; Kuchler, F. Consumer response to a food safety shock: The 2006 foodborne illness outbreak of E. coli O157: H7 linked to spinach. Rev. Agric. Econ. 2009, 31, 734–750. [Google Scholar] [CrossRef]
- Calvin, L.; Jensen, H.; Klonsky, K.; Cook, R. Food Safety Practices and Costs under the California Leafy Greens Marketing Agreement; USDA ERS: Washington, DC, USA, 2017.
- Luo, Z.; Gu, G.; Ginn, A.; Giurcanu, M.C.; Adams, P.; Vellidis, G.; van Bruggen, A.H.C.; Danyluk, M.D.; Wright, A.C. Distribution and characterization of Salmonella enterica isolates from irrigation ponds in the southeastern United States. Appl. Environ. Microbiol. 2015, 81, 4376–4387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, L.; Atwill, E.R.; Jay-Russell, M.; Cooley, M.; Carychao, D.; Gorski, L.; Mandrell, R.E. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the central California coast. Int. J. Food Microbiol. 2013, 165, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, K.; Sampers, I.; Seynnaeve, M.; Jacxsens, L.; Uyttendaele, M. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production. Int. J. Environ. Res. Public Health 2015, 12, 32–63. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.L.; Kovac, J.; Kent, D.J.; Roof, S.; Tokman, J.I.; Mudrak, E.; Wiedmann, M. A conceptual framework for developing recommendations for no-harvest buffers around in-field feces. J. Food Prot. 2019, 82, 1052–1060. [Google Scholar] [CrossRef]
- Weller, D.L.; Kovac, J.; Kent, D.J.; Roof, S.; Tokman, J.I.; Mudrak, E.; Kowalcyk, B.; Oryang, D.; Aceituno, A.; Wiedmann, M. Escherichia coli transfer from simulated wildlife feces to lettuce during foliar irrigation: A field study in the Northeastern United States. Food Microbiol. 2017, 68, 24–33. [Google Scholar] [CrossRef]
- Atwill, E.R.; Chase, J.A.; Oryang, D.; Bond, R.F.; Koike, S.T.; Cahn, M.D.; Anderson, M.; Mokhtari, A.; Dennis, S. Transfer of Escherichia coli O157:H7 from simulated wildlife scat onto romaine lettuce during foliar irrigation. J. Food Prot. 2015, 78, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Jeamsripong, S.; Chase, J.A.; Jay-Russell, M.T.; Buchanan, R.L.; Atwill, E.R. Experimental in-field transfer and survival of escherichia coli from animal feces to romaine lettuce in Salinas valley, California. Microorganisms 2019, 7, 408. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Buchanan, R.L.; Micallef, S.A. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation. Int. J. Food Microbiol. 2016, 224, 28–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyne, A.L.; Sudarshana, M.R.; Blessington, T.; Koike, S.T.; Cahn, M.D.; Harris, L.J. Fate of Escherichia coli O157:H7 in field-inoculated lettuce. Food Microbiol. 2011, 28, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Cevallos-Cevallos, J.M.; Danyluk, M.D.; Gu, G.; Vallad, G.E.; van Bruggen, A.H.C. Dispersal of Salmonella typhimurium by rain splash onto tomato plants. J. Food Prot. 2012, 75, 472–479. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Gu, G.; Danyluk, M.D.; Dufault, N.S.; van Bruggen, A.H.C. Salmonella can reach tomato fruits on plants exposed to aerosols formed by rain. Int. J. Food Microbiol. 2012, 158, 140–146. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Gu, G.; Danyluk, M.D.; van Bruggen, A.H.C. Adhesion and splash dispersal of Salmonella enterica Typhimurium on tomato leaflets: Effects of rdar morphotype and trichome density. Int. J. Food Microbiol. 2012, 160, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Leon, J.; Bartz, F.; Newman, K.; Hodge, D. Contamination of fresh produce by microbial indicators on farms and in packing facilities: Elucidation of environmental routes. J. Title Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Callejas, A.; López-Velasco, G.; Camacho, A.B.; Artés, F.; Artés-Hernández, F.; Suslow, T.V. Survival and distribution of Escherichia coli on diverse fresh-cut baby leafy greens under preharvest through postharvest conditions. Int. J. Food Microbiol. 2011, 151, 216–222. [Google Scholar] [CrossRef]
- Wall, G.; Clements, D.; Fisk, C.; Stoeckel, D.; Woods, K.; Bihn, E. Meeting Report: Key Outcomes from a Collaborative Summit on Agricultural Water Standards for Fresh Produce. Compr. Rev. Food Sci. Food Saf. 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Hanning, I.B.; Nutt, J.D.; Ricke, S.C. Salmonellosis outbreaks in the United States due to fresh produce: Sources and potential intervention measures. Foodborne Pathog. Dis. 2009, 6, 635–648. [Google Scholar] [CrossRef]
- Shaw, A.; Helterbran, K.; Evans, M.R.; Currey, C. Growth of Escherichia coli O157:H7, Non-O157 Shiga toxin-producing Escherichia coli, and salmonella in water and hydroponic fertilizer solutions. J. Food Prot. 2016, 79, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Soon, J.M.; Seaman, P.; Baines, R.N. Escherichia coli O104:H4 outbreak from sprouted seeds. Int. J. Hyg. Environ. Health 2013, 216, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Geldreich, E.E.; Clarke, N.A. Bacterial Pollution Indicators in the Intestinal Tract of Freshwater Fish. Appl. Environ. Microbiol. 1966, 14, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-J.; Deering, A.J.; Kim, H.-J. The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems. Horticulturae 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Molina, A.; Granados-Chinchilla, F.; Jiménez, M.; Acuña-Calvo, M.T.; Alfaro, M.; Chavarría, G. Vigilance for Salmonella in Feedstuffs Available in Costa Rica: Prevalence, Serotyping and Tetracycline Resistance of Isolates Obtained from 2009 to 2014. Foodborne Pathog. Dis. 2016, 13, 119–127. [Google Scholar] [CrossRef]
- McCoy, E.; Morrison, J.; Cook, V.; Johnston, J.; Eblen, D.; Guo, C. Foodborne agents associated with the consumption of aquaculture catfish. J. Food Prot. 2011, 74, 500–516. [Google Scholar] [CrossRef]
- Bibi, F.; Qaisrani, S.N.; Ahmad, A.N.; Akhtar, M.; Khan, B.N.; Ali, Z. Occurrence Of Salmonella In Freshwater Fishes: A Review. J. Anim. Plant Sci 2015, 25, 303–310. [Google Scholar]
- Petreska, M.; Ziberoski, J.; Zekiri, M. Fish Feed Microbiological Status. J Hyg Eng Design. 2013, 4, 16–19. [Google Scholar]
- Díaz Rivera, M.E.; Vélez, C.; Zayas, B.; Malavé Llamas, K. Bacterial Assessment on Leaves of Green Vegetable Grown on Hydroponics and its possible Health Risks. J. Agric. Environ. Sci. 2015, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sirsat, S.; Neal, J. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce. Foods 2013, 2, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Elumalai, S.; Shaw, A.; Pattillo, D.; Currey, C.; Rosentrater, K.; Xie, K. Influence of UV Treatment on the Food Safety Status of a Model Aquaponic System. Water 2017, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Koo, O.K.; Kim, H.; Kim, H.J.; Baker, C.A.; Ricke, S.C. Bacterial community analysis of Tatsoi cultivated by hydroponics. J. Environ. Sci. Heal.-Part B Pestic. Food Contam. Agric. Wastes 2016, 51, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Fox, B.K.; Tamaru, C.S.; Hollyer, J.; Castro, L.F.; Fonseca, J.M.; Jay-Russell, M.; Low, T. A preliminary study of microbial water quality related to food safety in recirculating aquaponic fish and vegetable production systems. Food Saf. Technol. 2012, 51, 1–11. [Google Scholar]
- Barnhart, C.; Hayes, L.; Ringle, D. Food Safety Hazards Associated with Smooth-Textured Leafy Greens Produced in Aquaponic, Hydroponic, and Soil-Based Systems with and without Roots at Retail Goal of the Project; University of Minnesota Aquaponics: Minneapolis, MN, USA, 2015. [Google Scholar]
- Weller, D.; Wiedmann, M.; Strawn, L.K. Irrigation is significantly associated with an increased prevalence of Listeria monocytogenes in produce production environments in New York State. J. Food Prot. 2015, 78, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Navratil, S.; Gregory, A.; Bauer, A.; Srinath, I.; Jun, M.; Szonyi, B.; Nightingale, K.; Anciso, J.; Ivanek, R. Generic Escherichia coli contamination of spinach at the preharvest stage: Effects of farm management and environmental factors. Appl. Environ. Microbiol. 2013, 79, 4347–4358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, D.; Wiedmann, M.; Strawn, L. Spatial and temporal factors associated with an increased prevalence of L. monocytogenes in spinach fields in New York State. Appl. Environ. Microbiol. 2015, 81, 6059–6069. [Google Scholar] [CrossRef] [Green Version]
- Lapidot, A.; Yaron, S. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Prot. 2009, 72, 618–623. [Google Scholar] [CrossRef]
- Ijabadeniyi, O.A.; Debusho, L.K.; Vanderlinde, M.; Buys, E.M. Irrigation water as a potential preharvest source of bacterial contamination of vegetables. J. Food Saf. 2011, 31, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.; Belias, A.; Green, H.; Roof, S.; Wiedmann, M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. Front. Sustain. Food Syst. 2020, 3, 124. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.; Brassill, N.; Rock, C.; Ivanek, R.; Mudrak, E.; Roof, S.; Ganda, E.; Wiedmann, M. Complex Interactions Between Weather, and Microbial and Physicochemical Water Quality Impact the Likelihood of Detecting Foodborne Pathogens in Agricultural Water. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption; Food and Drug Administration: Maryland, MD, USA, 2015; pp. 74353–74672.
- Department of Agriculture and Water Resources. BAX Automated System for Screening Salmonella in Foods-AOAC 2003.09 P R I N C I P L E S; Department of Agriculture and Water Resources: Canberra, Australia, 2003.
- Naing, L.; Winn, T.; Rusli, B.N. Practical issues in calculating the sample size for prevalence studies. Arch. Orofac. Sci. 2006, 1, 9–14. [Google Scholar]
- McEgan, R.; Mootian, G.; Goodridge, L.D.; Schaffner, D.W.; Danyluk, M.D. Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters. Appl. Environ. Microbiol. 2013, 79, 4094–4105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gemmell, M.E.; Schmidt, S. Microbiological assessment of river water used for the irrigation of fresh produce in a sub-urban community in Sobantu, South Africa. Food Res. Int. 2012, 47, 300–305. [Google Scholar] [CrossRef]
- Castro-Ibáñez, I.; Gil, M.I.; Tudela, J.A.; Ivanek, R.; Allende, A. Assessment of microbial risk factors and impact of meteorological conditions during production of baby spinach in the Southeast of Spain. Food Microbiol. 2015, 49, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Truitt, L.N.; Vazquez, K.M.; Pfunter, R.C.; Rideout, S.L.; Havelaar, A.H.; Strawn, L.K. Microbial Quality of Agricultural Water Used in Produce Preharvest Production on the Eastern Shore of Virginia. J. Food Prot. 2018, 81, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
Location | System | Public Access | Temperature Range (°C) | Crop | Fish | |||
---|---|---|---|---|---|---|---|---|
ID | Type a | Who | Frequency | Air | Water | |||
C | A | Hydroponic | Researchers, Students | Frequent | 16–29 | 16–29 | Strawberries | - |
B | Hydroponic | Researchers, Students | Frequent | 16–29 | 60–29 | Strawberries | - | |
C | Hydroponic | Researchers, Students | Frequent | 16–29 | 16–29 | Strawberries | - | |
D | Aquaponic | Researchers, Students | Frequent | 16–29 | 16–29 | Strawberries | 50 Koi | |
H | A | Aquaponic | None | Infrequent | −1–37 | 4–32 | Variable | 30 Catfish |
L | A | Hydroponic | Researchers, Students | Frequent | 19–23 | 19–23 | Basil, Lettuce | - |
B | Aquaponic | Researchers, Students | Frequent | 19–23 | 26–27 | Basil, Lettuce | 20 Tilapia | |
T | A | Hydroponic | Public-Access | Constant | 21–25 | 21–25 | Basil | - |
Location | System | Microbial a | |||||
---|---|---|---|---|---|---|---|
Total Coliforms | E. coli | ||||||
ID | Type | No. of Samples | No. Below Upper LOD b | Mean (95% CI c) MPN/100-mL in Samples Below Upper LOD | No. Above Lower LOD d | Mean (95% CI c) MPN/100-mL in Samples Above Lower LOD | |
C | A | Hydroponic | 10 | 1 | 437.1 (337.2, 555.5) | 0 | - |
B | Hydroponic | 10 | 1 | 1986.3 (1222.0, 3300.2) | 1 | 1.0 (0.1, 5.5) | |
C | Hydroponic | 10 | 1 | 1986.3 (1222.0, 3300.2) | 1 | 53.9 (40.5, 69.7) | |
D | Aquaponic | 10 | 1 | 1732.9 (1167.7, 2709.5) | 0 | - | |
H | A | Aquaponic | 9 | 7 | 354.0 (247.0, 524.7) | 0 | - |
L | A | Hydroponic | 10 | 1 | 1553.1 (1016.2, 2353.1) | 0 | - |
B | Aquaponic | 10 | 2 | 1986.3 (1222.0, 3300.2) | 0 | - | |
T | A | Hydroponic | 10 | 2 | 1124.6 (788.1, 1678.9) | 1 | 1.0 (0.1, 5.5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weller, D.L.; Saylor, L.; Turkon, P. Total Coliform and Generic E. coli Levels, and Salmonella Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data. Horticulturae 2020, 6, 42. https://doi.org/10.3390/horticulturae6030042
Weller DL, Saylor L, Turkon P. Total Coliform and Generic E. coli Levels, and Salmonella Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data. Horticulturae. 2020; 6(3):42. https://doi.org/10.3390/horticulturae6030042
Chicago/Turabian StyleWeller, Daniel L., Lauren Saylor, and Paula Turkon. 2020. "Total Coliform and Generic E. coli Levels, and Salmonella Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data" Horticulturae 6, no. 3: 42. https://doi.org/10.3390/horticulturae6030042
APA StyleWeller, D. L., Saylor, L., & Turkon, P. (2020). Total Coliform and Generic E. coli Levels, and Salmonella Presence in Eight Experimental Aquaponics and Hydroponics Systems: A Brief Report Highlighting Exploratory Data. Horticulturae, 6(3), 42. https://doi.org/10.3390/horticulturae6030042