Fertilizer Rate and Substrate Water Content Effect on Growth and Flowering of Beardtongue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Treatments and Data Collection
2.3. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Vegetative Growth
3.2. Flowering
3.3. Plant Stress and Irrigation
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Beeson, R.C., Jr. Relationship of plant growth and actual evapotranspiration to irrigation frequency based on management allowed deficits for container nursery stock. J. Am. Soc. Hort Sci. 2006, 131, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Owen, J.S., Jr.; Warren, S.L.; Bilderback, T.E.; Albano, J.P. Phosphorus rate, leaching fraction, and substrate influence on influent quantity, effluent nutrient content, and response of a containerized woody ornamental crop. HortScience 2008, 43, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Chappell, M.; Owen, J.; White, S.; Lea-Cox, J. Irrigation management practices. In Best Management Practices: Guide for Producing Nursery Crops, 3rd ed.; Yeager, T., Bilderback, T., Fare, D., Giliam, C., Lea-Cox, J., Niemiera, A., Ruter, J., Tilt, K., Warren, S., Whitwell, T., et al., Eds.; Southern Nursery Association: Acworth, GA, USA, 2013. [Google Scholar]
- Bayer, A.; Ruter, J.; van Iersel, M.W. Optimizing irrigation and fertilization of Gardenia jasminoides for good growth and minimal leaching. Hortscience 2015, 50, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.H.; Leonard, R.L. Consumer product and service preference related to landscape retailing. HortScience 2001, 36, 1111–1116. [Google Scholar] [CrossRef]
- Koniarski, M.; Matysiak, B. Growth and development of potted Rhododendron cultivars ‘Catawbiense Boursault’ and ‘Old Port’ in response to regulated deficit irrigation. J. Hort. Res. 2013, 21, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blanco, M.J.; Álvarez, S.; Navarro, A.; Bañon, S. Comparative growth and water relation of Cistus albidus and Cistus monspeliensis plants during water deficit conditions and recovery. Plant Sci. 2002, 162, 107–113. [Google Scholar] [CrossRef]
- Yeager, T.; Million, J.; Larsen, C.; Stamps, B. Florida nursery best management practices: Past, present, and future. HortTechnology 2010, 20, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Alem, P.; Thomas, P.A.; van Iersel, M.W. Substrate water content and fertilizer rate affect growth and flowering of potted petunia. HortScience 2015, 50, 582–589. [Google Scholar] [CrossRef] [Green Version]
- James, E.C.; van Iersel, M.W. Fertilizer concentration affects growth and flowering of subirrigated petunias and begonias. HortSceince 2001, 36, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Million, J.; Yeager, T.; Larsen, C. Water use and fertilizer response of azalea using several no-leach irrigation methods. HortTechnology 2007, 17, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Tyler, H.H.; Warren, S.L.; Bilderback, T.E. Reduced leaching fractions improve irrigation use efficiency and nutrient efficacy. J. Environ. Hort. 1996, 14, 199–204. [Google Scholar]
- Bayer, A.; Whitaker, K.; Chappell, M.; Ruter, J.; van Iersel, M.W. Effect of irrigation duration and fertilizer rate on plant growth, substrate EC, and leaching volume. Acta Hort. 2014, 1034, 477–484. [Google Scholar] [CrossRef]
- Carroll, A.B.; Pallardy, S.G.; Galen, C. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). Am. J. Bot. 2001, 88, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Armitage, A. Herbaceous Perennial Plants: A Treatise on their Identification, Culture, and Garden Attributes, 3rd ed.; Stipes: Champaign, IL, USA, 2008; pp. 768–774. [Google Scholar]
- Nemali, K.S.; van Iersel, M.W. An automated system for controlling drought stress and irrigation in potted plants. Scientia Hort. 2006, 110, 292–297. [Google Scholar] [CrossRef]
- Nemali, K.S.; Montesano, F.; Dove, S.K.; van Iersel, M.W. Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Scientia Hort. 2007, 112, 227–234. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Potential of producing Salicornia bigelovii hydroponically as a vegetable at moderate NaCl salinity. HortScience 2014, 49, 1154–1157. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Fontanier, C.; Dunn, B.L. Physiological response of potted sunflower (Helianthus annuus L.) to precision irrigation and fertilizer. Scientia Hort. 2020, 270, 109417. [Google Scholar] [CrossRef]
- Bayer, A.; Ruter, J.; van Iersel, M.W. Water use and growth of Hibiscus acetosella ‘Panama Red’ grown with a soil moisture sensor-controlled irrigation system. Hortscience 2013, 48, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Burnett, S.E.; van Iersel, M.W. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 2008, 43, 1555–1560. [Google Scholar] [CrossRef] [Green Version]
- Van Iersel, M.W.; Seymour, R.M.; Chappell, M.; Watson, F.; Dove, S. Soil moisture sensor-based irrigation reduced water use and nutrient leaching in a commercial nursery. Proc. South Nurs. Assn. 2009, 54, 17–21. [Google Scholar]
- Zhen, S.; Burnett, S.E.; Day, M.E.; van Iersel, M.W. Effects of substrate water content on morphology and physiology of rosemary, canadian columbine, and cheddar pink. HortScience 2014, 49, 486–492. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Xu, L.K. Sensitivity of growth of roots vs. leaves to water stress: Biophysical analysis and relation to water transport. J. Exp. Bot. 2000, 51, 1595–1616. [Google Scholar] [CrossRef]
- Bayer, A.; Ruter, J.; van Iersel, M.W. Elongation of Hibiscus acetosella under well-watered and drought-stressed conditions. HortScience 2016, 51, 1384–1388. [Google Scholar] [CrossRef]
- Cabrera, R.I. Nitrogen balance for two container-grown woody ornamental plants. Sci. Hort. 2003, 97, 297–308. [Google Scholar] [CrossRef]
- Lambers, H.; Pons, T.L.; Chapin, S. Plant Physiological Ecology, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Niu, G.; Rodriguez, D.S.; Rodriguez, L.; Mackay, W. Effect of water stress on growth and flower yield of big bend bluebonnet. HortTechnology 2007, 17, 557–560. [Google Scholar]
- Cai, X.; Starman, T.; Niu, G.; Hall, C. The effect of substrate moisture content of growth and physiological responses of two landscape roses (Rosa hybrida L.). HortScience 2014, 49, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Bayer, A. Effect of reduced irrigation on growth and flowering of coneflower and sneezeweed. HortTechnology 2020, 30, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Martínez, D.; Guiamet, J. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Agronomie 2004, 24, 41–46. [Google Scholar] [CrossRef] [Green Version]
Treatment | Peduncle Length (cm) | Internode Length (mm) | Leaf Size (cm2) X | Fresh Weight (g) | |
---|---|---|---|---|---|
Treatment significance | |||||
Irrigation Z | 0.25 | 0.003 | 0.67 | <0.001 | |
Fertilizer Y | 0.001 | 0.38 | 0.44 | 0.04 | |
Irrigation by fertilizer | 0.82 | 0.82 | 0.53 | 0.66 | |
Least squares means for main effects | |||||
Irrigation | Fertilizer | ||||
100% | 64.5b W | 97.1a | |||
50% | 75.9a | 87.7ab | |||
25% | 71.5ab | 82.7b | |||
Well-watered | 36.9a | ||||
Reduced irrigation | 32.4b | ||||
Least squares means grouped by treatment combination | |||||
Irrigation | Fertilizer | ||||
Well-watered | 100% | 65.5 | 35.0 | 11.29 | 108.4 |
50% | 76.6 | 38.5 | 10.27 | 94.8 | |
25% | 73.8 | 37.2 | 9.32 | 94.1 | |
Reduced irrigation | 100% | 63.4 | 31.7 | 9.64 | 85.7 |
50% | 75.2 | 33.1 | 9.53 | 80.7 | |
25% | 69.1 | 32.2 | 9.14 | 71.2 |
Treatment | Days to Flower | Inflorescence Length (cm) | Inflorescence Internode Length (mm) | Number of Florets Per Inflorescence | |
---|---|---|---|---|---|
Irrigation Z | 0.82 | 0.65 | 0.55 | 0.15 | |
Fertilizer Y | 0.29 | 0.07 | 0.06 | 0.13 | |
Irrigation by fertilizer | 0.40 | 0.85 | 0.71 | 0.94 | |
Irrigation | Fertilizer | ||||
Well-watered | 100% | 21.0 | 31.5 | 11.0 | |
50% | 26.1 | 46.6 | 11.5 | ||
25% | 23.2 | 49.9 | 9.5 | ||
Reduced irrigation | 100% | 20.4 | 37.6 | 11.6 | |
50% | 23.8 | 39.9 | 13.5 | ||
25% | 25.4 | 47.6 | 12.4 |
Treatment | SPAD | IR | Visual Rating | Irrigation Volume (L/Plant) | Water Use Efficiency (g·L−1) z | |
---|---|---|---|---|---|---|
Treatment significance | ||||||
Irrigation Z | 0.08 | 0.46 | 0.02 | 0.0075 | 0.0013 | |
Fertilizer Y | 0.004 | 0.46 | 0.37 | 0.25 | ||
Irrigation by fertilizer | 0.85 | 0.48 | 0.28 | 0.86 | ||
Irrigation | Fertilizer | |||||
100% | 49.7a X | |||||
50% | 44.3ab | |||||
25% | 41.5b | |||||
Well-watered | 3.3b | 40.8a | 2.42b | |||
Reduced irrigation | 3.9a | 26.7b | 3.05a | |||
Least squares means grouped by treatment combination | ||||||
Irrigation | Fertilizer | |||||
Well-watered | 100% | 48.5 | 33.4 | 3.8 | 2.67 | |
50% | 41.9 | 33.4 | 3.1 | 2.36 | ||
25% | 40.0 | 32.8 | 3.0 | 2.33 | ||
Reduced irrigation | 100% | 50.9 | 32.9 | 3.8 | 3.29 | |
50% | 46.7 | 33.3 | 4.3 | 3.19 | ||
25% | 42.8 | 33.0 | 3.7 | 2.89 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayer, A. Fertilizer Rate and Substrate Water Content Effect on Growth and Flowering of Beardtongue. Horticulturae 2020, 6, 57. https://doi.org/10.3390/horticulturae6030057
Bayer A. Fertilizer Rate and Substrate Water Content Effect on Growth and Flowering of Beardtongue. Horticulturae. 2020; 6(3):57. https://doi.org/10.3390/horticulturae6030057
Chicago/Turabian StyleBayer, Amanda. 2020. "Fertilizer Rate and Substrate Water Content Effect on Growth and Flowering of Beardtongue" Horticulturae 6, no. 3: 57. https://doi.org/10.3390/horticulturae6030057
APA StyleBayer, A. (2020). Fertilizer Rate and Substrate Water Content Effect on Growth and Flowering of Beardtongue. Horticulturae, 6(3), 57. https://doi.org/10.3390/horticulturae6030057