Spring Freeze Damage of Pecan Bloom: A Review
Abstract
:1. Introduction
2. Effect of Freeze on Pecan
2.1. Types of Freeze Injuries in Pecan
2.2. Spring Freeze and the Factors Influencing Severity of Freeze Damage in Pecan
2.2.1. Secondary Buds
2.2.2. Bud Growth Stages
2.2.3. Region and Type of Cultivar
2.2.4. Upper and Lower Canopy or Tree Height or Size
2.2.5. Management Practices
3. Effect of Temperature on Female and Male Flowers
3.1. Effect on Female Flowers
3.2. Effect on Male Flowers
3.3. Effect on Cell Activities and Gene Regulation
4. Carbohydrates and Flower Bud Formation
4.1. Carbohydrate Transport
4.2. Carbohydrates Reserves
4.3. Carbohydrate and Temperature
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuden, A.B.; Tuzcu, O.; Bayazit, S.; Yildirim, B.; Imrak, B. Studies on the chilling requirements of pecan nut (Carya illionensis Koch) cultivars. Afr. J. Agric. Res. 2013, 8, 3159–3165. [Google Scholar]
- Anderson, P.C. The pecan tree. In Horticultural Sciences Department, UF/IFAS Extension; Guide-HS982; University of Florida: Gainesville, FL, USA, 2019; pp. 1–16. Available online:https://edis.ifas.ufl.edu/hs229 (accessed on 26 October 2020).
- Sparks, D. Chilling and Heating Model for Pecan Budbreak. J. Am. Soc. Hort. Sci. 1993, 118, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Barison, F.R. Pecan Culture; The Texas Pecan Growers Association: College Station, TX, USA, 1986; Chapter 2, p. 27. [Google Scholar]
- Graham, C. What the Recent Freeze Means for Pecan Growers. Noble Research Institute-Noble Farm Damage Report. 2020. Available online: https://www.noble.org/blog/what-the-recent-freeze-means-for-pecan-growers/ (accessed on 25 September 2020).
- Herrera, E. Flowering Habits of Pecan Trees; Guide H-622; Cooperative extension services, New Mexico State University: Las Cruces, NM, USA, 1999; pp. 1–4. [Google Scholar]
- Carroll, B.; Smith, M.W. Pecan Varieties for Oklahoma.Division of Agricultural Sciences and Natural Resources, Oklahoma State University, 2017, HLA6201. Available online: https://extension.okstate.edu/fact-sheets/pecan-varieties-for-oklahoma.html (accessed on 25 September 2020).
- Sparks, D. Adaptability of pecan as a species. HortScience 2005, 40, 1175–1189. [Google Scholar] [CrossRef] [Green Version]
- Wood, B.W. Influence of Plant Bioregulators on Pecan Flowering and Implications for Regulation of Pistillate Flower Initiation. HortScience 2011, 46, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Peng, F.; Marshall, P. Pecan phenology in Southeastern China. Ann. Appl. Biol. 2018, 172, 160–169. [Google Scholar] [CrossRef]
- Mesonet. Available online: https://www.mesonet.org/ (accessed on 26 October 2020).
- Lhotka, O.; Brönnimann, S. Possible Increase of Vegetation Exposure to Spring Frost under Climate Change in Switzerland. Atmosphere 2020, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Hanson, P.J.; Post, W.M.; Kaiser, D.P.; Yang, B.; Nemani, R.; Pallardy, S.G.; Meyers, T. The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World. BioScience 2008, 58, 253–262. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Smith, R.I. Climatic warming, spring budburst and frost damage on trees. J. Appl. Ecol. 1986, 23, 177–191. [Google Scholar] [CrossRef]
- Kim, Y.; Kimballa, J.S.; Didan, K.; Henebry, G.M. Responses of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion. Agric. For. Meteorol. 2014, 194, 132–143. [Google Scholar] [CrossRef]
- Smith, M.W.; Reid, W.; Carroll, B.; Cheary, B. Mechanical fruit thinning influences fruit quality, yield, return fruit set, and cold injury of pecan. HortScience 1993, 28, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Cade, J.C. The Relationship between Fatty Acid Content and Pecan Cold Hardiness; Mississippi State: Starkville, MS, USA, 2001. [Google Scholar]
- Wood, B.W. Cold injury susceptibility of pecan as influenced by cultivar, carbohydrates, and crop load. HortScience 1986, 21, 285–286. [Google Scholar]
- Malstrom, H.L.; Jones, J.R.; Riley, T.D. Influence of freeze damage on fruitfulness of the pecan. Pecan Q. 1982, 16, 13–17. [Google Scholar]
- Wood, B.W.; Reilly, C.C. Atypical Symptoms of Cold Damage to Pecan. HortScience 2001, 36, 298–301. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W. Damage by early autumn freeze varies with pecan cultivars. HortScience 2002, 37, 398–401. [Google Scholar] [CrossRef]
- Sparks, D.; Payne, J.A.; Horton, B.D. Effect of subfreezing temperatures on bud break of pecan. HortScience 1976, 11, 415–416. [Google Scholar]
- Sparks, D.; Payne, J.A. Winter injury in pecans: A review. Pecan South 1978, 5, 56–88. [Google Scholar]
- Farokhzad, A.; Nobakht, S.; Alahveran, A.; Sarkhosh, A.; Mohseniazar, M. Biochemical changes in terminal buds of three different walnut (Juglans regia L.) genotypes during dormancy break. Biochem. Syst. Ecol. 2018, 76, 52–57. [Google Scholar] [CrossRef]
- Hentschel, R. Chilling Hours Help Break Spring Dormancy. Illionois Extension. 2020. Available online: https://extension.illinois.edu/blogs/over-garden-fence/2020-03-09-chilling-hours-help-break-spring-dormancy (accessed on 25 September 2020).
- Melke, A. The Physiology of Chilling Temperature Requirements for Dormancy Release and Bud-break in Temperate Fruit Trees Grown at Mild Winter Tropical Climate. J. Plant Stud. 2015, 4, 110–156. [Google Scholar] [CrossRef]
- Augspurger, C.K. Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 2009, 23, 1031–1039. [Google Scholar] [CrossRef]
- Botany. Available online: http://pecan.okstate.edu/html/introduction/id_2.htm (accessed on 25 September 2020).
- Stein, L.A. Rebounding from the Freeze; Texas Cooperative Extension, Texas A&M University: College Station, TX, USA, 2003; Available online: https://aggie-horticulture.tamu.edu/newsletters/hortupdate/hortupdate_archives/2003/jun03/art4jun.html (accessed on 25 September 2020).
- Spark, D. Abnormal Flowering in Pecan Associated with Freezing Temperature. HortScience 1992, 27, 801–803. [Google Scholar] [CrossRef] [Green Version]
- Wetzstein, H.Y.; Sparks, D. Horticultural Reviews, Flowering in Pecan; Department of Horticulture, University of Georgia: Athens, GA, USA, 1986; Chapter 6; pp. 217–255. [Google Scholar]
- Woodroof, J.G.; Woddroof, N.C. Abnormalities in pecan. J. Hered. 1930, 21, 39–44. [Google Scholar] [CrossRef]
- Cole, J.R.; Hunter, J.H. Abnormal flowering of pecans following freeze damage in 1965. Plant Dis. Rep. 1965, 49, 146–147. [Google Scholar]
- Hagler, T.H. Freeze injury to pecans in Alabama. Proc. Southeast. Pecan Grow. Assoc. 1956, 49, 9. [Google Scholar]
- Wells, M.L. Response of ‘Desirable’ and ‘Kiowa’ Pecan to a Late-spring Freeze. HortTechnology 2008, 18, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Madden, G. Late spring freeze in a pecan nursery as a function of variety. Pecan Q. 1980, 14, 11. [Google Scholar]
- Reid, W. Spring Frost Burns Emerging Pecan Shoots. Northern Pecans. 2020. Available online: http://northernpecans.blogspot.com/2020/04/spring-frost-burns-emerging-pecan-shoots.html (accessed on 25 September 2020).
- Parker, M.; Sorensen, K.; Brock, J. Growing Pecans in North Carolina. North Carolina Cooperative Extension Service. 2016, pp. 1–16. Available online: http://content.ces.ncsu.edu/growing-pecans-in-north-carolina (accessed on 25 September 2020).
- Reid, W. Freezing Temperatures Injure Emerging Pecan Buds. Northern Pecans. 2014. Available online: http://northernpecans.blogspot.com/2014/04/pecan-trees-restart-growth-after-frost.html (accessed on 25 September 2020).
- Wells, L. Nutritional, Environmental, and Cultural Disorders of Pecan. B 1332, 2007, 1–11, Cooperative Extension, University of Georgia. Available online: https://athenaeum.libs.uga.edu/bitstream/handle/10724/12340/B1332.pdf?sequence=1 (accessed on 17 October 2020).
- Grauke, L.J.; Pratt, J.W. Pecan Bud Growth and Freeze Damage are Influenced by Rootstock. J. Am. Soc. Hortic. Sci. 1992, 117, 404–406. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.; Cheary, B.S. Pecan bud damage caused by freezing temperatures during spring 2009 was affected by cultivars. J. Am. Pomol. Soc. 2010, 64, 92–100. [Google Scholar]
- Reid, W. Freeze Injury to Pecan Buds. Northern Pecans. 2018. Available online: http://northernpecans.blogspot.com/2018/04/ (accessed on 25 September 2020).
- Hosseinpour, B.; Sepahvand, S.; Aliabad, K.K.; Bakhtiarizadeh, M.R.; Imani, A.; Assareh, R.; Salami, S.A. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress. Mol. Genet. Genom. 2018, 293, 151–163. [Google Scholar] [CrossRef]
- Smith, M.W.; Gallott, J.C. Mechanical thinning of pecan fruits. HortScience 1990, 25, 414–416. [Google Scholar] [CrossRef]
- Grauke, L.J. Family Trees: Roots and Resilience. Pecan South Magazine. 2019. Available online: https://www.pecansouthmagazine.com/magazine/article/family-trees-roots-resilience/ (accessed on 25 September 2020).
- Sorkhan, R.S.; Enteshari, S.; Hokmabadi, H.; Tajabadipour, A. Physiological Evaluation of Pistachio Frost Damage Resistant Rootstocks. Int. J. Nuts Relat. Sci. 2011, 2, 55–66. [Google Scholar]
- Khadivi, A.; Montazeran, A.; Yadegari, P. Superior spring frost resistant walnut (Juglans regia L.) genotypes identified among mature seedling origin trees. Sci. Hortic. 2019, 253, 147–153. [Google Scholar] [CrossRef]
- Imani, A.; Mahamadkhani, Y. Characteristics of Almond Selections in Relation to Late Frost Spring. Int. J. Nuts Relat. Sci. 2011, 2, 31–34. [Google Scholar]
- Sakar, E.H.; Yamani, M.E.; Rharrabti, Y. Frost Susceptibility of Five Almond [Prunus dulcis (mill.) D.A. Webb] Cultivars Grown in North-Eastern Morocco as Revealed by Chlorophyll Fluorescence. Int. J. Fruit Sci. 2017, 17, 415–422. [Google Scholar] [CrossRef]
- Reid, W. Bud Break after Early April Freezes. Northern Pecans. 2018. Available online: http://northernpecans.blogspot.com/2018/05/bud-break-after-early-april-freezes.html (accessed on 25 September 2020).
- Reid, W. Nut Set after a Late Spring Freeze. Northern Pecans. 2018. Available online: http://northernpecans.blogspot.com/2018/05/nut-set-after-late-spring-freeze.html (accessed on 25 September 2020).
- Charrier, G.; Ngao, J.; Saudreau, M.; Améglio, T. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Front. Plant Sci. 2015, 6, 259. [Google Scholar] [CrossRef] [Green Version]
- Hedhly, A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 2011, 74, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Grauke, L.J. Pecan Flowering. Available online: https://cgru.usda.gov/carya/Manual/flowering.html (accessed on 25 September 2020).
- Sanzol, J.; Herrero, M. The effective pollination period in fruit trees. Sci. Hortic. 2001, 90, 1–17. [Google Scholar] [CrossRef]
- Sanzol, J.; Rallo, P.; Herrero, M. Asynchronous development of stigmatic receptivity in the pear (Pyrus communis L. Rosaceae) flower. Am. J. Bot. 2003, 90, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant Cell Environ. 2003, 26, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 2005, 7, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Lora, J.; Herrero, M.; Hormaza, J.I. Stigmatic receptivity in a dichogamous early divergent angiosperm species, Annona cherimola (Annonaceae): Influence of temperature and humidity. Am. J. Bot. 2011, 98, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ferguson, L.; Whiting, M. Temperature effects on pistil viability and fruit set in sweet cherry. Sci. Hortic. 2018, 241, 8–17. [Google Scholar] [CrossRef]
- Beppu, K.; Suehara, T.; Kataoka, I. Embryo sac development and fruit set of “Satohnishiki” sweet cherry as affected by temperature, GA3 and paclobutrazol. J. Jpn. Soc. Hortic. Sci. 2001, 70, 157–162. [Google Scholar] [CrossRef]
- Postweiler, K.; Stösser, R.; Anvari, S.F. The effect of different temperatures on the viability of ovules in cherries. Sci. Hortic. 1985, 25, 235–239. [Google Scholar] [CrossRef]
- Montalta, R.; Cuencab, J.; Vivesa, M.C.; Navarroa, L.; Ollitraultc, P.; Alezab, P. Influence of temperature on the progamic phase in Citrus. Environ. Exp. Bot. 2019, 166, 1–11. [Google Scholar] [CrossRef]
- Rodrigo, J. Review: Spring frosts in deciduous fruit trees-morphological damage and flower hardiness. Sci. Hortic. 2000, 85, 155–173. [Google Scholar] [CrossRef]
- Longstroth, M. Assessing Frost and Freeze Damage to Flowers and Buds of Fruit Trees. Michigan State University Extension 2013. Available online: https://www.canr.msu.edu/news/assessing_frost_and_freeze_damage_to_flowers_and_buds_of_fruit_trees (accessed on 29 September 2020).
- Kaur, A.; Zhang, L.; Maness, N.; Moss, J. The Impact of Temperature on the Development of Pecan Flowers. HortScience 2020, 55, S293. Available online: https://journals.ashs.org/hortsci/view/journals/hortsci/55/9S/article-pS1.xml (accessed on 26 October 2020).
- Sukhvibul, N.; Whiley, A.W.; Vithanage, V.; Smith, M.K.; Doogan, V.J.; Hetherington, S.E. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L). J. Hortic. Sci. Biotechnol. 2000, 75, 64–68. [Google Scholar] [CrossRef]
- Acar, I.; Kakani, V.G. The effects of temperature on in vitro pollen germination and pollen tube growth of Pistacia spp. Sci. Hortic. 2010, 25, 569–572. [Google Scholar] [CrossRef]
- Therios, I.N.; Trisakoglou, V.M.; Dimossi-Theriou, K.N. Physiological aspects of pistachio (Pistacia vera L) pollen germination. Riv. Ortoflorofruttic. Ital. 1985, 69, 161–170. [Google Scholar]
- Austin, P.T.; Hewett, E.W.; Noiton, D.; Plummer, J.A. Self-incompatibility and temperature affect pollen tube growth in Sundrop apricot (Prunus armerica L). J. Hortic. Sci. Biotechnol. 1998, 73, 375–386. [Google Scholar] [CrossRef]
- Cerovic, R.; Ruzic, D. Pollen tube growth in sour cherry (Prunus cerasus L) at different temperatures. J. Hortic. Sci. 1992, 67, 333–340. [Google Scholar] [CrossRef]
- Pirlak, L. The effects of temperature on pollen germination and pollen tube growth of apricot and sweet cherry. Gartenbauwissenschaft 2002, 67, 61–64. [Google Scholar]
- Vasilakakis, M.; Porlingis, I.C. Effect of temperature on pollen germination, pollen tube growth, effective pollination period, and fruit set of pear. Hortic. Sci. 1985, 20, 733–735. [Google Scholar]
- Zhang, L.; Ampatzidis, Y.; Whiting, M. Sweet cherry floral organ size varies with genotype and temperature. Sci. Hortic. 2015, 182, 156–164. [Google Scholar] [CrossRef]
- Vezvaei, A. Pollen tube growth in Nonpareil almond in relation to pollen genotype, temperature and competition among mixed pollen. Acta Hortic. 1997, 470, 251–261. [Google Scholar] [CrossRef]
- Moheb, M.B.; Imani, A.; Shamili, M. Effects of Boron and Cold Stress on Germination of Almond Pollen in Vitro Culture. J. Nuts 2016, 7, 149–159. [Google Scholar]
- Cohen, E.; Lavi, U.; Spiegel, R. Papaya pollen viability and storage. Sci. Hortic. 1989, 40, 317–324. [Google Scholar] [CrossRef]
- Oliver, S.N.; Dongen, V.J.T.; Alfred, S.C.; Mamun, E.A.; Zhao, X.; Saini, H.S.; Fernandes, S.F.; Blanchard, C.L.; Sutton, B.G.; Geigenberger, P.; et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ. 2015, 28, 1534–1551. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, S.C.; Hong, S.K.; An, K.; An, G.; Kim, S.R. Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol. Cells 2009, 27, 449–458. [Google Scholar] [CrossRef]
- Satake, T.; Hayase, H. Male sterility caused by cooling treatment at the young microspore stage in rice plants. V. Estimation of pollen developmental stage and the most sensitive stage to coolness. Proc. Crop Sci. Soc. Jpn. 1970, 39, 468–473. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.; Zhu, J.K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Review paper Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, D.J.; Ort, D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 2001, 6, 36–42. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.Y.; Chen, Y.C.; Jauh, G.Y.; Wang, C.S. A lily ASR protein involves abscisic acid signalling and confers drought and salt resistance in Arabidopsis. Plant Physiol. 2005, 139, 836–846. [Google Scholar] [CrossRef] [Green Version]
- Karimi, M.; Ghazanfari, F.; Fadaei, A.; Ahmadi, L.; Shiran, B.; Rabei, M.; Fallahi, H. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress. PLoS ONE 2016, 11, e0156519. [Google Scholar] [CrossRef]
- Tromp, J. Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant Soil 1983, 71, 401–413. [Google Scholar] [CrossRef]
- Smith, C.L.; Waugh, J.G. Seasonal variations in the carbohydrate and nitrogen content of roots of bearing pecan trees. J. Agric. Res. 1938, 57, 449–460. [Google Scholar]
- Silva, D.D.; Qin, L.; DeBuse, C.; DeJong, T.M. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees. Ann. Bot. 2014, 114, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, B.W. Alternate bearing in pecan. In Pecan Husbandry: Challenges and Opportunities; Wood, B.W., Payne, J.A., Eds.; ARS-96; First National Pecan Workshop; US Department of Agriculture, Agricultural Research Services: Springfield, VI, USA, 1991; pp. 180–190. [Google Scholar]
- Chen, X.; Qi, S.; Zhang, D.; Li, Y.; An, N.; Zhao, C.; Zhao, J.; Shah, K.; Han, M.; Xing, L. Comparative RNA-sequencing-based transcriptome profiling of buds from profusely flowering ‘Qinguan’ and weakly flowering ‘Nagafu no. 2′ apple varieties reveals novel insights into the regulatory mechanisms underlying floral induction. BMC Plant Biol. 2018, 18, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockwood, D.W.; Sparks, D. Translocation of 14C in ‘Stuart’ pecan in the spring following assimilation of 14CO2 during the previous growing season. J. Am. Soc. Hort. Sci. 1978, 103, 38–45. [Google Scholar]
- Barnett, J.; Mielke, E.A. Alternate bearing: A re-evaluation. Pecan South 1981, 8, 20–30. [Google Scholar]
- Wood, W.B.; Conner, P.J.; Worley, R.E. Insight into Alternate Bearing of Pecan. Acta Hortic. 2004, 636, 617–629. [Google Scholar] [CrossRef]
- Wahl, V.; Ponnu, J.; Schlereth, A.; Arrivault, S.; Langenecker, T.; Franke, A.; Feil, R.; Lunn, J.E.; Stitt, M.; Schmid, M. Regulation of Flowering by Trehalose-6-Phosphate Signaling in Arabidopsis thaliana. Science 2013, 339, 704–707. [Google Scholar] [CrossRef]
- Spann, T.M.; Beede, R.H.; Dejong, T.M. Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees. Tree Phyiosl. 2008, 28, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwieniecki, M.; Lampinen, B. Preliminary research development of tree carbohydrate budget based methods for sustainable management of walnut orchards under changing central valley climatic conditions. Calif. Walnut Board Walnut Res. Rep. 2015, 141–157. [Google Scholar]
- Oono, Y.; Seki, M.; Satou, M.; Iida, K.; Akiyama, K.; Sakurai, T.; Fujita, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct. Integr. Genom. 2006, 6, 212–234. [Google Scholar] [CrossRef]
- Cook, D.; Fowler, S.; Fiehn, O.; Thomashow, M.F. A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 15243–15248. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Xi, D.; Chen, Y.; Zhu, C.; Zhao, Y.; Geng, G. Morphological characterization and transcriptome analysis of pistillate flowering in pecan (Carya illinoinensis). Sci. Hortic. 2019, 257, 1–13. [Google Scholar] [CrossRef]
- Tarpley, L.; Sassenrath, G.F. Carbohydrate Profiles during Cotton Floral Bud (Square) Development. J. Agron. Crop Sci. 2006, 192, 363–372. [Google Scholar] [CrossRef]
- Simões, F.; Hawerroth, F.J.; Yamamoto, R.R.; Herter, F.G. Water Content and Carbohydrate Dynamics of Pear Trees during Dormancy in Southern Brazil. Acta Hortic. 2014, 1058, 305–312. [Google Scholar] [CrossRef]
- Ito, A.; Sakamoto, D.; Moriguchi, T. Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci. Hortic. 2012, 144, 187–194. [Google Scholar] [CrossRef]
- Wong, B.L.; Baggett, K.L.; Rye, A.H. Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Can. J. Bot. 2003, 788, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Bonhomme, M.; Peuch, M.; Ameglio, T.; Rageau, R.; Guilliot, A.; Decourteix, M.; Alves, G.; Sakr, S.; Lacointe, A. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol. 2009, 30, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Borghi, M.; Fernie, A.R. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators’ Preferences and Seed and Fruit Set. Plant Physiol. 2017, 175, 1510–1524. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.H.; Berg-Sorensen, K.; Bruus, H.; Holbrook, N.M.; Liesche, J.; Schulz, A.; Zwieniecki, M.A.; Bohr, T. Sap flow and sugar transport in plants. Rev. Mod. Phys. 2016, 88, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Tixier, A.; Sperling, O.; Orozco, J.; Lampinen, B.; Roxas, A.A.; Saa, S.; Earles, J.M.; Zwienieck, M.A. Spring bud growth depends on sugar delivery by xylem and water recirculation by phloem Munch flow in Juglans regia. Planta 2017, 246, 495–508. [Google Scholar] [CrossRef]
- Fisher, D.B. Year-round collection of willow sieve-tube exudate. Planta 1983, 159, 529–533. [Google Scholar] [CrossRef]
- Yates, I.E.; Sparks, D. Anatomy differs for aborting and nonaborting pistillate flowers in Pecan. J. Am. Soc. Hortic. Sci. 1994, 119, 949–955. [Google Scholar] [CrossRef]
- Sparks, D.; Heath, J.L. Pistillate flower and fruit drop of pecan as a function of time and shoot length. HortScience 1972, 7, 402–404. [Google Scholar]
- Sparks, D.; Madden, G.D. Pistillate flower and fruit abortion in pecan as a function of cultivar, time, and pollination. J. Am. Soc. Hortic. Sci. 1985, 110, 219–223. [Google Scholar]
- Bennett, J.S. Relationships between Carbohydrate Supply and Reserves and the Reproductive Growth of Grapevines (Vitis vinifera L.). Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2002. [Google Scholar]
- Rosa, R.D.L.; Rallo, L. Olive floral bud growth and starch content during winter rest and spring bud-break. Hortscience 2000, 35, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Mansouri Dehshoaibi, R.; Davarinejad, G.; Hokmabadi, H.; Tehranifar, A. Evaluation of proline, proteins and sugar during phonological processes of flower buds of commercial pistachio cultivars. J. Hortic. Sci. 2011, 25, 116–121. [Google Scholar]
- Nobari, F.; Afshari, H.; Miri, S.M.; Hokmabadi, H. An Investigation of Cold Tolerance on Chemical Properties (Proline, Protein, and Sugar) of the Flower Buds in Four Commercial Cultivars of Damghan Local Pistachio. J. Nuts 2012, 3, 1–8. [Google Scholar]
- Charrier, G.; Poirier, M.; Bonhomme, M.; Lacointe, A.; Améglio, T. Frost hardiness in walnut trees (Juglans regia L.): How to link physiology and modelling? Tree Physiol. 2013, 33, 1229–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, A.; Ferguson, L.; Maness, N.; Carroll, B.; Reid, W.; Zhang, L. Spring Freeze Damage of Pecan Bloom: A Review. Horticulturae 2020, 6, 82. https://doi.org/10.3390/horticulturae6040082
Kaur A, Ferguson L, Maness N, Carroll B, Reid W, Zhang L. Spring Freeze Damage of Pecan Bloom: A Review. Horticulturae. 2020; 6(4):82. https://doi.org/10.3390/horticulturae6040082
Chicago/Turabian StyleKaur, Amandeep, Louise Ferguson, Niels Maness, Becky Carroll, William Reid, and Lu Zhang. 2020. "Spring Freeze Damage of Pecan Bloom: A Review" Horticulturae 6, no. 4: 82. https://doi.org/10.3390/horticulturae6040082
APA StyleKaur, A., Ferguson, L., Maness, N., Carroll, B., Reid, W., & Zhang, L. (2020). Spring Freeze Damage of Pecan Bloom: A Review. Horticulturae, 6(4), 82. https://doi.org/10.3390/horticulturae6040082