The Effects of Gibberellic Acid and Emasculation Treatments on Seed and Fruit Production in the Prickly Pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Fruit and Seed Analyses
2.4. Statistical Analyses
3. Results
3.1. Fruits Characterization
3.2. Fruit Defects
3.3. Seed Characterization
3.4. ANOVA Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nazareno, M.A. Nutritional properties and medicinal derivative of fruits and cladodes. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 151–158. [Google Scholar]
- Ochoa, M.J.; Barbera, G. History and economic and agro-ecological importance. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 2–11. [Google Scholar]
- Sáenz, C.; Berger, H.; Rodríguez-Félix, A.; Arias, E.; Galletti, L.; Corrales García, J.; Sepúlveda, E.; Varnero, M.T.; García de Cortázar, V.; Cuevas, R.; et al. Agro-Industrial Utilization of Cactus Pear; FAO, Ed.; FAO: Rome, Italy, 2013; p. 150. [Google Scholar]
- Timpanaro, G.; Urso, A.; Spampinato, D.; Foti, V.T. Cactus pear market in Italy: Competitiveness and perspectives. Acta Hortic. 2015, 1067, 407–415. [Google Scholar] [CrossRef]
- Sarbojeet, J. Nutraceutical and functional properties of Cactus pear (Opuntias spp.) and its utilization for food applications. J. Eng. Res. Stud. 2012, 3, 60–66. [Google Scholar]
- Jacobo, C.M.; de Gallegos, S.J.M. Nopalitos or vegetable cactus production and utilization. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 93–103. [Google Scholar]
- Jose, C.B.D., Jr.; Hichem, S.B.; Nefzaoui, A. Forage production and supply for animal nutrition. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 73–91. [Google Scholar]
- Varnero, M.T.; Homer, I. Biogas production. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 187–193. [Google Scholar]
- Zimmermann, H. Global invasions of cacti (Opuntia sp.): Control, management and conflicts of interest. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 172–185. [Google Scholar]
- Pardini, A.; Massolino, F.; Grassi, C. Opuntia ficus-indica (L.) Mill. Growing in soil and containers for urban agriculture in developing areas. Adv. Hortic. Sci. 2017, 31, 289–294. [Google Scholar] [CrossRef]
- Nefzaoui, A.; Ben Salem, H. Opuntia spp.—A Strategic Fodder and Efficient Tool for Combat Desertification in the Wana Region; Mondragon, C., Perez, S., Eds.; FAO: Rome, Italy, 2002; ISBN 92-5-104705-7. [Google Scholar]
- Mulas, M.; Mulas, G. The Strategic Use of Atriplex and Opuntia to Combat Desertification; University of Sassari: Sassari, Italy, 2004. [Google Scholar]
- Vieira, E.L.; Batista, Â.M.V.; Guim, A.; Carvalho, F.F.; Nascimento, A.C.; Araújo, R.F.S.; Mustafa, A.F. Effects of hay inclusion on intake, in vivo nutrient utilization and ruminal fermentation of goats fed spineless cactus (Opuntia fícus-indica Mill) based diets. Anim. Feed Sci. Technol. 2008, 141, 199–208. [Google Scholar] [CrossRef]
- Nobel, P.S. Cacti: Biology and Uses; University of California Press: Los Angeles, CA, USA; London, UK, 2002; Volume 40, pp. 199–210. [Google Scholar]
- Quintanar-Orozco, E.T.; Vázquez-Rodríguez, G.A.; Beltrán-Hernández, R.I.; Lucho-Constantino, C.A.; Coronel-Olivares, C.; Montiel, S.G.; Islas-Valdez, S. Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar. Environ. Sci. Pollut. Res. 2018, 25, 28403–28412. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Suárez, J.L.; Martínez, A.; Carreras, N. Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers. Manag. 2014, 88, 1263–1270. [Google Scholar] [CrossRef]
- Gupta, R.C. A Wonder Plant; Cactus Pear: Emerging Nutraceutical and Functional Food. In Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives; Khemani, L.D., Srivastava, M.M., Srivastava, S., Eds.; Springer: Heidelberg, Germany; Dordrecht, The Netherlands, 2012; pp. 183–187. [Google Scholar]
- Zou, D.M.; Brewer, M.; Garcia, F.; Feugang, J.M.; Wang, J.; Zang, R.; Liu, H.; Zou, C. Cactus pear: A natural product in cancer chemoprevention. Nutr. J. 2005, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Feugang, J.M.; Ye, F.; Zhang, D.Y.; Yu, Y.; Zhong, M.; Zhang, S.; Zou, C. Cactus pear extracts induce reactive oxygen species production and apoptosis in ovarian cancer cells. Nutr. Cancer 2010, 62, 692–699. [Google Scholar] [CrossRef]
- Sreekanth, D.; Arunasree, M.K.; Roy, K.R.; Chandramohan Reddy, T.; Gorla, V.R.; Reddanna, P. Betanin a betacyanin pigment purified from fruits of Opuntia ficus-indica induces apoptosis in human chronic myeloid leukemia Cell line-K562. Phytomedicine 2007, 14, 739–746. [Google Scholar] [CrossRef]
- Lamghari, R.; Kossori, E.L.; Villaume, C.; El Boustani, E.; Sauvaire, Y.; Méjean, L. Composition of Pulp, Skin and Seeds of Prickly Pears Fruit (Opuntia ficus indica sp.). Plant Foods Hum. Nutr. 1998, 52, 263–270. [Google Scholar]
- Prat, L.; Nicolás, F.; Sudzuki, F. Morphology and anatomy of Platyopuntiae. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 21–28. [Google Scholar]
- Kaaniche-Elloumi, N.; Jedidi, E.; Mahmoud, K.B.; Chakroun, A.; Jemmali, A. Gibberellic acid application and its incidence on in vitro somatic embryogenesis and fruit parthenocarpy in an apomictic cactus pear (Opuntia ficus-indica (L.) Mill.) clone. Acta Hortic. 2015, 1067, 225–229. [Google Scholar] [CrossRef]
- Vardi, A.; Levin, I.; Carmi, N. Induction of Seedlessness in Citrus: From Classical Techniques to Emerging Biotechnological Approaches. J. Am. Soc. Hortic. Sci. 2008, 133, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Mora, M. Marketing and communication constraints and strategies. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 195–202. [Google Scholar]
- Pandolfini, T. Seedless fruit production by hormonal regulation of fruit set. Nutrients 2009, 1, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Sáenz, C. Processing and utilization of fruit cladodes and seeds. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 135–150. [Google Scholar]
- Bartha, G.W. Fecal Impaction Containing Cactus Seeds. JAMA J. Am. Med. Assoc. 1976, 236, 2390–2391. [Google Scholar] [CrossRef]
- Eitan, A.; Bickel, A.; Katz, I.M. Fecal Impaction in Adults: Report of 30 Cases of Seed Bezoars in the Rectum. Dis. Colon Rectum 2006, 49, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Eitan, A.; Katz, I.M.; Sweed, Y.; Bickel, A. Fecal impaction in children: Report of 53 cases of rectal seed bezoars. J. Pediatric Surg. 2007, 42, 1114–1117. [Google Scholar] [CrossRef]
- Felker, P.; Inglese, P. Short-Term and Long-Term Research Needs for Opuntia ficus-indica (L.) Mill. Utilization in Arid Areas. J. Prof. Assoc. Cactus Dev. 2003, 5, 131–152. [Google Scholar]
- Pimienta-Barrios, E.; Engleman, M.E. Desarrollo de la pulpa y proporcion en volumen de los componetes de loculo maduro en tuna (Opuntia ficus-indica [L] Miller). Agrociencia 1985, 62, 51–56. [Google Scholar]
- Inglese, P.; Liguori, G.; De La Barrera, E. Ecophysiology and reproductive biology of cultivated cacti. In Crop Ecology, Cultivation and Uses of Cactus Pear; Inglese, P., Mondragon, C., Nefzaoui, A., Saenz, C., Eds.; FAO: Rome, Italy, 2017; pp. 29–40. [Google Scholar]
- Weiss, J.; Nerd, A.; Mizrahi, Y. Vegetative Parthenocarpy in the Cactus Pear Opuntia ficus-indica (L.) Mill. Ann. Bot. 1993, 72, 521–526. [Google Scholar] [CrossRef]
- Barbera, G.; Carimi, F.; Inglese, P. Effects of GA3 and shading on return bloom of prickly pear (Opuntia ficus-indica (L.) Miller). J. S. Afr. Soc. Hortic. Sci. 1993, 3, 9–10. [Google Scholar]
- Gil, G.S.; Espinoza, A.R. Fruit development in the princly pear (Opuntia ficus indica, Mill.) with preanthesis application of gibberellin and auxin. Cienc. E Investig. Agrar. 1980, 7, 141–147. [Google Scholar] [CrossRef]
- Inglese, P.; Chessa, I.; Nieddu, G.; La Mantia, T. Evolution of endogenous gibberellins at different stages of flowering in relation to return bloom of cactus pear (Opuntia ficus-indica L. Miller). Sci. Hortic. 1998, 73, 45–51. [Google Scholar] [CrossRef]
- Mejía, A.; Cantwell, M. Prickly Pear Fruit Development and Quality in Relation to Gibberellic Acid Applications to Intact and Emasculated Flower Buds. J. Prof. Assoc. Cactus Dev. 2003, 6, 72–85. [Google Scholar]
- ISIS Italian Soil Maps. In ISIS Feature Dataset: Soil Regions, Soil Systems and Climatic Rasters (Google Earth); CREA: Rome, Italy, 2010.
- ARPA-Puglia Dati Climatici Regione Puglia. Available online: http://www.arpa.puglia.it/web/guest/serviziometeo (accessed on 30 September 2019).
- Inglese, P.; Barbera, G.; La Mantia, T. Research strategies for the improvement of cactus pear (Opuntia ficus-indica) fruit quality and production. J. Arid Environ. 1995, 29, 455–468. [Google Scholar] [CrossRef]
- De La Barrera, E.; Nobel, P.S. Carbon and water relations for developing fruits of Opuntia ficus-indica (L.) Miller, including effects of drought and gibberellic acid. J. Exp. Bot. 2004. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, M.; Itoh, H.; Inukai, Y.; Sakamoto, T.; Ueguchi-Tanaka, M.; Ashikari, M.; Matsuoka, M. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 2003, 35, 104–115. [Google Scholar] [CrossRef]
- Song, S.; Qi, T.; Huang, H.; Xie, D. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in arabidopsis. Mol. Plant 2013, 6, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Mahmoody, M.; Noori, M. Effect of gibberellic acid on growth and development plants and its relationship with abiotic stress. Int. J. Farming Allied Sci. 2014, 3, 717–721. [Google Scholar]
- Hirano, K.; Aya, K.; Hobo, T.; Sakakibara, H.; Kojima, M.; Shim, R.A.; Hasegawa, Y.; Ueguchi-Tanaka, M.; Matsuoka, M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 2008, 49, 1429–1450. [Google Scholar] [CrossRef]
- Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plant still a mystery unresolved. Plant Signal. Behav. 2013, 8, e25504. [Google Scholar] [CrossRef] [Green Version]
- Ben-Cheikh, W.; Perez-Botella, J.; Tadeo, F.R.; Talon, M.; Primo-Millo, E. Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol. 1997, 114, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raven, P.H.; Evert, R.F.; Eichhorn, S.E. Biologia Delle Piante, 5th ed.; Zanichelli: Bologna, Italy, 2002; p. 720. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiologia Delle Piante, 1st ed.; Piccin Nuova Libraria, S.p.A.: Padova, Italy, 2013; p. 825. [Google Scholar]
- McComb, A.J. The Stability and Movement of Gibberellic Acid in Pea Seedlings. Ann. Bot. 1964, 28, 669–687. [Google Scholar] [CrossRef]
- Almeida, G.M.; Rodrigues, J.G.L. Development of plants by interference auxins, cytokinins, gibberellins and ethylene. Braz. J. Appl. Technol. Agric. Sci. 2016, 9, 111–117. [Google Scholar]
- Hu, J.; Mitchum, M.G.; Barnaby, N.; Ayele, B.T.; Ogawa, M.; Nam, E.; Lai, W.C.; Hanada, A.; Alonso, J.M.; Ecker, J.R.; et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 2008, 20, 320–336. [Google Scholar] [CrossRef] [Green Version]
- Kalidasu, G.; Sarada, C.; Reddy, P.V.; Reddy, T.Y. Use of male gametocide: An alternative to cumbersome emasculation in coriander (Coriandrum sativum L.). J. Hortic. For. 2009, 1, 126–132. [Google Scholar]
- Wang, G.L.; Que, F.; Xu, Z.S.; Wang, F.; Xiong, A.S. Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Protoplasma 2017, 254, 839–848. [Google Scholar] [CrossRef]
- Nobel, P.S. Shading, Osmoticum, and Hormone Effects on Organ Development for Detached Cladodes of Opuntia ficus-indica. Int. J. 1996, 157, 722–728. [Google Scholar] [CrossRef]
- Jedidi Neji, E.; Ben Mahmoud, K.; Bouhlal Ben Hadj Alouane, R.; Jemmali, A. Effect of exogenous application of gibberellic acid (GA 3) on seed and fruit development in a Tunisian spineless clone of the prickly pear cactus Opuntia ficus-indica (L.). Mill. J. New Sci. Agric. Biotechnol. 2017, 43, 2344–2351. [Google Scholar]
- Ortiz Hernandez, Y.D.; Barrientos Perez, F.; Colinas Leon, M.; Teresa, B.; Martinez Garza, A. Effect of gibberelic acid and auxins in Opuntia fruit (Opuntia amyclaea T.). Int. Inf. Syst. Agric. Sci. Technol. 1991, 2, 17–32. [Google Scholar]
Method | Fruit Diameter | Fruit Length | Fruit Weight | ||||
---|---|---|---|---|---|---|---|
(cm) | (cm) | (g) | |||||
GA3 Level | EM z | IN | EM | IN | EM | IN | |
INJ | control y | 3.35 ± 0.33 f x | 4.95 ± 0.24 a | 5.10 ± 0.58 de | 6.65 ± 0.47 a | 23.84 ± 6.51 e | 82.24 ± 9.71 a |
low | 4.07 ± 0.38 de | 4.27 ± 0.49 de | 5.78 ± 0.62 bc | 6.21 ± 0.74 ab | 54.93 ± 14.28 cd | 59.42 ± 17.25 cd | |
high | 3.95 ± 0.37 de | 4.38 ± 0.34 cd | 5.63 ± 0.55 cd | 6.27 ± 0.51 ab | 49.41 ± 11.95 d | 65.34 ± 12.76 bc | |
SPY | control | 3.29 ± 0.33 f | 4.74 ± 0.32 ab | 5.00 ± 0.53 e | 6.43 ± 0.52 a | 24.11 ± 7.26 e | 74.46 ± 12.97 ab |
low | 4.10 ± 0.33 de | 4.60 ± 0.28 bc | 5.79 ± 0.67 bc | 6.66 ± 0.42 a | 53.14 ± 14.9 d | 72.67 ± 10.87 ab | |
high | 4.34 ± 0.31 cd | 4.61 ± 0.33 bc | 6.23 ± 0.54 ab | 6.64 ± 0.68 a | 60.35 ± 8.89 cd | 73.39 ± 16.79 ab | |
INJ | mean | 3.79 ± 0.06 B | 4.53 ± 0.05 A | 5.50 ± 0.08 B | 6.38 ± 0.07 A | 42.70 ± 2.10 B | 68.97 ± 1.75 A |
SPY | mean | 3.91 ± 0.06 B | 4.65 ± 0.04 A | 5.67 ± 0.08 B | 6.58 ± 0.06 A | 45.83 ± 2.01 B | 73.43 ± 1.57 A |
All | mean | 3.85 ± 0.06 | 4.59 ± 0.04 | 5.59 ± 0.08 | 6.48 ± 0.07 | 44.27 ± 2.06 | 71.20 ± 1.67 |
Method | GA3 | Lignification on Pulp Tissue | Lignification on Ovary Tissue | Recalcitrant Fruits | Healthy Fruits | ||||
---|---|---|---|---|---|---|---|---|---|
Level | (%) | (%) | (%) | (%) | |||||
- - - | EM | IN | EM | IN | EM | IN | EM | IN | |
INJ | control | - | - | 20.00 | - | 80.00 | - | - | 100.00 |
low | 53.30 | 63.90 | 13.30 | 6.70 | 3.00 | 13.30 | 30.40 | 16.10 | |
high | 60.00 | 43.30 | 3.30 | - | 20.00 | - | 16.70 | 56.70 | |
SPY | control | - | - | 30.30 | - | 53.30 | - | 16.40 | 100.00 |
low | - | - | - | - | 3.00 | - | 97.00 | 100.00 | |
high | - | - | - | - | - | - | 100.00 | 100.00 | |
INJ | mean | 37.77 | 35.73 | 12.20 | 2.23 | 34.33 | 4.43 | 15.70 | 57.61 |
SPY | mean | - | - | 10.10 | - | 18.77 | - | 71.13 | 100.00 |
All | mean | 18.88 | 17.87 | 11.15 | 1.12 | 26.55 | 2.22 | 43.42 | 78.79 |
Method | Seeds Per Fruit | Hard Seeds Per Fruit | Weight of Seeds Per Fruit | ||||
---|---|---|---|---|---|---|---|
(N°) | (N°) | (g) | |||||
GA3 Level | EM z | IN | EM | IN | EM | IN | |
INJ | control y | 16.00 ± 43 f x | 232.00 ± 58 a | 1.00 ± 1 d | 220.00 ± 55 a | 0.02 ± 0.03 e | 2.81 ± 0.56 a |
low | 118,00 ± 81 cd | 140.00 ± 86 bcd | 25.00 ± 15 d | 71.00 ± 44 c | 0.28 ± 0.20 de | 0.61 ± 0.44 d | |
high | 103.00 ± 73 de | 185.00 ± 65 ab | 16.00 ± 8 d | 167.00 ± 59 b | 0.24 ± 0.21 de | 1.01 ± 0.55 c | |
SPY | control | 45.00 ± 50 ef | 195.00 ± 55 ab | 0.00 ± 0 d | 185.00 ± 53 ab | 0.04 ± 0.04 e | 2.47 ± 0.78 a |
low | 106.00 ± 57 d | 174.00 ± 47 abc | 21.00 ± 10 d | 166.00 ± 44 b | 0.23 ± 0.32 de | 2.05 ± 0.58 b | |
high | 115.00 ± 42 d | 181.00 ± 51 ab | 10.00 ± 4 d | 177.00 ± 50 b | 0.15 ± 0.07 e | 1.99 ± 0.67 b | |
INJ | mean | 79.00 ± 9 B | 185.67 ± 9 A | 14.00 ± 2 C | 152.67 ± 9 B | 0.18 ± 0.02 C | 1.48 ± 0.11 B |
SPY | mean | 88.67 ± 7 B | 183.33 ± 7 A | 10.33 ± 1 C | 176 ± 6 A | 0.14 ± 0.02 C | 2.17 ± 0.08 A |
All | mean | 83.83 ± 8 | 184.5 ± 8 | 12.17 ± 2 | 164.33 ± 8 | 0.16 ± 0.02 | 1.82 ± 0.1 |
Fruit Diameter | Fruit Length | Fruit Weight | Seeds | Hard Seeds | Seed Weight | ||
---|---|---|---|---|---|---|---|
Source | Abbr. | Significance | |||||
Emasculation | EM/IN | ** z | ** | ** | ** | ** | ** |
Application methods | SPY/INJ | ** | * | * | ns | * | ** |
GA3 levels | GA | ** | ** | ** | * | ** | ** |
EM/IN × SPY/INJ × GA | - | ** | ** | ** | ** | ** | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marini, L.; Grassi, C.; Fino, P.; Calamai, A.; Masoni, A.; Brilli, L.; Palchetti, E. The Effects of Gibberellic Acid and Emasculation Treatments on Seed and Fruit Production in the Prickly Pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla”. Horticulturae 2020, 6, 46. https://doi.org/10.3390/horticulturae6030046
Marini L, Grassi C, Fino P, Calamai A, Masoni A, Brilli L, Palchetti E. The Effects of Gibberellic Acid and Emasculation Treatments on Seed and Fruit Production in the Prickly Pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla”. Horticulturae. 2020; 6(3):46. https://doi.org/10.3390/horticulturae6030046
Chicago/Turabian StyleMarini, Lorenzo, Chiara Grassi, Pietro Fino, Alessandro Calamai, Alberto Masoni, Lorenzo Brilli, and Enrico Palchetti. 2020. "The Effects of Gibberellic Acid and Emasculation Treatments on Seed and Fruit Production in the Prickly Pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla”" Horticulturae 6, no. 3: 46. https://doi.org/10.3390/horticulturae6030046
APA StyleMarini, L., Grassi, C., Fino, P., Calamai, A., Masoni, A., Brilli, L., & Palchetti, E. (2020). The Effects of Gibberellic Acid and Emasculation Treatments on Seed and Fruit Production in the Prickly Pear (Opuntia ficus-indica (L.) Mill.) cv. “Gialla”. Horticulturae, 6(3), 46. https://doi.org/10.3390/horticulturae6030046