Evaluation of Genotypes and Association of Traits in Watermelon Across Two Southern Texas Locations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Variance
2.2. Correlation and Path Analysis
3. Materials and Methods
3.1. Location and Plant Material
3.2. Plant Growth
3.3. Harvest and Data Collection
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dia, M.; Wehner, T.C.; Hassell, R.; Price, D.S.; Boyhan, G.E.; Olson, S.; King, S.; Davis, A.R.; Tolla, G.E. Genotype× environment interaction and stability analysis for watermelon fruit yield in the United States. Crop. Sci. 2016, 56, 1645–1661. [Google Scholar] [CrossRef]
- Kumar, R.; Wehner, T.C. Quantitative analysis of generations for inheritance of fruit yield in watermelon. HortScience 2013, 48, 844–847. [Google Scholar] [CrossRef]
- Kumar, R.; Wehner, T.C. Inheritance of fruit yield in two watermelon populations in North Carolina. Euphytica 2011, 182, 275. [Google Scholar] [CrossRef]
- Bertucci, M.B.; Jennings, K.M.; Monks, D.W.; Schultheis, J.R.; Perkins-Veazie, P.; Louws, F.J.; Jordan, D.L. Early season growth, yield, and fruit quality of standard and mini watermelon grafted onto several commercially available cucurbit rootstocks. HortTechnology 2018, 28, 459–469. [Google Scholar] [CrossRef]
- Sandlin, K.; Prothro, J.; Heesacker, A.; Khalilian, N.; Okashah, R.; Xiang, W.; Bachlava, E.; Caldwell, D.G.; Taylor, C.A.; Seymour, D.K. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor. Appl. Genet. 2012, 125, 1603–1618. [Google Scholar] [CrossRef] [PubMed]
- Gusmini, G.; Wehner, T.C. Heritability and genetic variance estimates for fruit weight in watermelon. HortScience 2007, 42, 1332–1336. [Google Scholar] [CrossRef]
- USDA. United States Standards for Grades of Watermelons. Available online: https://www.ams.usda.gov/sites/default/files/media/Watermelon_Standard%5B1%5D.pdf (accessed on 10 January 2020).
- Elmstrom, G.; GW, E.; PL, D. Sugars in developing and mature fruits of several watermelon cultivars. J. Am. Sos. Hortic. Sci. 1981, 106, 330–333. [Google Scholar]
- Kader, A.A. Flavor quality of fruits and vegetables. J. Sci. Food Agric. 2008, 88, 1863–1868. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Soteriou, G.A.; Rouphael, Y.; Siomos, A.S.; Gerasopoulos, D. Configuration of watermelon fruit quality in response to rootstock-mediated harvest maturity and postharvest storage. J. Sci. Food Agric. 2016, 96, 2400–2409. [Google Scholar] [CrossRef]
- Fall, L.A.; Perkins-Veazie, P.; Ma, G.; McGregor, C. QTLs associated with flesh quality traits in an elite× elite watermelon population. Euphytica 2019, 215, 30. [Google Scholar] [CrossRef]
- Dia, M.; Wehner, T.C.; Perkins-Veazie, P.; Hassell, R.; Price, D.S.; Boyhan, G.E.; Olson, S.M.; King, S.R.; Davis, A.R.; Tolla, G.E. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments. Hortic. Res. 2016, 3, 1–11. [Google Scholar]
- Griffey, C.; Malla, S.; Brooks, W.; Seago, J.; Christopher, A.; Thomason, W.; Pitman, R.; Markham, R.; Vaughn, M.; Dunaway, D.; et al. Registration of ‘Hilliard’ wheat. J. Plant. Regist. 2020. [Google Scholar] [CrossRef]
- Finlay, K.; Wilkinson, G. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, S.t.; Russell, W. Stability parameters for comparing varieties 1. Crop. Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Freeman, G. Statistical methods for the analysis of genotype-environment interactions. Heredity 1973, 31, 339–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossa, J.; Gauch, H.; Zobel, R.W. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop. Sci. 1990, 30, 493–500. [Google Scholar] [CrossRef]
- Shukla, G. Some statistical aspects of partitioning genotype environmental components of variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J. 1993, 85, 754–757. [Google Scholar] [CrossRef]
- Mekbib, F. Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 2003, 130, 147–153. [Google Scholar] [CrossRef]
- Fan, X.-M.; Kang, M.S.; Chen, H.; Zhang, Y.; Tan, J.; Xu, C. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron. J. 2007, 99, 220–228. [Google Scholar] [CrossRef]
- Casanoves, F.; Baldessari, J.; Balzarini, M. Evaluation of multienvironment trials of peanut cultivars. Crop. Sci. 2005, 45, 18–26. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop. Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Wright, S. The method of path coefficients. Ann. Math. Stat. 1934, 5, 161–215. [Google Scholar] [CrossRef]
- Wright, S. Systems of mating. I. The biometric relations between parent and offspring. Genetics 1921, 6, 111. [Google Scholar] [PubMed]
- Cramer, C.; Wehner, T.; Donaghy, S. PATHSAS: A SAS computer program for path coefficient analysis of quantitative data. J. Hered. 1999, 90, 260–262. [Google Scholar] [CrossRef]
- Deshpande, R.; Zaltman, G. Factors affecting the use of market research information: A path analysis. J. Mark. Res. 1982, 19, 14–31. [Google Scholar] [CrossRef] [Green Version]
- Cervero, R. Road expansion, urban growth, and induced travel: A path analysis. J. Am. Plan. Assoc. 2003, 69, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Nazir, M.; Rabnawaz, A.; Mahmood, T.; Safdar, M.; Asif, M.; Rehman, A. Estimation of heritability, correlation and path coefficient analysis in fine grain rice (Oryza sativa L.). Japs. J. Anim. Plant. Sci. 2011, 21, 660–664. [Google Scholar]
- Yasin, A.B.; Singh, S. Correlation and path coefficient analyses in sunflower. J. Plant. Breed. Crop. Sci. 2010, 2, 129–133. [Google Scholar]
- Manggoel, W.; Uguru, M.; Ndam, O.; Dasbak, M. Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea [Vigna unguiculata (L.) Walp] accessions. J. Plant. Breed. Crop. Sci. 2012, 4, 80–86. [Google Scholar] [CrossRef]
- Cooper, J.K.; Ibrahim, A.; Rudd, J.; Malla, S.; Hays, D.B.; Baker, J. Increasing hard winter wheat yield potential via synthetic wheat: I. Path-coefficient analysis of yield and its components. Crop. Sci. 2012, 52, 2014–2022. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K. A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production 1. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- Haydar, A.; Mandal, M.; Ahmed, M.; Hannan, M.; Karim, R.; Razvy, M.; Roy, U.; Salahin, M. Studies on genetic variability and interrelationship among the different traits in tomato (Lycopersicon esculentum Mill.). Middle-East. J. Sci. Res. 2007, 2, 139–142. [Google Scholar]
- Islam, M.; Hossain, M.; Bhuiyan, M.; Husna, A.; Syed, M. Genetic variability and path-coefficient analysis of bitter gourd (Momordica charantia L.). Int. J. Sustain. Agric. 2009, 1, 53–57. [Google Scholar]
- Choudhary, B.; Pandey, S.; Singh, P. Morphological diversity analysis among watermelon (Citrullus lanatus (Thunb) Mansf.) genotypes. Progress Hortic. 2012, 44, 321–326. [Google Scholar]
- Gusmini, G.; Wehner, T.C. Foundations of yield improvement in watermelon. Crop. Sci. 2005, 45, 141–146. [Google Scholar] [CrossRef]
- Crall, J.; Elmstrom, G.; McCuistion, F. SSDL: A high-quality icebox watermelon breeding line resistant to fusarium wilt and anthracnose. HortScience 1994, 29, 707–708. [Google Scholar] [CrossRef]
- Boyhan, G.E.; O’Connell, S.; McNeill, R.; Stone, S. Evaluation of Watermelon Varieties under Organic Production Practices in Georgia. HortTechnology 2019, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, A.; Pharr, D.; Madore, M. Cucurbits. In Photoassimilate Distribution in Plants and Crops; Zamski, E., Schaffer, A.A., Eds.; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Sidhu, A.; Brar, J. Correlation and path coefficient analysis for yield, quality and earliness in watermelon (Citrullus lanatus (Thunb) mansf). Indian J. Agric. Res. 1981, 15, 33–37. [Google Scholar]
- Liu, S.; Gao, P.; Wang, X.; Davis, A.R.; Baloch, A.M.; Luan, F. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica 2015, 202, 411–426. [Google Scholar] [CrossRef]
- Davis, A.R.; Webber, C.L.; Fish, W.W.; Wehner, T.C.; King, S.; Perkins-Veazie, P. L-citrulline levels in watermelon cultigens tested in two environments. HortScience 2011, 46, 1572–1575. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Davis, A.R.; Roberts, W. Carotenoid content of 50 watermelon cultivars. J. Agric. Food Chem. 2006, 54, 2593–2597. [Google Scholar] [CrossRef] [PubMed]
- Matocha, M.; Anciso, J.; Wallace, R. Crop Profile for Watermelons in Texas. Available online: https://ipmdata.ipmcenters.org/documents/cropprofiles/TXwatermelons2012.pdf (accessed on 14 October 2020).
- Arancibia, R.; Kuhar, T.P.; Reiter, M.S.; Rideout, S.L. Southeastern US Vegetable Crop Handbook; Meister Media Worlwide: Willoughby, OH, USA, 2018. [Google Scholar]
- Wehner, T. Overview of the genes of watermelon. In Proceedings of the Cucurbitaceae 2008 IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon, France, 21–24 May 2008; pp. 79–89. [Google Scholar]
- Dia, M.; Wehner, T.C.; Arellano, C. Analysis of genotype× environment interaction (G x E) using SAS programming. Agron. J. 2016, 108, 1838–1852. [Google Scholar] [CrossRef] [Green Version]
- Frutos, E.; Galindo, M.P.; Leiva, V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk Assess. 2014, 28, 1629–1641. [Google Scholar] [CrossRef]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research; R package version 1.2–8; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
Source | DF y | TY | TF | FW | FL | FD | TSS | RT |
---|---|---|---|---|---|---|---|---|
G z | 19 | 336.57 | 31.97 * | 21.98 * | 316.03 | 41.82 *** | 13.68 * | 0.51 |
LC | 1 | 0.02 | 103.55 * | 1.46 | 17.17 | 75.74 | 9.87 | 1.18 |
YR | 1 | 6554.94 | 51.48 | 148.25 | 326.27 | 73.18 | 1.97 | 7.58 |
G × LC | 19 | 202.03 | 11.19 | 1.30 | 6.77 | 2.12 | 0.23 | 0.19 |
G × YR | 19 | 57.14 | 3.87 | 3.95 | 5.83 | 3.56 | 0.79 | 0.12 |
LC × YR | 1 | 7802.81 *** | 4.23 | 182.61 ** | 225.24 * | 499.08 ** | 73.35 ** | 5.09 ** |
RP (LC × YR) | 4 | 80.12 | 1.31 | 5.05 | 12.82 | 7.31 * | 0.53 | 0.14 |
G × LC × YR | 19 | 157.62 | 5.36 | 2.85 | 10.52 | 1.83 | 0.65 | 0.11 |
# | Genotype z | TY y | TF | FW | FL | FD | TSS | RT | Flesh Colorx | Rind Pattern | Fruit Shape |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Crimson Diamond (PI 600950) | 45.4 | 4.8 | 9.0 | 27.6 | 25.3 | 9.4 | 1.7 | Coral Red | Wide Striped | Round |
2 | Sunshade (PI 635726) | 44.6 | 7.0 | 8.1 | 41.5 | 18.7 | 9.9 | 1.2 | Coral Red | Gray | Elong |
3 | TAM 2 | 43.7 | 10.8 | 6.1 | 24.1 | 22.1 | 6.1 | 1.3 | Pale Yellow | Narrow Striped | Round |
4 | Verona (PI 635712) | 40.9 | 5.2 | 8.8 | 26.2 | 24.4 | 10.0 | 1.4 | Coral Red | Dark Green | Round |
5 | Muchas shandia (PI 543210) | 39.6 | 11.0 | 4.2 | 24.9 | 17.2 | 8.2 | 1.6 | Pink | Medium Striped | Blocky |
6 | Chubby Gray (PI 600951) | 38.3 | 5.4 | 8.4 | 32.8 | 21.8 | 9.6 | 1.6 | Coral Red | Gray | Blocky |
7 | TAM 22 | 37.8 | 7.1 | 6.4 | 24.1 | 22.8 | 10.0 | 1.6 | Orange | Gray | Oval |
8 | TAM 14 | 36.0 | 9.5 | 5.0 | 20.9 | 21.2 | 7.6 | 1.5 | White | Wide Striped | Blocky |
9 | Crimson Sweet | 35.1 | 6.3 | 6.3 | 24.0 | 21.9 | 10.8 | 1.4 | Coral Red | Medium Striped | Oval |
10 | Calhoun Gray | 34.7 | 6.2 | 8.0 | 39.5 | 19.6 | 10.0 | 1.6 | Coral Red | Gray | Elong |
11 | TAM 9 | 33.8 | 6.6 | 5.8 | 30.4 | 19.4 | 6.6 | 2.1 | Orange | Gray | Oval |
12 | TAM 6 | 33.4 | 8.2 | 5.4 | 23.1 | 21.2 | 11.0 | 1.1 | Coral Red | Gray | Round |
13 | ZWRM50 | 31.7 | 6.7 | 7.8 | 24.8 | 23.0 | 10.5 | 1.8 | Coral Red | Narrow Striped | Round |
14 | Strain II | 31.2 | 6.8 | 5.7 | 22.8 | 21.9 | 8.9 | 1.1 | Yellow | Light Green | Round |
15 | Charleston Gray | 31.1 | 4.9 | 7.4 | 38.7 | 18.7 | 9.5 | 1.5 | Coral Red | Gray | Elong |
16 | Klondike Black seeded | 29.6 | 10.4 | 4.2 | 27.5 | 16.5 | 7.9 | 1.4 | Scarlet Red | Green | Blocky |
17 | TAM 4 | 28.6 | 9.8 | 4.1 | 25.1 | 17.4 | 10.4 | 1.6 | Scarlet Red | Green | Blocky |
18 | V-CI-9 (PI 512375) | 26.4 | 7.7 | 4.6 | 20.7 | 20.2 | 9.3 | 1.0 | Scarlet Red | Dark Green | Round |
19 | Tastigold (PI 547106) | 25.6 | 5.1 | 5.8 | 22.5 | 21.7 | 10.2 | 1.6 | Orange | Gray | Round |
20 | Sugar Baby | 23.0 | 6.0 | 4.6 | 21.2 | 20.2 | 9.2 | 1.2 | Scarlet Red | Dark Green | Round |
Grand Mean | 34.5 | 7.3 | 6.3 | 27.1 | 20.8 | 9.3 | 1.5 | ||||
LSD w | 10.4 | 2.6 | 1.5 | 2.7 | 1.5 | 0.8 | 0.3 |
Traits | TY z | TF | FW | FD | FL | TSS | RT |
---|---|---|---|---|---|---|---|
TY z | 0.34 | 0.58 ** | 0.52 * | 0.15 | −0.10 | 0.17 | |
TF | −0.52 * | −0.21 | −0.43 | −0.38 | −0.19 | ||
FS | 0.59 ** | 0.57 ** | 0.24 | 0.34 | |||
FD | −0.30 | 0.15 | 0.26 | ||||
FL | 0.11 | 0.14 | |||||
TSS | −0.21 |
Traits | TF z | FW | FD | FL | TSS | RT | Total Corr TY |
---|---|---|---|---|---|---|---|
TF z | 0.88 y | −0.20 x | −0.13 | −0.22 | 0.01 | 0.01 | −0.34 |
FW | −0.46 | 0.39 | 0.38 | 0.29 | 0.00 | −0.01 | 0.58 |
FD | −0.18 | 0.23 | 0.64 | −0.15 | 0.00 | −0.01 | 0.52 |
FL | −0.38 | 0.22 | −0.19 | 0.50 | 0.00 | 0.00 | 0.15 |
TSS | −0.33 | 0.09 | 0.10 | 0.06 | −0.02 | 0.01 | −0.10 |
RT | −0.17 | 0.13 | 0.17 | 0.07 | 0.00 | −0.04 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, E.; Malla, S.; Crosby, K.M.; Avila, C.A. Evaluation of Genotypes and Association of Traits in Watermelon Across Two Southern Texas Locations. Horticulturae 2020, 6, 67. https://doi.org/10.3390/horticulturae6040067
Correa E, Malla S, Crosby KM, Avila CA. Evaluation of Genotypes and Association of Traits in Watermelon Across Two Southern Texas Locations. Horticulturae. 2020; 6(4):67. https://doi.org/10.3390/horticulturae6040067
Chicago/Turabian StyleCorrea, Edgar, Subas Malla, Kevin M. Crosby, and Carlos A. Avila. 2020. "Evaluation of Genotypes and Association of Traits in Watermelon Across Two Southern Texas Locations" Horticulturae 6, no. 4: 67. https://doi.org/10.3390/horticulturae6040067
APA StyleCorrea, E., Malla, S., Crosby, K. M., & Avila, C. A. (2020). Evaluation of Genotypes and Association of Traits in Watermelon Across Two Southern Texas Locations. Horticulturae, 6(4), 67. https://doi.org/10.3390/horticulturae6040067