An Appraisal of Biodegradable Mulch Films with Respect to Strawberry Crop Performance and Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Plant Material and Growth Conditions
2.2. Mulch Installation, Transplanting, Experimental Design
2.3. Environmental Control
2.4. Productive Parameters, Yield and Quality Measurements
2.5. Weed Biomass
2.6. Quality Parameters
2.7. Malic and Citric Acid Content and Mineral Profile
2.8. Statistical Analysis
3. Results
3.1. Marketable Production and Mulching Performance
3.2. Quality Analysis
3.3. Mineral Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, R.; Sharma, R.R.; Jain, R.K. Planting time and mulching influenced vegetative and reproductive traits in strawberry (Fragaria × ananassa Duch.) in India. Fruits 2005, 60, 395–403. [Google Scholar] [CrossRef]
- Liston, A.; Cronn, R.; Ashman, T.L. Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights. Am. J. Bot. 2014, 101, 1686–1699. [Google Scholar] [CrossRef] [Green Version]
- Bilck, A.P.; Grossmann, M.V.E.; Yamashita, F. Biodegradable mulch films for strawberry production. Polym. Test. 2010, 29, 471–476. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Knapp, S.J.; Hardigan, M.A.; Edger, P.P.; Slovin, J.P.; Bassil, N.V.; Hytönen, T.; Mackenzie, K.K.; Lee, S.; Jung, S.; et al. A roadmap for research in octoploid strawberry. Hortic. Res. 2020, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 June 2020).
- Cianciosi, D.; Jesús Simal-Gándara, J.; Forbes-Hernández, T.J. The importance of berries in the human diet. Mediterr. J. Nutr. Metab. 2019. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; Zengin, G.; Wang, D.; Xu, S.; Mitrovic, G.; Brncic, M.; Dall’Acqua, S.; Pirgozliev, V.; Kijjoa, A.; et al. The berries on the top. J. Berry Res. 2019. [Google Scholar] [CrossRef]
- D’Urso, G.; Piacente, S.; Pizza, C.; Montoro, P. Metabolomics of healthy berry fruits. Curr. Med. Chem. 2018, 25, 4888–4902. [Google Scholar] [CrossRef]
- Minutti-López Sierra, P.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Meza-Márquez, G. Chemical composition and antioxidant capacity in strawberry cultivars (Fragaria × ananassa Duch.) by FT-MIR spectroscopy and chemometrics. Cyta J. Food 2019, 17, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.J.; Mazzoni, L.; Capocasa, F.; Sabbadini, S.; Alvarez-Suarez, J.M.; Afrin, S.; Rosati, C.; Pandolfini, T.; et al. Overexpression of the anthocyanidin synthase gene in strawberry enhances antioxidant capacity and cytotoxic effects on human hepatic cancer cells. J. Agric. Food Chem. 2018, 66, 581–592. [Google Scholar] [CrossRef]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.J.; Quiles, J.L.; Mezzetti, B.; Battino, M. The genetic aspects of berries: From field to health. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef]
- Basu, A. Role of berry bioactive compounds on lipids and lipoproteins in diabetes and metabolic syndrome. Nutrients 2019, 11, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parelman, M.A.; Storms, D.H.; Kirschke, C.P.; Huang, L.; Zunino, S.J. Dietary strawberry powder reduces blood glucose concentrations in obese and lean C57BL/6 mice, and selectively lowers plasma C-reactive protein in lean mice. Br. J. Nutr. 2012, 108, 1789–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, M.S.; de Carvalho, J.E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria × ananassa Duch.) using in vitro models. J. Med. Food 2010, 13, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Somasagara, R.R.; Hegde, M.; Chiruvella, K.K.; Musini, A.; Choudhary, B.; Raghavan, S.C. Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PLoS ONE 2012, 7, e47021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvano, A.; Izuora, K.; Oh, E.C.; Ebersole, J.L.; Lyonse, T.J.; Basu, A. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food Funct. 2019, 10, 6227–6243. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.W.; Navalta, J.W.; McGinnis, G.R.; Serafica, R.; Izuora, K.; Basu, A. Effects of acute dietary polyphenols and post-meal physical activity on postprandial metabolism in adults with features of the metabolic syndrome. Nutrients 2020, 12, 1120. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Kamimoto, M.; Shimamoto, T.; Shimamoto, T. Antimicrobial effects of blueberry, raspeberry, and strawberry aqueous extracts and their effects on virulence gene expression in Vibrio cholera. Phytother. Res. 2015, 29, 1791–1797. [Google Scholar] [CrossRef]
- Forbes-Hernandez, T.J.; Giampieri, F.; Gasparrini, M.; Afrin, S.; Mazzoni, L.; Cordero, M.D.; Mezzetti, M.; Quiles, J.L.; Battino, M. Lipid accumulation in HepG2 cells is attenuated by strawberry extract through AMPK activation. Nutrients 2017, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Giampieri, F.; Alvarez-Suarez, J.M.; Cordero, M.D.; Gasparrini, M.; Forbes-Hernandez, T.J.; Afrin, S.; Santos-Buelga, C.; González-Paramás, A.M.; Astolfi, P.; Corrado Rubini, C.; et al. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem. 2017, 234, 464–471. [Google Scholar] [CrossRef]
- Basu, A.; Kurien, B.T.; Tran, H.; Byrd, B.A.; Maher, J.; Schell, J.; Masek, E.; Barrett, J.R.; Lyons, T.J.; Bettse, N.M.; et al. Strawberries decrease circulating levels of tumor necrosis factor and lipid peroxides in obese adults with knee osteoarthritis. Food Funct. 2018, 9, 6218–6226. [Google Scholar] [CrossRef]
- Laugale, V.; Strautina, S.; Krasnova, I.; Seglina, D.; Kampuss, K. The influence of cultivation system on biochemical content of strawberry fruits. J. Hortic. Res. 2014, 22, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Diel, M.D.; Pinheiro, M.V.M.; Thiesen, L.A.; Altíssimo, B.S.; Holz, E.; Schmidt, D. Cultivation of strawberry in substrate: Productivity and fruit quality are affected by the cultivar origin and substrates. Ciência Agrotecnol. 2018, 42, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Dey, P. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry. Sci. Hortic. 2011, 127, 318–324. [Google Scholar] [CrossRef]
- Adhikaria, R.; Bristowb, K.L.; Caseya, P.S.; Freischmidta, G.; John, W.; Hornbucklec, J.W.; Adhikarie, B. Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agric. Water Manage. 2016, 169, 1–13. [Google Scholar] [CrossRef]
- De Vetter, L.W.; Zhang, H.; Ghimire, S.; Watkinson, S.; Miles, C.A. Plastic biodegradable mulches reduce weeds and promote crop growth in day-neutral strawberry in western Washington. Hortscience 2017, 52, 1700–1706. [Google Scholar] [CrossRef] [Green Version]
- Scaringelli, M.A.; Giannoccaro, G.; Prosperi, M.; Lopolito, A. Adoption of biodegradable mulching films in agriculture: Is there a negative prejudice towards materials derived from organic wastes? Ital. J. Agron. 2016, 11, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Scarascia-Mugnozza, G.; Schettini, E.; Vox, G.; Malinconico, M.; Immirzi, B.; Pagliara, S. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym. Degrad. Stab. 2006, 91, 2801–2808. [Google Scholar] [CrossRef]
- Costa, R.; Saraiva, A.; Carvalho, L.; Duarte, E. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 2014, 173, 65–70. [Google Scholar] [CrossRef]
- Ao, L.; Qin, L.; Kang, H.; Zhou, Z.; Su, H. Preparation, properties and field application of biodegradable and phosphorus-release films based on fermentation residue. Int. Biodeterior. Biodegrad. 2013, 82, 134–140. [Google Scholar] [CrossRef]
- Cozzolino, E.; Giordano, M.; Fiorentino, N.; El-Nakhel, C.; Pannico, A.; Mola, I.D.; Mori, M.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Appraisal of biodegradable mulching films and vegetal-derived biostimulant application as eco-sustainable practices for enhancing lettuce crop performance and nutritive value. Agronomy 2020, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Morra, L.; Bilotto, M.; Cerrato, D.; Coppola, R.; Leone, V.; Mignoli, E.; Pasquariello, M.S.; Petriccione, M.; Cozzolino, E. The Mater-Bi ® biodegradable film for strawberry (Fragaria × ananassa Duch.) mulching: Effects on fruit yield and quality. Ital. J. Agron. 2016, 11, 203. [Google Scholar] [CrossRef]
- Sivan, A. New perspectives in plastic biodegradation. Curr. Opin. Biotechnol. 2011, 22, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Scott, G. Photo-biodegradation of plastics. A systems approach to plastic waste and litter. Degrad. Mater. 2018, 143–178. [Google Scholar] [CrossRef]
- Nestby, R.; Guéry, S. Balanced fertigation and improved sustainability of June bearing strawberry cultivated three years in open polytunnel. J. Berry Res. 2017, 7, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Comite’ Europe´en de Normalisation (C.E.N.). EN-13655 Plastics: Mulching Thermoplastic Films for Use in Agriculture and Horticulture; Comite´ Europe´en de Normalisation (C.E.N.): Brussels, Belgium, 2002. [Google Scholar]
- Andrade, S.C.; Palha, M.d.G.; Duarte, E. Biodegradable mulch films performance for autumn-winter strawberry production. J. Berry Res. 2014, 4, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Pellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,20-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay. Methods Enzymol. 1999, 299, 379–384. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Pascale, S.; Colla, G.; Ritieni, A.; Cardarelli, M. Phenolic compositions, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 2017, 234, 10–19. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis; Black, C.A., Evans, D.D., White, D.D., Ensminger, E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 149–1178. [Google Scholar]
- Association of Official Analytical Chemists. AOAC Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Deb, P.D.; Sangma, D.K.; Prasad, B.V.G.; Bhowmick, N.; Dey, K. Effect of different mulches on vegetative growth of strawberry (cv. Tioga) under red and lateritic zone of west Bengal. Int. J. Basic Appl. Biol. 2014, 2, 77–80. [Google Scholar]
- Sharma, R.R.; Sharma, V.P. Mulch influences plant growth, albinism and fruit quality in strawberry (Fragaria × ananassa Duch). Fruits 2003, 58, 221–227. [Google Scholar] [CrossRef]
- Badiyala, S.D.; Aggarwal, G.C. Note on effect of mulches on strawberry production. Indian J. Agric. Res. 1981, 51, 832–834. [Google Scholar]
- Filippi, F.; Magnani, G.; Guerrini, S.; Ranghino, F. Agronomic evaluation of green biodegradable mulch on melon crop. Ital. J. Agron. 2011, 6, e18. [Google Scholar] [CrossRef]
- Gupta, R.; Acharya, C.L. Effect of mulch induced hydrothermal regime on root growth, water-use efficiency, yield and quality of strawberry. J. Indian Soc. Soil Sci. 1993, 41, 17–25. [Google Scholar]
- Tarara, J.M. Microclimate modification with plastic mulch. HortScience 2000, 35, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.S.; Miles, C.A.; Andrews, P.K.; Inglis, D.A. Biodegradablemulch performed comparably to polyethylene in high tunnel tomato (Solanum lycopersicum L.) production. Sci. Food Agric. 2014, 94, 1854–1864. [Google Scholar] [CrossRef] [PubMed]
- Gramza-Michałowska, A.; Bueschke, M.; Kulczyński, B.; Gliszczyńska-Świgło, A.; Kmiecik, D.; Bilska, A.; Purłan, M.; Wałęsa, L.; Ostrowski, M.; Filipczuk, M.; et al. Phenolic compounds and multivariate analysis of antiradical properties of red fruits. J. Food Meas. Charact. 2019, 13, 1739–1747. [Google Scholar] [CrossRef] [Green Version]
Mulch film | Thickness (μm) | Black Pigment (%) |
---|---|---|
Polyethylene (P1) | 35 | 9 |
BioFlex® 1130 (P2) | 20 | 9 |
BioFlex® 1821 (P3) | 20 | 9 |
Bio M 16 F54 (Bio 1) | 20 | 9 |
Bio M 17 F53 (Bio 2) | 25 | 9 |
Bio M 4b F28 (Bio 3) | 20 | 9 |
Bio M 5b F28 (Bio 4) | 20 | 9 |
Bio M 5b F28 (Bio 5) | 25 | 9 |
Bio M 17 F53 (Bio 6) | 40 | 5 |
Bio M 4b F28 (Bio 7) | 40 | 5 |
Bio M 5b F28 (Bio 8) | 25 | 5 |
Mulch Film | Cat. I Fruits z | Cat. II Fruits y | Moldy Fruits | Marketable Yield | Fruit Average Weight | Fruit Number | Weed Biomass |
---|---|---|---|---|---|---|---|
(g m−2) | (g m−2) | (g m−2) | (g m−2) | (g) | (no. m−2) | (g m−2) | |
Polyethylene | 5729 ± 43 a x | 1265 ± 116 | 393 ± 128 c | 6995 ± 109 a | 27.98 ± 1.0 | 250 ± 5.8 a | 0 ± 0 d |
BioFlex 1 | 5238 ± 221 abc | 1246 ± 28 | 620 ± 174 bc | 6484 ± 239 ab | 27.64 ± 1.3 | 236 ± 14 abc | 337 ± 97 abc |
BioFlex 2 | 4756 ± 109 bcde | 1247 ± 232 | 654 ± 22 bc | 6003 ± 326 bc | 26.7 ± 1.5 | 226 ± 17 abcd | 468 ± 95 ab |
Bio 1 | 4253 ± 175 ef | 981 ± 41 | 801 ± 153 abc | 5234 ± 213 c | 29.62 ± 2.0 | 178 ± 14 de | 660 ± 52 a |
Bio 2 | 4331 ± 98 ef | 966 ± 155 | 600 ± 123 bc | 5298 ± 194 c | 27.67 ± 0.6 | 192 ± 11 cde | 292 ± 32 abc |
Bio 3 | 4410 ± 392 def | 1410 ± 134 | 1181 ± 201 a | 5820 ± 424 bc | 29.28 ± 2.0 | 201 ± 20 bcde | 588 ± 266 ab |
Bio 4 | 3965 ± 156 f | 1249 ± 164 | 1045 ± 74 ab | 5214 ± 261 c | 29.91 ± 1.4 | 174 ± 1.5 e | 382 ± 81 abc |
Bio 5 | 4594 ± 23 cdef | 1422 ± 156 | 928 ± 132 ab | 6016 ± 150 bc | 29.15 ± 3.1 | 211 ± 21 abcde | 280 ± 61 abc |
Bio 6 | 5336 ± 166 ab | 1231 ± 43 | 821 ± 151 abc | 6568 ± 152 ab | 26.92 ± 1.5 | 246 ± 19 ab | 220 ± 108 bc |
Bio 7 | 5083 ± 204 abcd | 1419 ± 99 | 727 ± 54 bc | 6502 ± 195 ab | 29.91 ± 0.7 | 217 ± 3.5 abcde | 225 ± 66 bc |
Bio 8 | 4722 ± 359 bcde | 1084 ± 120 | 672 ± 156 bc | 5805 ± 433 bc | 29.72 ± 3.2 | 198 ± 18 bcde | 377 ± 176 abc |
Significance | *** w | ns | * | *** | ns | * | ** |
Mulch Film. | Total Soluble Solids | Flesh Firmness | ||||
---|---|---|---|---|---|---|
(°Brix) | (N) | |||||
128 DAT | 153 DAT | 202 DAT | 128 DAT | 153 DAT | 202 DAT | |
Polyethylene | 12.57 ± 0.22z | 10.53 ± 0.44 | 9.82 ± 0.50 | 2.32 ± 0.19 | 2.39 ± 0.16 | 2.19 ± 0.13 |
BioFlex 1 | 11.90 ± 0.56 | 10.11 ± 0.61 | 10.31 ± 1.25 | 2.40 ± 0.14 | 2.33 ± 0.19 | 2.26 ± 0.10 |
BioFlex 2 | 10.37 ± 0.63 | 10.99 ± 0.14 | 10.08 ± 0.92 | 2.48 ± 0.19 | 2.48 ± 0.22 | 2.25 ± 0.05 |
Bio 1 | 11.49 ± 0.74 | 10.53 ± 0.58 | 9.34 ± 0.44 | 2.25 ± 0.14 | 2.55 ± 0.06 | 2.20 ± 0.09 |
Bio 2 | 12.86 ± 0.30 | 11.04 ± 0.23 | 9.91 ± 0.66 | 2.55 ± 0.24 | 2.57 ± 0.10 | 2.37 ± 0.12 |
Bio 3 | 10.83 ± 0.08 | 10.52 ± 0.57 | 9.61 ± 0.48 | 2.51 ± 0.16 | 2.40 ± 0.15 | 2.15 ± 0.06 |
Bio 4 | 12.72 ± 1.36 | 10.79 ± 0.27 | 10.18 ± 0.35 | 2.64 ± 0.08 | 2.50 ± 0.13 | 2.26 ± 0.09 |
Bio 5 | 10.76 ± 0.24 | 10.91 ± 0.44 | 10.51 ± 0.31 | 2.46 ± 0.13 | 2.42 ± 0.19 | 2.30 ± 0.03 |
Bio 6 | 12.79 ± 0.50 | 11.19 ± 0.23 | 9.71 ± 0.37 | 2.36 ± 0.17 | 2.50 ± 0.17 | 2.29 ± 0.07 |
Bio 7 | 11.34 ± 0.55 | 10.60 ± 0.56 | 9.24 ± 0.41 | 2.58 ± 0.07 | 2.26 ± 0.07 | 2.17 ± 0.04 |
Bio 8 | 11.48 ± 1.26 | 11.88 ± 0.54 | 9.69 ± 0.26 | 2.59 ± 0.17 | 2.44 ± 0.09 | 2.24 ± 0.04 |
Significance | ns y | ns | ns | ns | ns | ns |
Mulch Film | Total Proteins | LAA | HAA | Total Phenols | Malic Acid | CITRIC ACID |
---|---|---|---|---|---|---|
(g 100 g−1 DW) | (mmol Trolox 100 g−1 dw) | (mmol ascorbic ac. eq. 100g−1 dw) | (mg gallic ac. eq. 100g−1 dw) | (g kg−1 dw) | (g kg−1 dw) | |
Polyethylene | 7.86 ± 0.41 z | 52.33 ± 0.79 | 12.33 ± 0.30 ab | 7.22 ± 0.51 | 19.95 ± 0.51 | 72.76 ± 4.81 |
BioFlex 1 | 7.60 ± 0.48 | 54.00 ± 2.31 | 12.80 ± 0.46 a | 7.50 ± 0.46 | 21.55 ± 0.92 | 74.28 ± 2.75 |
BioFlex 2 | 6.85 ± 0.28 | 57.74 ± 2.15 | 11.20 ± 0.42 bc | 7.46 ± 0.19 | 19.59 ± 1.97 | 73.40 ± 3.61 |
Bio 1 | 6.98 ± 0.12 | 54.71 ± 2.90 | 11.44 ± 0.55 bc | 7.31 ± 0.43 | 18.16 ± 1.22 | 69.57 ± 0.51 |
Bio 2 | 6.53 ± 0.06 | 56.32 ± 0.46 | 11.97 ± 0.23 abc | 7.41 ± 0.12 | 17.73 ± 0.51 | 71.40 ± 1.76 |
Bio 3 | 7.81 ± 0.67 | 55.27 ± 2.67 | 12.19 ± 0.36 ab | 7.00 ± 0.36 | 19.79 ± 0.99 | 71.51 ± 1.38 |
Bio 4 | 7.98 ± 0.28 | 57.18 ± 0.51 | 11.47 ± 0.13 abc | 7.01 ± 0.21 | 19.35 ± 1.96 | 74.22 ± 2.02 |
Bio 5 | 7.58 ± 0.53 | 53.70 ± 0.73 | 11.31 ± 0.18 bc | 7.29 ± 0.29 | 18.16 ± 0.10 | 68.50 ± 2.97 |
Bio 6 | 7.39 ± 0.16 | 55.14 ± 1.14 | 11.37 ± 0.42 bc | 6.84 ± 0.23 | 18.76 ± 1.10 | 72.85 ± 1.44 |
Bio 7 | 7.91 ± 0.59 | 54.84 ± 1.66 | 11.15 ± 0.08 bc | 7.19 ± 0.25 | 17.47 ± 1.06 | 69.56 ± 0.75 |
Bio 8 | 7.90 ± 0.36 | 55.08 ± 1.90 | 10.61 ± 0.82 c | 6.96 ± 0.36 | 18.81 ± 0.54 | 74.46 ± 0.81 |
Significance | ns y | ns | * | ns | ns | ns |
Mulch Film | NO3 | P | K | Ca | Mg | SO4 | Na |
---|---|---|---|---|---|---|---|
(g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | |
Polyethylene | 2.38 ± 0.37 abc z | 4.45 ± 0.23 | 16.11 ± 0.94 | 1.68 ± 0.07 ab | 1.35 ± 0.06 de | 2.33 ± 0.21 | 0.25 ± 0.05 |
BioFlex 1 | 2.71 ± 0.36 ab | 4.52 ± 0.45 | 17.05 ± 0.69 | 1.79 ± 0.09 a | 1.49 ± 0.05 bc | 2.12 ± 0.38 | 0.61 ± 0.12 |
BioFlex 2 | 1.71 ± 0.05 bc | 4.11 ± 0.20 | 15.52 ± 0.19 | 1.51 ± 0.05 c | 1.34 ± 0.01 de | 1.95 ± 0.46 | 0.29 ± 0.01 |
Bio 1 | 1.34 ± 0.10 c | 3.95 ± 0.16 | 14.95 ± 0.43 | 1.41 ± 0.01 c | 1.26 ± 0.01 ef | 1.39 ± 0.03 | 0.37 ± 0.07 |
Bio 2 | 1.35 ± 0.13 c | 3.75 ± 0.25 | 14.68 ± 0.87 | 1.41 ± 0.06 c | 1.16 ± 0.05 f | 1.61 ± 0.50 | 0.23 ± 0.06 |
Bio 3 | 2.74 ± 0.67 ab | 4.66 ± 0.13 | 17.13 ± 0.69 | 1.38 ± 0.05 c | 1.62 ± 0.04 a | 1.57 ± 0.12 | 0.43 ± 0.13 |
Bio 4 | 2.24 ± 0.37 abc | 5.08 ± 0.32 | 16.92 ± 0.98 | 1.40 ± 0.04 c | 1.54 ± 0.06 ab | 1.58 ± 0.17 | 0.59 ± 0.12 |
Bio 5 | 2.07 ± 0.28 abc | 4.47 ± 0.51 | 16.22 ± 0.58 | 1.48 ± 0.05 c | 1.49 ± 0.05 bc | 1.71 ± 0.24 | 0.38 ± 0.04 |
Bio 6 | 2.04 ± 0.20 abc | 4.66 ± 0.21 | 15.77 ± 0.17 | 1.43 ± 0.05 c | 1.38 ± 0.05 cde | 1.60 ± 0.22 | 0.27 ± 0.04 |
Bio 7 | 2.83 ± 0.28 a | 4.89 ± 0.47 | 17.53 ± 0.65 | 1.53 ± 0.06 bc | 1.39 ± 0.01 cd | 1.48 ± 0.20 | 0.44 ± 0.29 |
Bio 8 | 2.23 ± 0.14 abc | 4.60 ± 0.26 | 17.18 ± 0.36 | 1.51 ± 0.01 c | 1.34 ± 0.02 de | 1.68 ± 0.07 | 0.24 ± 0.06 |
Significance | * y | ns | ns | *** | *** | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, M.; Amoroso, C.G.; El-Nakhel, C.; Rouphael, Y.; De Pascale, S.; Cirillo, C. An Appraisal of Biodegradable Mulch Films with Respect to Strawberry Crop Performance and Fruit Quality. Horticulturae 2020, 6, 48. https://doi.org/10.3390/horticulturae6030048
Giordano M, Amoroso CG, El-Nakhel C, Rouphael Y, De Pascale S, Cirillo C. An Appraisal of Biodegradable Mulch Films with Respect to Strawberry Crop Performance and Fruit Quality. Horticulturae. 2020; 6(3):48. https://doi.org/10.3390/horticulturae6030048
Chicago/Turabian StyleGiordano, Maria, Ciro Gianmaria Amoroso, Christophe El-Nakhel, Youssef Rouphael, Stefania De Pascale, and Chiara Cirillo. 2020. "An Appraisal of Biodegradable Mulch Films with Respect to Strawberry Crop Performance and Fruit Quality" Horticulturae 6, no. 3: 48. https://doi.org/10.3390/horticulturae6030048
APA StyleGiordano, M., Amoroso, C. G., El-Nakhel, C., Rouphael, Y., De Pascale, S., & Cirillo, C. (2020). An Appraisal of Biodegradable Mulch Films with Respect to Strawberry Crop Performance and Fruit Quality. Horticulturae, 6(3), 48. https://doi.org/10.3390/horticulturae6030048