Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
Abstract
:1. Background
2. Species Studied
3. Green Leaf Elements
3.1. The Elements
3.2. The Taxa
4. Leaf Litter Elements
5. Biotic Factors
6. Environmental Factors
7. Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Element | Species | Range | Reference |
---|---|---|---|
Carbon | Bowenia serrulata | 519 mg·g−1 | [9] |
Carbon | Bowenia spectabilis | 508 mg·g−1 | [9] |
Carbon | Ceratozamia Mexicana | 514 mg·g−1 | [9] |
Carbon | Cycas debaoensis | 485 mg·g−1 | [9] |
Carbon | Cycas diannanensis | 463 mg·g−1 | [9] 1 |
Carbon | Cycas elongata | 483 mg·g−1 | [9] |
Carbon | Cycas fairylakea | 499 mg·g−1 | [9] |
Carbon | Cycas micholitzii | 475 mg·g−1 | [9] |
Carbon | Cycas micronesica | 479 mg·g−1 | [12] |
Carbon | Cycas micronesica | 484–493 mg·g−1 | [13] |
Carbon | Cycas micronesica | 480–505 mg·g−1 | [14] |
Carbon | Cycas micronesica | 475–485 mg·g−1 | [17] |
Carbon | Cycas nitida | 499–509 mg·g−1 | [10] |
Carbon | Cycas panzhihuaensis | 466–504 mg·g−1 | [9] |
Carbon | Cycas sexseminifera | 467 mg·g−1 | [9] |
Carbon | Cycas siamensis | 469 mg·g−1 | [9] |
Carbon | Cycas szechuanensis | 475–498 mg·g−1 | [9] |
Carbon | Cycas thouarsii | 497 mg·g−1 | [9] |
Carbon | Cycas wadei | 508 mg·g−1 | [11] |
Carbon | Dioon edule | 496 mg·g−1 | [9] |
Carbon | Dioon mejiae | 485 mg·g−1 | [9] |
Carbon | Dioon spinulosum | 486 mg·g−1 | [9] |
Carbon | Encephalartos cupidus | 490 mg·g−1 | [9] |
Carbon | Encephalartos ferox | 494 mg·g−1 | [9] |
Carbon | Encephalartos gratus | 497–505 mg·g−1 | [9] |
Carbon | Lepidozamia hopei | 515 mg·g−1 | [9] |
Carbon | Lepidozamia peroffskyana | 511 mg·g−1 | [9] |
Carbon | Lepidozamia peroffskyana | 473–566 mg·g−1 | [16] |
Carbon | Macrozamia communis | 512 mg·g−1 | [9] |
Carbon | Macrozamia communis | 507–560 mg·g−1 | [16] |
Carbon | Macrozamia lucida | 524 mg·g−1 | [9] |
Carbon | Macrozamia lucida | 473–522 mg·g−1 | [16] |
Carbon | Macrozamia macleaya | 438–508 mg·g−1 | [16] |
Carbon | Macrozamia moorei | 519 mg·g−1 | [9] |
Carbon | Macrozamia riedlei | 455–525 mg·g−1 | [16] |
Carbon | Stangeria eriopus | 479 mg·g−1 | [9] |
Carbon | Zamia erosa | 495 mg·g−1 | [9] 2 |
Carbon | Zamia erosa | 481 mg·g−1 | [15] |
Carbon | Zamia fischeri | 458 mg·g−1 | [9] 3 |
Carbon | Zamia furfuracea | 477–489 mg·g−1 | [9] |
Carbon | Zamia integrifolia | 490–491 mg·g−1 | [9] |
Carbon | Zamia portoricensis | 484 mg·g−1 | [15] |
Carbon | Zamia splendens | 483 mg·g−1 | [9] |
Carbon | Zamia vazquezii | 488 mg·g−1 | [9] |
Nitrogen | Bowenia serrulata | 24 mg·g−1 | [9] |
Nitrogen | Bowenia serrulata | 41 mg·g−1 | [16] |
Nitrogen | Bowenia spectabilis | 24 mg·g−1 | [9] |
Nitrogen | Ceratozamia mexicana | 13 mg·g−1 | [9] |
Nitrogen | Cycas armstrongii | 21 mg·g−1 | [21] |
Nitrogen | Cycas debaoensis | 28 mg·g−1 | [9] |
Nitrogen | Cycas diannanensis | 26 mg·g−1 | [9] 1 |
Nitrogen | Cycas diannanensis | 26 mg·g−1 | [19] 1 |
Nitrogen | Cycas elongata | 28 mg·g−1 | [9] |
Nitrogen | Cycas fairylakea | 25 mg·g−1 | [9] |
Nitrogen | Cycas media | 44 mg·g−1 | [16] |
Nitrogen | Cycas micholitzii | 25 mg·g−1 | [9] |
Nitrogen | Cycas micholitzii | 25 mg·g−1 | [19] |
Nitrogen | Cycas micronesica | 29–30 mg·g−1 | [15] |
Nitrogen | Cycas micronesica | 25 mg·g−1 | [12] |
Nitrogen | Cycas micronesica | 14–30 mg·g−1 | [18] |
Nitrogen | Cycas micronesica | 18–27 mg·g−1 | [13] |
Nitrogen | Cycas micronesica | 18–29 mg·g−1 | [14] |
Nitrogen | Cycas micronesica | 23–37 mg·g−1 | [17] |
Nitrogen | Cycas micronesica | 17–30 mg·g−1 | [20] |
Nitrogen | Cycas nitida | 24–28 mg·g−1 | [10] |
Nitrogen | Cycas nongnoochiae | 26–30 mg·g−1 | [20] |
Nitrogen | Cycas panhihuaensis | 16–21 mg·g−1 | [9] |
Nitrogen | Cycas panhihuaensis | 16 mg·g−1 | [19] |
Nitrogen | Cycas rumphii | 30–31 mg·g−1 | [15] |
Nitrogen | Cycas sexseminifera | 19 mg·g−1 | [9] |
Nitrogen | Cycas sexseminifera | 19 mg·g−1 | [19] 4 |
Nitrogen | Cycas siamensis | 18 mg·g−1 | [9] |
Nitrogen | Cycas siamensis | 19 mg·g−1 | [19] |
Nitrogen | Cycas szechuanensis | 21–25 mg·g−1 | [9] |
Nitrogen | Cycas szechuanensis | 21 mg·g−1 | [19] |
Nitrogen | Cycas thouarsii | 23 mg·g−1 | [9] |
Nitrogen | Cycas wadei | 21 mg·g−1 | [11] |
Nitrogen | Dioon edule | 15 mg·g−1 | [9] |
Nitrogen | Dioon mejiae | 14 mg·g−1 | [9] |
Nitrogen | Dioon sonorense | 14–17 mg·g−1 | [22] |
Nitrogen | Dioon spinulosum | 15 mg·g−1 | [9] |
Nitrogen | Encephalartos cupidus | 17 mg·g−1 | [9] |
Nitrogen | Encephalartos cupidus | 18 mg·g−1 | [19] |
Nitrogen | Encephalartos ferox | 15 mg·g−1 | [9] |
Nitrogen | Encephalartos gratus | 18–19 mg·g−1 | [9] |
Nitrogen | Encephalartos gratus | 18 mg·g−1 | [19] |
Nitrogen | Lepidozamia hopei | 17 mg·g−1 | [9] |
Nitrogen | Lepidozamia peroffskyana | 19 mg·g−1 | [9] |
Nitrogen | Lepidozamia peroffskyana | 18–31 mg·g−1 | [16] |
Nitrogen | Macrozamia communis | 20 mg·g−1 | [9] |
Nitrogen | Macrozamia communis | 10–38 mg·g−1 | [16] |
Nitrogen | Macrozamia lucida | 21 mg·g−1 | [9] |
Nitrogen | Macrozamia lucida | 14–22 mg·g−1 | [16] |
Nitrogen | Macrozamia macleayi | 8–43 mg·g−1 | [16] |
Nitrogen | Macrozamia moorei | 20 mg·g−1 | [9] |
Nitrogen | Macrozamia mountperriensis | 54–55 mg·g−1 | [16] |
Nitrogen | Macrozamia parcifolia | 47–49 mg·g−1 | [16] |
Nitrogen | Macrozamia riedlei | 14 mg·g−1 | [21] |
Nitrogen | Macrozamia riedlei | 11–15 mg·g−1 | [23] |
Nitrogen | Macrozamia riedlei | 8–38 mg·g−1 | [16] |
Nitrogen | Macrozamia serpentina | 28–31 mg·g−1 | [16] |
Nitrogen | Stangeria eriopus | 22 mg·g−1 | [9] |
Nitrogen | Zamia erosa | 18 mg·g−1 | [9] 2 |
Nitrogen | Zamia erosa | 26 mg·g−1 | [15] |
Nitrogen | Zamia fischeri | 28 mg·g−1 | [9] 3 |
Nitrogen | Zamia fischeri | 28 mg·g−1 | [19] 3 |
Nitrogen | Zamia furfuracea | 12–14 mg·g−1 | [9] |
Nitrogen | Zamia furfuracea | 13 mg·g−1 | [19] |
Nitrogen | Zamia integrifolia | 18–21 mg·g−1 | [9] |
Nitrogen | Zamia portoricensis | 18 mg·g−1 | [15] |
Nitrogen | Zamia splendens | 15 mg·g−1 | [9] |
Nitrogen | Zamia standleyi | 19 mg·g−1 | [15] |
Nitrogen | Zamia vazquezii | 30 mg·g−1 | [9] |
Phosphorus | Bowenia serrulata | 1.0 mg·g−1 | [9] |
Phosphorus | Bowenia spectabilis | 1.1 mg·g−1 | [9] |
Phosphorus | Ceratozamia mexicana | 0.8 mg·g−1 | [9] |
Phosphorus | Cycas debaoensis | 1.4 mg·g−1 | [9] |
Phosphorus | Cycas diannanensis | 2.4 mg·g−1 | [9] 1 |
Phosphorus | Cycas diannanensis | 2.4 mg·g−1 | [19] 1 |
Phosphorus | Cycas elongata | 1.2 mg·g−1 | [9] |
Phosphorus | Cycas fairylakea | 1.1 mg·g−1 | [9] |
Phosphorus | Cycas micholitzii | 1.5 mg·g−1 | [9] |
Phosphorus | Cycas micholitzii | 1.5 mg·g−1 | [19] |
Phosphorus | Cycas micronesica | 2.9 mg·g−1 | [12] |
Phosphorus | Cycas micronesica | 1.2–2.7 mg·g−1 | [18] |
Phosphorus | Cycas micronesica | 0.9–2.5 mg·g−1 | [13] |
Phosphorus | Cycas micronesica | 0.8–2.8 mg·g−1 | [14] |
Phosphorus | Cycas micronesica | 2.6–2.9 mg·g−1 | [17] |
Phosphorus | Cycas micronesica | 1.5–2.9 mg·g−1 | [20] |
Phosphorus | Cycas nitida | 1.1–1.9 mg·g−1 | [10] |
Phosphorus | Cycas nongnoochiae | 1.3–3.4 mg·g−1 | [20] |
Phosphorus | Cycas panzhihuaensis | 1.0–1.1 mg·g−1 | [9] |
Phosphorus | Cycas panzhihuaensis | 1.1 mg·g−1 | [19] |
Phosphorus | Cycas sexseminifera | 1.5 mg·g−1 | [9] |
Phosphorus | Cycas sexseminifera | 1.2–1.5 mg·g−1 | [19] 4 |
Phosphorus | Cycas siamensis | 1.2 mg·g−1 | [9] |
Phosphorus | Cycas siamensis | 1.2 mg·g−1 | [19] |
Phosphorus | Cycas szechuanensis | 1.0–1.2 mg·g−1 | [9] |
Phosphorus | Cycas thouarsii | 1.2 mg·g−1 | [9] |
Phosphorus | Cycas wadei | 1.1 mg·g−1 | [11] |
Phosphorus | Dioon edule | 0.8 mg·g−1 | [9] |
Phosphorus | Dioon mejiae | 1.5 mg·g−1 | [9] |
Phosphorus | Dioon spinulosum | 0.8 mg·g−1 | [9] |
Phosphorus | Encephalartos cupidus | 1.2 mg·g−1 | [9] |
Phosphorus | Encephalartos cupidus | 1.2 mg·g−1 | [19] |
Phosphorus | Encephalartos ferox | 1.0 mg·g−1 | [9] |
Phosphorus | Encephalartos gratus | 1.1–1.3 mg·g−1 | [9] |
Phosphorus | Encephalartos gratus | 1.1 mg·g−1 | [19] |
Phosphorus | Lepidozamia hopei | 0.8 mg·g−1 | [9] |
Phosphorus | Lepidozamia peroffskyana | 1.2 mg·g−1 | [9] |
Phosphorus | Macrozamia communis | 1.0 mg·g−1 | [9] |
Phosphorus | Macrozamia lucida | 1.2 mg·g−1 | [9] |
Phosphorus | Macrozamia moorei | 0.9 mg·g−1 | [9] |
Phosphorus | Macrozamia riedlei | 0.5 mg·g−1 | [21] |
Phosphorus | Stangeria eriopus | 1.1 mg·g−1 | [9] |
Phosphorus | Zamia erosa | 1.0 mg·g−1 | [9] 2 |
Phosphorus | Zamia fischeri | 1.7 mg·g−1 | [9] 3 |
Phosphorus | Zamia fischeri | 1.7 mg·g−1 | [19] 3 |
Phosphorus | Zamia furfuracea | 0.7–0.8 mg·g−1 | [9] |
Phosphorus | Zamia furfuracea | 0.7 mg·g−1 | [19] |
Phosphorus | Zamia integrifolia | 1.3 mg·g−1 | [9] |
Phosphorus | Zamia splendens | 0.8 mg·g−1 | [9] |
Phosphorus | Zamia vazquezii | 0.7 mg·g−1 | [9] |
Potassium | Bowenia serrulata | 5.5 mg·g−1 | [9] |
Potassium | Bowenia spectabilis | 6.2 mg·g−1 | [9] |
Potassium | Ceratozamia mexicana | 4.9 mg·g−1 | [9] |
Potassium | Cycas debaoensis | 4.4 mg·g−1 | [9] |
Potassium | Cycas diannanensis | 9.9 mg·g−1 | [9] 1 |
Potassium | Cycas elongata | 9.8 mg·g−1 | [9] |
Potassium | Cycas fairylakea | 5.8 mg·g−1 | [9] |
Potassium | Cycas micholitzii | 7.0 mg·g−1 | [9] |
Potassium | Cycas micronesica | 15.3 mg·g−1 | [12] |
Potassium | Cycas micronesica | 6.9–23.0 mg·g−1 | [18] |
Potassium | Cycas micronesica | 3.8–22.1 mg·g−1 | [13] |
Potassium | Cycas micronesica | 3.1–23.7 mg·g−1 | [14] |
Potassium | Cycas micronesica | 14.9–16.4 mg·g−1 | [17] |
Potassium | Cycas micronesica | 10.5–18.9 mg·g−1 | [20] |
Potassium | Cycas nitida | 6.4–16.6 mg·g−1 | [10] |
Potassium | Cycas nongnoochiae | 4.4–18.3 mg·g−1 | [20] |
Potassium | Cycas panzhihuaensis | 5.8–7.7 mg·g−1 | [9] |
Potassium | Cycas revoluta | 4.9–11.9 mg·g−1 | [24] |
Potassium | Cycas sexseminifera | 4.3 mg·g−1 | [9] |
Potassium | Cycas siamensis | 10.2 mg·g−1 | [9] |
Potassium | Cycas szechuanensis | 3.7–5.7 mg·g−1 | [9] |
Potassium | Cycas thouarsii | 8.8 mg·g−1 | [9] |
Potassium | Cycas wadei | 7.4 mg·g−1 | [11] |
Potassium | Dioon edule | 5.7 mg·g−1 | [9] |
Potassium | Dioon mejiae | 11.5 mg·g−1 | [9] |
Potassium | Dioon spinulosum | 7.9 mg·g−1 | [9] |
Potassium | Encephalartos cupidus | 6.2 mg·g−1 | [9] |
Potassium | Encephalartos ferox | 6.7 mg·g−1 | [9] |
Potassium | Encephalartos gratus | 7.2–8.9 mg·g−1 | [9] |
Potassium | Lepidozamia hopei | 9.5 mg·g−1 | [9] |
Potassium | Lepidozamia peroffskyana | 10.6 mg·g−1 | [9] |
Potassium | Macrozamia communis | 9.8 mg·g−1 | [9] |
Potassium | Macrozamia lucida | 11.3 mg·g−1 | [9] |
Potassium | Macrozamia moorei | 5.1 mg·g−1 | [9] |
Potassium | Macrozamia riedlei | 6.5–9.2 mg·g−1 | [23] |
Potassium | Stangeria eriopus | 8.0 mg·g−1 | [9] |
Potassium | Zamia erosa | 10.0 mg·g−1 | [9] 2 |
Potassium | Zamia fischeri | 6.6 mg·g−1 | [9] 3 |
Potassium | Zamia furfuracea | 4.6–10.2 mg·g−1 | [9] |
Potassium | Zamia integrifolia | 9.3–9.5 mg·g−1 | [9] |
Potassium | Zamia splendens | 8.1 mg·g−1 | [9] |
Potassium | Zamia vazquezii | 18.0 mg·g−1 | [9] |
Magnesium | Cycas micronesica | 2.3 mg·g−1 | [12] |
Magnesium | Cycas micronesica | 1.7–8.2 mg·g−1 | [18] |
Magnesium | Cycas micronesica | 2.5–4.8 mg·g−1 | [13] |
Magnesium | Cycas micronesica | 2.9–5.1 mg·g−1 | [14] |
Magnesium | Cycas micronesica | 2.2–2.4 mg·g−1 | [17] |
Magnesium | Cycas micronesica | 3.1–7.0 mg·g−1 | [20] |
Magnesium | Cycas nongnoochiae | 2.4–2.6 mg·g−1 | [20] |
Magnesium | Cycas revoluta | 1.9–3.1 mg·g−1 | [24] |
Magnesium | Cycas wadei | 1.4 mg·g−1 | [11] |
Magnesium | Macrozamia reidlei | 1.1–1.9 mg·g−1 | [23] |
Calcium | Bowenia serrulata | 6.1 mg·g−1 | [9] |
Calcium | Bowenia spectabilis | 5.0 mg·g−1 | [9] |
Calcium | Ceratozamia mexicana | 7.1 mg·g−1 | [9] |
Calcium | Cycas debaoensis | 11.8 mg·g−1 | [9] |
Calcium | Cycas diannanensis | 11.4 mg·g−1 | [9] |
Calcium | Cycas elongata | 11.6 mg·g−1 | [9] |
Calcium | Cycas fairylakea | 3.9 mg·g−1 | [9] |
Calcium | Cycas micholitzii | 2.7 mg·g−1 | [9] |
Calcium | Cycas micronesica | 2.8 mg·g−1 | [12] |
Calcium | Cycas micronesica | 7.1–23.7 mg·g−1 | [18] |
Calcium | Cycas micronesica | 1.2–8.6 mg·g−1 | [13] |
Calcium | Cycas micronesica | 7.8–10.6 mg·g−1 | [14] |
Calcium | Cycas micronesica | 2.5–3.1 mg·g−1 | [17] |
Calcium | Cycas micronesica | 3.1–19.9 mg·g−1 | [20] |
Calcium | Cycas nongnoochiae | 3.2–7.0 mg·g−1 | [20] |
Calcium | Cycas panzhihuaensis | 6.6–7.0 mg·g−1 | [9] |
Calcium | Cycas revoluta | 7.7–15.6 mg·g−1 | [24] |
Calcium | Cycas sexseminifera | 8.6 mg·g−1 | [9] |
Calcium | Cycas siamensis | 9.9 mg·g−1 | [9] |
Calcium | Cycas szechuanensis | 1.4–2.8 mg·g−1 | [9] |
Calcium | Cycas thouarsii | 6.3 mg·g−1 | [9] |
Calcium | Cycas wadei | 2.51 mg·g−1 | [11] |
Calcium | Dioon edule | 7.7 mg·g−1 | [9] |
Calcium | Dioon mejiae | 8.4 mg·g−1 | [9] |
Calcium | Dioon spinulosum | 7.6 mg·g−1 | [9] |
Calcium | Encephalartos cupidus | 4.5 mg·g−1 | [9] |
Calcium | Encephalartos ferox | 14.3 mg·g−1 | [9] |
Calcium | Encephalartos gratus | 4.7–6.2 mg·g−1 | [9] |
Calcium | Lepidozamia hopei | 5.0 mg·g−1 | [9] |
Calcium | Lepidozamia peroffskyana | 3.6 mg·g−1 | [9] |
Calcium | Macrozamia communis | 1.4 mg·g−1 | [9] |
Calcium | Macrozamia lucida | 2.8 mg·g−1 | [9] |
Calcium | Macrozamia moorei | 4.7 mg·g−1 | [9] |
Calcium | Macrozamia riedlei | 3.1–7.1 mg·g−1 | [23] |
Calcium | Stangeria eriopus | 7.1 mg·g−1 | [9] |
Calcium | Zamia erosa | 3.0 mg·g−1 | [9] 2 |
Calcium | Zamia fischeri | 7.7 mg·g−1 | [9] 3 |
Calcium | Zamia furfuracea | 4.9–7.0 mg·g−1 | [9] |
Calcium | Zamia integrifolia | 4.2–4.3 mg·g−1 | [9] |
Calcium | Zamia splendens | 4.4 mg·g−1 | [9] |
Calcium | Zamia vazquezii | 6.7 mg·g−1 | [9] |
Chloride | Cycas revoluta | 0.5–2.3 mg·g−1 | [24] |
Sodium | Cycas micronesica | 0.5 mg·g−1 | [12] |
Sodium | Cycas revoluta | 0.2–1.2 mg·g−1 | [24] |
Sodium | Macrozamia reidlei | 0.3–1.0 mg·g−1 | [23] |
Sulfur | Bowenia serrulata | 1.9 mg·g−1 | [9] |
Sulfur | Bowenia spectabilis | 1.9 mg·g−1 | [9] |
Sulfur | Ceratozamia mexicana | 1.4 mg·g−1 | [9] |
Sulfur | Cycas debaoensis | 2.6 mg·g−1 | [9] |
Sulfur | Cycas diannanensis | 1.6 mg·g−1 | [9] 1 |
Sulfur | Cycas diannanensis | 1.6 mg·g−1 | [19] 1 |
Sulfur | Cycas elongata | 2.0 mg·g−1 | [9] |
Sulfur | Cycas fairylakea | 1.7 mg·g−1 | [9] |
Sulfur | Cycas micholitzii | 1.4 mg·g−1 | [9] |
Sulfur | Cycas micholitzii | 1.4 mg·g−1 | [19] |
Sulfur | Cycas micronesica | 1.2–1.6 mg·g−1 | [17] |
Sulfur | Cycas micronesica | 1.1 mg·g−1 | [20] |
Sulfur | Cycas nongnoochiae | 1.4 mg·g−1 | [20] |
Sulfur | Cycas panzhihuaensis | 0.9–1.4 mg·g−1 | [9] |
Sulfur | Cycas panzhihuaensis | 0.8 mg·g−1 | [19] |
Sulfur | Cycas sexseminifera | 1.0 mg·g−1 | [9] |
Sulfur | Cycas sexseminifera | 0.9 mg·g−1 | [19] 4 |
Sulfur | Cycas siamensis | 1.3 mg·g−1 | [9] |
Sulfur | Cycas siamensis | 1.3 mg·g−1 | [19] |
Sulfur | Cycas szechuanensis | 1.1–1.4 mg·g−1 | [9] |
Sulfur | Cycas szechuanensis | 1.1 mg·g−1 | [19] |
Sulfur | Cycas thouarsii | 1.4 mg·g−1 | [9] |
Sulfur | Dioon edule | 1.4 mg·g−1 | [9] |
Sulfur | Dioon mejiae | 1.4 mg·g−1 | [9] |
Sulfur | Dioon spinulosum | 1.1 mg·g−1 | [9] |
Sulfur | Encephalartos cupidus | 1.2 mg·g−1 | [9] |
Sulfur | Encephalartos cupidus | 1.2 mg·g−1 | [19] |
Sulfur | Encephalartos ferox | 1.3 mg·g−1 | [9] |
Sulfur | Encephalartos gratus | 0.9–2.2 mg·g−1 | [9] |
Sulfur | Encephalartos gratus | 0.8 mg·g−1 | [19] |
Sulfur | Lepidozamia hopei | 1.6 mg·g−1 | [9] |
Sulfur | Lepidozamia peroffskyana | 1.4 mg·g−1 | [9] |
Sulfur | Macrozamia communis | 1.2 mg·g−1 | [9] |
Sulfur | Macrozamia lucida | 1.9 mg·g−1 | [9] |
Sulfur | Macrozamia moorei | 1.0 mg·g−1 | [9] |
Sulfur | Macrozamia riedlei | 0.8–1.2 mg·kg−1 | [23] |
Sulfur | Stangeria eriopus | 2.3 mg·g−1 | [9] |
Sulfur | Zamia erosa | 1.0 mg·g−1 | [9] 2 |
Sulfur | Zamia fischeri | 2.7 mg·g−1 | [9] 3 |
Sulfur | Zamia fischeri | 2.7 mg·g−1 | [19] 3 |
Sulfur | Zamia furfuracea | 0.6–1.5 mg·g−1 | [9] |
Sulfur | Zamia furfuracea | 0.6 mg·g−1 | [19] |
Sulfur | Zamia integrifolia | 13.6–13.7 mg·g−1 | [9] |
Sulfur | Zamia splendens | 1.1 mg·g−1 | [9] |
Sulfur | Zamia vazquezii | 2.9 mg·g−1 | [9] |
Iron | Bowenia serrulata | 189 mg·kg−1 | [9] |
Iron | Bowenia spectabilis | 207 mg·kg−1 | [9] |
Iron | Ceratozamia mexicana | 106 mg·kg−1 | [9] |
Iron | Cycas debaoensis | 114 mg·kg−1 | [9] |
Iron | Cycas diannanensis | 406 mg·kg−1 | [9] 1 |
Iron | Cycas diannanensis | 406 mg·kg−1 | [19] 1 |
Iron | Cycas elongata | 149 mg·kg−1 | [9] |
Iron | Cycas fairylakea | 98 mg·kg−1 | [9] |
Iron | Cycas micholitzii | 340 mg·kg−1 | [9] |
Iron | Cycas micholitzii | 345 mg·kg−1 | [19] |
Iron | Cycas micronesica | 43.5 mg·kg−1 | [12] |
Iron | Cycas micronesica | 38.5–88.6 mg·kg−1 | [18] |
Iron | Cycas micronesica | 39.6–46.8 mg·kg−1 | [13] |
Iron | Cycas micronesica | 26.8–56.9 mg·kg−1 | [14] |
Iron | Cycas micronesica | 71.4 mg·kg−1 | [20] |
Iron | Cycas nongnoochiae | 76.4 mg·kg−1 | [20] |
Iron | Cycas panzhihuaensis | 134–215 mg·kg−1 | [9] |
Iron | Cycas panzhihuaensis | 225 mg·kg−1 | [19] |
Iron | Cycas revoluta | 31 mg·kg−1 | [24] |
Iron | Cycas sexseminifera | 311 mg·kg−1 | [9] |
Iron | Cycas sexseminifera | 300 mg·kg−1 | [19] 4 |
Iron | Cycas siamensis | 218 mg·kg−1 | [9] |
Iron | Cycas siamensis | 225 mg·kg−1 | [19] |
Iron | Cycas szechuanensis | 234–304 mg·kg−1 | [9] |
Iron | Cycas szechuanensis | 300 mg·kg−1 | [19] |
Iron | Cycas thouarsii | 166 mg·kg−1 | [9] |
Iron | Cycas wadei | 71.3 mg·kg−1 | [11] |
Iron | Dioon edule | 163 mg·kg−1 | [9] |
Iron | Dioon mejiae | 117 mg·kg−1 | [9] |
Iron | Dioon spinulosum | 123 mg·kg−1 | [9] |
Iron | Encephalartos cupidus | 363 mg·kg−1 | [9] |
Iron | Encephalartos cupidus | 355 mg·kg−1 | [19] |
Iron | Encephalartos ferox | 93 mg·kg−1 | [9] |
Iron | Encephalartos gratus | 121–339 mg·kg−1 | [9] |
Iron | Encephalartos gratus | 340 mg·kg−1 | [19] |
Iron | Lepidozamia hopei | 176 mg·kg−1 | [9] |
Iron | Lepidozamia peroffskyana | 166 mg·kg−1 | [9] |
Iron | Macrozamia communis | 83 mg·kg−1 | [9] |
Iron | Macrozamia lucida | 197 mg·kg−1 | [9] |
Iron | Macrozamia moorei | 253 mg·kg−1 | [9] |
Iron | Stangeria eriopus | 228 mg·kg−1 | [9] |
Iron | Zamia erosa | 142 mg·kg−1 | [9] 2 |
Iron | Zamia fischeri | 1697 mg·kg−1 | [9] 3 |
Iron | Zamia fischeri | 1700 mg·kg−1 | [19] 3 |
Iron | Zamia furfuracea | 194–272 mg·kg−1 | [9] |
Iron | Zamia furfuracea | 260 mg·kg−1 | [19] |
Iron | Zamia integrifolia | 211–270 mg·kg−1 | [9] |
Iron | Zamia splendens | 160 mg·kg−1 | [9] |
Iron | Zamia vazquezii | 478 mg·kg−1 | [9] |
Manganese | Cycas micronesica | 23.8 mg·kg−1 | [12] |
Manganese | Cycas micronesica | 19.5–44.7 mg·kg−1 | [18] |
Manganese | Cycas micronesica | 26.1–77.5 mg·kg−1 | [13] |
Manganese | Cycas micronesica | 25.4–95.6 mg·kg−1 | [14] |
Manganese | Cycas micronesica | 36.6 mg·kg−1 | [20] |
Manganese | Cycas micronesica | 68.6 mg·kg−1 | [20] |
Manganese | Cycas revoluta | 27.1–73.7 mg·kg−1 | [24] |
Manganese | Cycas wadei | 152 mg·kg−1 | [11] |
Manganese | Macrozamia riedlei | 6-57 mg·kg−1 | [22] |
Boron | Cycas micronesica | 13.6 mg·kg−1 | [12] |
Boron | Cycas micronesica | 11.6–14.3 mg·kg−1 | [13] |
Boron | Cycas micronesica | 13.6–15.9 mg·kg−1 | [14] |
Boron | Cycas micronesica | 43.4 mg·kg−1 | [20] |
Boron | Cycas micronesica | 25.6 mg·kg−1 | [20] |
Boron | Cycas wadei | 17.2 mg·kg−1 | [11] |
Copper | Cycas micronesica | 4.2 mg·kg−1 | [12] |
Copper | Cycas micronesica | 6.5–17.9 mg·kg−1 | [18] |
Copper | Cycas micronesica | 3.1 mg·kg−1 | [13] |
Copper | Cycas micronesica | 2.0–4.0 mg·kg−1 | [14] |
Copper | Cycas micronesica | 7.7 mg·kg−1 | [20] |
Copper | Cycas micronesica | 9.7 mg·kg−1 | [20] |
Copper | Cycas wadei | 3.9 mg·kg−1 | [11] |
Copper | Macrozamia riedlei | 2.1–2.8 mg·kg−1 | [23] |
Zinc | Bowenia serrulata | 19.2 mg·kg−1 | [9] |
Zinc | Bowenia spectabilis | 21.4 mg·kg−1 | [9] |
Zinc | Ceratozamia mexicana | 24.4 mg·kg−1 | [9] |
Zinc | Cycas debaoensis | 18.6 mg·kg−1 | [9] |
Zinc | Cycas diannanensis | 18.9 mg·kg−1 | [9] 1 |
Zinc | Cycas elongata | 19.8 mg·kg−1 | [9] |
Zinc | Cycas fairylakea | 26.6 mg·kg−1 | [9] |
Zinc | Cycas micholitzii | 14.1 mg·kg−1 | [9] |
Zinc | Cycas micronesica | 19.0 mg·kg−1 | [12] |
Zinc | Cycas micronesica | 15.2–70.2 mg·kg−1 | [18] |
Zinc | Cycas micronesica | 20.4–45.7 mg·kg−1 | [13] |
Zinc | Cycas micronesica | 18.1–59.8 mg·kg−1 | [14] |
Zinc | Cycas micronesica | 32.5 mg·kg−1 | [20] |
Zinc | Cycas nongnoochiae | 28.0 mg·kg−1 | [20] |
Zinc | Cycas panzhihuaensis | 13.1–15.1 mg·kg−1 | [9] |
Zinc | Cycas revoluta | 5.7–68.5 mg·kg−1 | [24] |
Zinc | Cycas sexseminifera | 13.6 mg·kg−1 | [9] |
Zinc | Cycas siamensis | 11.1 mg·kg−1 | [9] |
Zinc | Cycas szechuanensis | 13.6–18.3 mg·kg−1 | [9] |
Zinc | Cycas thouarsii | 14.2 mg·kg−1 | [9] |
Zinc | Cycas wadei | 10.3 mg·kg−1 | [11] |
Zinc | Dioon edule | 22.6 mg·kg−1 | [9] |
Zinc | Dioon mejiae | 12.3 mg·kg−1 | [9] |
Zinc | Dioon spinulosum | 16.4 mg·kg−1 | [9] |
Zinc | Encephalartos cupidus | 10.5 mg·kg−1 | [9] |
Zinc | Encephalartos ferox | 17.8 mg·kg−1 | [9] |
Zinc | Encephalartos gratus | 14.9–22.2 mg·kg−1 | [9] |
Zinc | Lepidozamia hopei | 23.2 mg·kg−1 | [9] |
Zinc | Lepidozamia peroffskyana | 25.2 mg·kg−1 | [9] |
Zinc | Macrozamia communis | 21.5 mg·kg−1 | [9] |
Zinc | Macrozamia lucida | 21.0 mg·kg−1 | [9] |
Zinc | Macrozamia moorei | 18.2 mg·kg−1 | [9] |
Zinc | Macrozamia riedlei | 3.6–6.6 mg·kg−1 | [23] |
Zinc | Stangeria eriopus | 53.3 mg·kg−1 | [9] |
Zinc | Zamia erosa | 13.9 mg·kg−1 | [9] 2 |
Zinc | Zamia fischeri | 20.0 mg·kg−1 | [9] 3 |
Zinc | Zamia furfuracea | 10.5–13.7 mg·kg−1 | [9] |
Zinc | Zamia integrifolia | 15.5–16.1 mg·kg−1 | [9] |
Zinc | Zamia splendens | 13.8 mg·kg−1 | [9] |
Zinc | Zamia vazquezii | 38.4 mg·kg−1 | [9] |
Aluminum | Cycas revoluta | 22.0–59.6 mg·kg−1 | [24] |
Selenium | Cycas micronesica | 0.58 mg·kg−1 | [12] |
Selenium | Cycas wadei | 0.41 mg·kg−1 | [11] |
Element | Species | Range | Reference |
---|---|---|---|
Carbon | Cycas micronesica | 475–486 mg·g−1 | [35] |
Carbon | Cycas micronesica | 501–534 mg·g−1 | [18] |
Carbon | Cycas micronesica | 509 mg·g−1 | [36] |
Carbon | Cycas nitida | 494–519 mg·g−1 | [10] |
Carbon | Cycas wadei | 513 mg·g−1 | [11] |
Carbon | Macrozamia communis | 515–546 mg·g−1 | [16] |
Carbon | Macrozamia riedlei | 502–534 mg·g−1 | [16] |
Nitrogen | Cycas micronesica | 16–22 mg·g−1 | [35] |
Nitrogen | Cycas micronesica | 21–22 mg·g−1 | [18] |
Nitrogen | Cycas micronesica | 20 mg·g−1 | [36] |
Nitrogen | Cycas nitida | 17–22 mg·g−1 | [10] |
Nitrogen | Cycas wadei | 19 mg·g−1 | [11] |
Nitrogen | Macrozamia communis | 11–24 mg·g−1 | [16] |
Nitrogen | Macrozamia riedlei | 11–20 mg·g−1 | [16] |
Phosphorus | Cycas micronesica | 0.5–0.9 mg·g−1 | [18] |
Phosphorus | Cycas micronesica | 1.3–2.0 mg·g−1 | [35] |
Phosphorus | Cycas nitida | 0.3–0.9 mg·g−1 | [10] |
Phosphorus | Cycas wadei | 0.5 mg·g−1 | [11] |
Potassium | Cycas micronesica | 1.0–1.9 mg·g−1 | [18] |
Potassium | Cycas micronesica | 2.2–14.2 mg·g−1 | [35] |
Potassium | Cycas nitida | 1.2–4.5 mg·g−1 | [10] |
Potassium | Cycas wadei | 3.2 mg·g−1 | [11] |
Magnesium | Cycas micronesica | 3.39–6.52 mg·g−1 | [18] |
Magnesium | Cycas micronesica | 3.38–5.82 mg·g−1 | [35] |
Magnesium | Cycas wadei | 1.32 mg·g−1 | [11] |
Calcium | Cycas micronesica | 4.2–15.1 mg·g−1 | [18] |
Calcium | Cycas micronesica | 11.9–32.3 mg·g−1 | [35] |
Calcium | Cycas wadei | 2.5 mg·g−1 | [11] |
Sulfur | Cycas micronesica | 1.20–1.38 mg·g−1 | [35] |
Iron | Cycas micronesica | 64–272 mg·kg−1 | [35] |
Iron | Cycas micronesica | 28–547 mg·kg−1 | [18] |
Iron | Cycas wadei | 37 mg·kg−1 | [11] |
Manganese | Cycas micronesica | 24.5–86.1 mg·kg−1 | [18] |
Manganese | Cycas micronesica | 23.0–37.3 mg·kg−1 | [35] |
Manganese | Cycas wadei | 141 mg·kg−1 | [11] |
Boron | Cycas micronesica | 29.5–51.6 mg·kg−1 | [35] |
Boron | Cycas wadei | 9.9 mg·kg−1 | [11] |
Copper | Cycas micronesica | 2.4–4.4 mg·kg−1 | [35] |
Copper | Cycas micronesica | 1.3–5.9 mg·kg−1 | [18] |
Copper | Cycas wadei | 3.3 mg·kg−1 | [11] |
Zinc | Cycas micronesica | 4.5–31.2 mg·kg−1 | [18] |
Zinc | Cycas micronesica | 11.0–23.8 mg·kg−1 | [35] |
Zinc | Cycas wadei | 5.9 mg·kg−1 | [11] |
Selenium | Cycas wadei | 0.48 mg·kg−1 | [11] |
References
- Schwab, G.J.; Lee, C.D.; Pearce, R. Sampling Plant Tissue for Nutrient Analysis; Univ. of Kentucky Cooperative Extension Service Publication AGR-92; Univ. of Kentucky: Lexington, KY, USA, 2007; p. 6. [Google Scholar]
- Lazicki, P.; Geisseler, D. Plant Tissue Sampling in Orchards and Vineyards; Univ. of California: Davis, CA, USA, 2016; p. 3. Available online: https://apps1.cdfa.ca.gov/FertilizerResearch/docs/Orchard_Tissue _Sampling.pdf (accessed on 1 November 2020).
- Vashisth, T.; Burrow, J.D.; Kadyampakeni, D.; Ferrarezi, R.S. Citrus Leaf Sampling Procedures for Nutrient Analysis; Univ. Florida IFAS Extension Publication #HS1355.: Gainesville, FL, USA, 2020; p. 2. Available online: http://edis.ifas.ufl.edu (accessed on 10 October 2020).
- Campbell, C.R. (Ed.) Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; Southern Cooperative Series Bulletin #394; North Carolina Dept. of Agric.: Raleigh, NC, USA, 2000; p. 122. Available online: http://www.ncagr.gov/agronomi/saaesd/scsb394.pdf (accessed on 1 November 2020).
- Calonje, M.; Stevenson, D.W.; Osborne, R. The World List of Cycads. Available online: http://cycadlist.org (accessed on 1 November 2020).
- Norstog, K.J.; Nicholls, T.J. The Biology of the Cycads; Cornell University Press: Ithaca, NY, USA, 1997; ISBN 978-0-8014-3033-6. [Google Scholar]
- Cascasan, A.N.; Marler, T.E. Publishing trends for the Cycadales, the most threatened plant group. J. Threat. Taxa 2016, 8, 8575–8582. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Lindström, A.J. Inserting cycads into global nutrient relations data sets. Plant Signal. Behav. 2018, 13, e1547578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Cao, K.; Sack, L.; Li, N.; Wei, X.; Goldstein, G. Extending the generality of leaf economic design principles in the cycads, an ancient lineage. New Phytol. 2015, 206, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Marler, T.E.; Ferreras, U.F. Disruption of leaf nutrient remobilization in coastal Cycas trees by tropical cyclone damage. J. Geogr. Nat. Disast. 2015, 5, 1421–1427. [Google Scholar]
- Marler, T.E.; Ferreras, U.F. Current status, threats and conservation needs of the endemic Cycas wadei Merrill. J. Biodivers. Endanger. Species 2017, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Elemental profiles in Cycas micronesica stems. Plants 2018, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Krishnapillai, M.V. Incident light and leaf age influence leaflet element concentrations of Cycas micronesica trees. Horticulturae 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Krishnapillai, M.V. Distribution of elements along the rachis of Cycas micronesica leaves: A cautionary note for sampling design. Horticulturae 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Krieg, C.; Watkins, J.E.; Chambers, S.; Husby, C.E. Sex-specific differences in functional traits and resource acquisition in five cycad species. AoB Plants 2017, 9, plx013. [Google Scholar] [CrossRef] [Green Version]
- Kipp, M.A.; Stüeken, E.E.; Gehringer, M.M.; Sterelny, K.; Scott, J.K.; Forster, P.I.; Strömberg, C.A.; Buick, R. Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. Geobiology 2020, 18, 152–166. [Google Scholar] [CrossRef]
- Marler, T.E. Artifleck: The study of artifactual responses to light flecks with inappropriate leaves. Plants 2020, 9, 905. [Google Scholar] [CrossRef] [PubMed]
- Marler, T.E.; Krishnapillai, M.V. Does plant size influence leaf elements in an arborescent cycad? Biology 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-J.; Sack, L.; Goldstein, G.; Cao, K.-F. Hydraulic determination of leaf nutrient concentrations in cycads. Mem. NY Bot. Gard. 2018, 117, 179–192. [Google Scholar]
- Marler, T.E.; Lindström, A.J. Leaf nutrients of two Cycas, L. species contrast among in situ and ex situ locations. J. Threat. Taxa 2020, 12, 16831–16839. [Google Scholar] [CrossRef]
- Wright, I.; Reich, P.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornilessen, J.H.C.; Deimer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Cueva, A.; Dovčiak, M.; Teece, M.; Yepez, E.A. Ontogenetic resource-use strategies in a rare long-lived cycad along environmental gradients. Conserv. Physiol. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Grove, T.S.; O’Connell, A.M.; Malajczuk, N. Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad Macrozamia riedlei. Austral. J. Bot. 1980, 28, 271–281. [Google Scholar] [CrossRef]
- Watanabe, T.; Broadley, M.R.; Jansen, S.; White, P.J.; Takada, J.; Satake, K.; Takamatsu, T.; Tuah, S.J.; Osaki, M. Evolutionary control of leaf element composition in plants. New Phytol. 2007, 174, 516–523. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Sack, L.; Cao, K.-F.; Wei, X.-M.; Li, N. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Sci. Rep. 2017, 7, 42085. [Google Scholar] [CrossRef] [Green Version]
- Kulmatiski, A.; Beard, K.H.; Stevens, J.R.; Cobbold, S.M. Plant–soil feedbacks: A meta-analytical review. Ecol. Lett. 2008, 11, 980–992. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T.; Kardol, P.; Klironomos, J.N.; Kulmatiski, A.; Schweitzer, J.A.; et al. Plant–soil feedbacks: The past, the present and future challenges. J. Ecol. 2013, 101, 265–276. [Google Scholar] [CrossRef]
- Ponge, J.-F. Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem. 2013, 57, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Veen, G.F.; Fry, E.L.; ten Hooven, F.C.; Kardol, P.; Morriën, E.; De Long, J.R. The role of plant litter in driving plant-soil feedbacks. Front. Environ. Sci. 2019, 7, 168. [Google Scholar] [CrossRef]
- Gholz, H.L.; Wedin, D.A.; Smitherman, S.M.; Harmon, M.E.; Parton, W.J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 2000, 6, 751–765. [Google Scholar] [CrossRef]
- Veen, G.F.; Freschet, G.T.; Ordonez, A.; Wardle, D.A. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 2015, 124, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Veronika, G.V.; Hufnagel, L. The effect of microarthropods on litter decomposition depends on litter quality. Eur. J. Soil Biol. 2016, 75, 24–30. [Google Scholar]
- Palozzi, J.E.; Lindo, Z. Are leaf litter and microbes team players? Interpreting home-field advantage decomposition dynamics. Soil Biol. Biochem. 2018, 124, 189–198. [Google Scholar] [CrossRef]
- Elias, D.M.O.; Robinson, S.; Both, S.; Goodall, T.; Majalap-Lee, N.; Ostle, N.J.; McNamara, N.P. 2020 Soil microbial community and litter quality controls on decomposition across a tropical forest disturbance gradient. Front. For. Glob. Chang. 2020, 3, 81. [Google Scholar] [CrossRef]
- Marler, T.E.; Dongol, N. Three invasive insects alter Cycas micronesica leaf chemistry and predict changes in biogeochemical cycling. Communic. Integr. Biol. 2016, 9, e1208324. [Google Scholar] [CrossRef]
- Aerts, R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 1996, 84, 597–608. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrients in Senesced Leaves: Keys to the Search for Potential Resorption and Resorption Proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Marler, T.E. Perennial trees associating with nitrogen-fixing symbionts differ in leaf after-life nitrogen and carbon release. Nitrogen 2020, 1, 111–124. [Google Scholar] [CrossRef]
- Marler, T.E.; Krishnapillai, M.V. Cycas micronesica trees alter local soil traits. Forests 2018, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Calonje, M. Two cycad species affect the carbon, nitrogen, and phosphorus content of soils. Horticulturae 2020, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Vance, A.J.; Strik, B.C. Seasonal changes in leaf nutrient concentration of male and female hardy kiwifruit grown in Oregon. Eur. J. Hortic. Sci. 2018, 83, 247–258. [Google Scholar] [CrossRef]
- Pasković, I.; Lukić, I.; Žurga, P.; Majetić Germek, V.; Brkljača, M.; Koprivnjak, O.; Major, N.; Grozić, K.; Franić, M.; Ban, D.; et al. Temporal variation of phenolic and mineral composition in olive leaves is cultivar dependent. Plants 2020, 9, 1099. [Google Scholar] [CrossRef] [PubMed]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef]
- Cakmak, I. Magnesium in crop production, food quality and human health. Plant Soil 2013, 368, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Cornelissen, J.H.C.; Tuo, B.; Ci, H.; Yan, E.-R. Non-negligible contribution of subordinates in community-level litter decomposition: Deciduous trees in an evergreen world. J. Ecol. 2020, 108, 1713–1724. [Google Scholar] [CrossRef]
- Levia, D.F., Jr.; Frost, E.E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrol. 2003, 274, 1–29. [Google Scholar] [CrossRef]
- Levia, D.F.; Germer, S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Gordon, D.A. Mini-review: Stemflow as a resource limitation to near-stem soils. Front. Plant Sci. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Zhao, C.; Xu, W.; Xie, Z. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests 2019, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Dunkerley, D. A Review of the Effects of Throughfall and Stemflow on Soil Properties and Soil Erosion. In Precipitation Partitioning by Vegetation; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 183–214. [Google Scholar]
- Stubbins, A.; Guillemette, F.; Van Stan, J.T., II. Throughfall and Stemflow: The Crowning Headwaters of the Aquatic Carbon Cycle. In Precipitation Partitioning by Vegetation; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 121–132. [Google Scholar]
- Raich, J.W. Understory palms as nutrient traps: A hypothesis. Brenesia 1983, 21, 119–129. [Google Scholar]
- Scroth, G.; da Silva, L.F.; Wolf, M.-Z.; Teixeira, W.G.; Zech, W. Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil. Hydrol. Process 1999, 13, 1423–1436. [Google Scholar] [CrossRef]
- Edwards, P.J.; Fleischer-Dogley, F.; Kaiser-Bunbury, C.N. The nutrient economy of Lodoicea maldivica, a monodominant palm producing the world’s largest seed. New Phytol. 2015, 206, 990–999. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Wang, X.-P.; Pan, Y.-X.; Hu, R. Relative contribution of biotic and abiotic factors to stemflow production and funneling efficiency: A long-term field study on a xerophytic shrub species in Tengger Desert of northern China. Agric. For. Meteorol. 2020, 280, 107781. [Google Scholar] [CrossRef]
- Zona, S.; Christenhusz, M.J.M. Litter-trapping plants: Filter-feeders of the plant kingdom. Bot. J. Linn. Soc. 2015, 179, 554–586. [Google Scholar] [CrossRef]
- Rickson, F.R.; Rickson, M.M. Nutrient acquisition facilitated by litter collection and ant colonies on two Malaysian palms. Biotropica 1986, 18, 337–343. [Google Scholar] [CrossRef]
- Alvarez-Sánchez, J.; Guevara, S. Litter interception on Astrocaryum mexicanum Liebm. (Palmae) in a tropical rain forest. Biotropica 1999, 31, 89–92. [Google Scholar]
- Dearden, F.M.; Wardle, D.A. The potential for forest canopy litterfall interception by a dense fern understorey, and the consequences for litter decomposition. Oikos 2008, 117, 83–92. [Google Scholar] [CrossRef]
- Stevenson, D.W. Spines and prickles. Mem. NY Bot. Gard. 2018, 117, 54–65. [Google Scholar]
- Stamp, N.E. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiting, M.G. Toxicity of cycads, a literature review. Econ. Bot. 1963, 17, 270–302. [Google Scholar] [CrossRef]
- Prado, A.; Sierra, A.; Windsor, D.; Bede, J.C. Leaf traits and herbivory levels in a tropical gymnosperm, Zamia stevensonii (Zamiaceae). Am. J. Bot. 2014, 101, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, G.R.; Morgan, R.W. Review: Putative mutagens and carcinogens in foods. V. Cycad azoxyglycosides. Environ. Mutagen. 1984, 6, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Yagi, F. Azoxyglycoside content and beta-glycosidase activities in leaves of various cycads. Phytochemistry. 2004, 65, 3243–3247. [Google Scholar] [CrossRef]
- Prado, A.; Rubio-Mendez, G.; Yañez-Espinosa, L.; Bede, J.C. Ontogenetic changes in azoxyglycoside levels in the leaves of Dioon edule Lindl. J. Chem. Ecol. 2016, 42, 1142–1150. [Google Scholar] [CrossRef] [Green Version]
- Ferlian, O.; Lintzel, E.M.; Bruelheide, H.; Guerra, C.A.; Heklau, H.; Jurburg, S.; Kühn, P.; Martinez-Medina, A.; Unsicker, S.B.; Eisenhauer, N.; et al. Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic Appl. Ecol. 2020, 49, 51282. [Google Scholar] [CrossRef]
- Zheng, Y.; Chiang, T.; Huang, C.; Gong, X. Highly diverse endophytes in roots of Cycas bifida (Cycadaceae), an ancient but endangered gymnosperm. J. Microbiol. 2018, 56, 337–345. [Google Scholar] [CrossRef]
- Chang, A.C.G.; Chen, T.; Li, N.; Duan, J. Perspectives on endosymbiosis in coralloid roots: Association of cycads and cyanobacteria. Front. Microbiol. 2019, 10, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-García, K.; Bustos-Díaz, E.D.; Corona-Gómez, J.A.; Ramos-Aboites, H.E.; Sélem-Mojica, N.; Cruz-Morales, P.; Pérez-Farrera, M.A.; Barona-Gómez, F.; Cibrián-Jaramillo, A. Cycad coralloid roots contain bacterial communities including cyanobacteria and Caulobacter spp. that encode niche-specific biosynthetic gene clusters. Genome Biol. Evol. 2019, 11, 319–334. [Google Scholar]
- Muthukumar, T.; Udaiyan, K. Arbuscular mycorrhizas in cycads of southern India. Mycorrhiza 2002, 12, 213–217. [Google Scholar] [PubMed]
- Fisher, J.B.; Vovides, A.P. Mycorrhizae are present in cycad roots. Bot. Rev. 2004, 70, 16–23. [Google Scholar] [CrossRef]
Species | Family | Taxonomic Authority | Native Range |
---|---|---|---|
Bowenia serrulata | Zamiaceae | (W. Bull) Chamb. | Australia |
Bowenia spectabilis | Zamiaceae | Hook. ex Hook.f. | Australia |
Ceratozamia mexicana | Zamiaceae | Brongn. | Mexico |
Cycas armstrongii | Cycadaceae | Miq. | Australia |
Cycas debaoensis | Cycadaceae | Y.C.Zhong & C.J.Chen | China |
Cycas diannanensis | Cycadaceae | Z.T.Guan & G.D. Tao | China |
Cycas elongata | Cycadaceae | (Leandri) D.Yue Wang | Vietnam |
Cycas fairylakea | Cycadaceae | (Leandri) D.Yue Wang | China |
Cycas media | Cycadaceae | R.Br. | Australia |
Cycas micholitzii | Cycadaceae | Dyer | Laos, Vietnam |
Cycas micronesica | Cycadaceae | K.D. Hill | Guam, Rota, Palau, Yap |
Cycas nitida | Cycadaceae | K.D.Hill & A.Lindstr. | Philippines |
Cycas nongnoochiae | Cycadaceae | K.D.Hill | Thailand |
Cycas panzhihuaensis | Cycadaceae | L.Zhou & S.Y.Yang | China |
Cycas revoluta | Cycadaceae | Thunb. | China, Japan |
Cycas rumphii | Cycadaceae | Miq. | Australia, Indonesia, Papua New Guinea |
Cycas sexseminifera | Cycadaceae | F.N.Wei | China, Vietnam |
Cycas siamensis | Cycadaceae | Miq. | Cambodia, Laos, Myanmar, Thailand, Vietnam |
Cycas szechuanensis | Cycadaceae | W.C.Cheng & L.K.Fu | China |
Cycas thouarsii | Cycadaceae | R.Br. ex Gaudich | Comoros, Kenya, Madagascar, Mozambique, Seychelles, Tanzania |
Cycas wadei | Cycadaceae | Merr. | Philippines |
Dioon edule | Zamiaceae | Lindl. | Mexico |
Dioon mejiae | Zamiaceae | Standl. & L.O.Williams | Honduras |
Dioon sonorense | Zamiaceae | (De Luca, Sabato & Vázq.Torres) Chemnick, T.J.Greg. & Salas-Mor. | Mexico |
Dioon spinulosum | Zamiaceae | Dyer ex Eichler | Mexico |
Encephalartos cupidus | Zamiaceae | R.A.Dyer | South Africa |
Encephalartos ferox | Zamiaceae | G.Bertol | Mozambique, South Africa |
Encephalartos gratus | Zamiaceae | Prain | Malawi, Mozambique |
Lepidozamia hopei | Zamiaceae | Regel | Australia |
Lepidozamia peroffskyana | Zamiaceae | Regel | Australia |
Macrozamia communis | Zamiaceae | L.A.S.Johnson | Australia |
Macrozamia lucida | Zamiaceae | L.A.S.Johnson | Australia |
Macrozamia macleayi | Zamiaceae | Miq. | Australia |
Macrozamia moorei | Zamiaceae | F.Muell. | Australia |
Macrozamia mountperriensis | Zamiaceae | F.M.Bailey | Australia |
Macrozamia parcifolia | Zamiaceae | P.I.Forst. & D.L.Jones | Australia |
Macrozamia reidlei | Zamiaceae | (Gaudich.) C.A.Gardner | Australia |
Macrozamia serpentina | Zamiaceae | D.L.Jones & P.I.Forst | Australia |
Stangeria eriopus | Zamiaceae | (Kunze) Baill. | South Africa |
Zamia erosa | Zamiaceae | O.F.Cook & G.N.Collins | Cuba, Jamaica, Puerto Rico |
Zamia fischeri | Zamiaceae | Miq. | Mexico |
Zamia furfuracea | Zamiaceae | L.f. | Mexico |
Zamia integrifolia | Zamiaceae | L.f. | Bahamas, Cayman Islands, Cuba, United States |
Zamia portoricensis | Zamiaceae | Urb. | Puerto Rico |
Zamia splendens | Zamiaceae | Schutzman | Mexico |
Zamia standleyi | Zamiaceae | Schutzman | Guatemala, Honduras |
Zamia vazquezii | Zamiaceae | D.W.Stev., Sabato & De Luca | Mexico |
Element | Genera | Species Studied | Species in Genus | Range | Reference |
---|---|---|---|---|---|
Aluminum | Cycas | 1 | 117 | 22–60 mg·kg−1 | [23] |
Boron | Cycas | 2 | 117 | 11.6–43.4 mg·kg−1 | [11,12,13,14,20] |
Calcium | Bowenia | 2 | 2 | 5.0–6.1 mg·g−1 | [9] |
Calcium | Ceratozamia | 1 | 32 | 7.1 mg·g−1 | [9] |
Calcium | Cycas | 14 | 117 | 1.2–23.7 mg·g−1 | [9,11,12,13,14,17,18,20,24] |
Calcium | Dioon | 3 | 16 | 7.6–8.4 mg·g−1 | [9] |
Calcium | Encephalartos | 3 | 65 | 4.5–14.3 mg·g−1 | [9] |
Calcium | Lepidozamia | 2 | 2 | 3.6–5.0 mg·g−1 | [9] |
Calcium | Macrozamia | 4 | 41 | 1.4–7.1 mg·g−1 | [9,23] |
Calcium | Stangeria | 1 | 1 | 7.1 mg·g−1 | [9] |
Calcium | Zamia | 5 | 81 | 3.0–7.7 mg·g−1 | [9] |
Carbon | Bowenia | 2 | 2 | 508–519 mg·g−1 | [9] |
Carbon | Ceratozamia | 1 | 32 | 514 mg·g−1 | [9] |
Carbon | Cycas | 13 | 117 | 463–509 mg·g−1 | [9,10,11,12,13,14,17] |
Carbon | Dioon | 3 | 16 | 485–496 mg·g−1 | [9] |
Carbon | Encephalartos | 3 | 65 | 490–505 mg·g−1 | [9] |
Carbon | Lepidozamia | 2 | 2 | 438–566 mg·g−1 | [9,16] |
Carbon | Macrozamia | 5 | 41 | 512–524 mg·g−1 | [9,16] |
Carbon | Stangeria | 1 | 1 | 479 mg·g−1 | [9] |
Carbon | Zamia | 7 | 81 | 477–491 mg·g−1 | [9,15] |
Chloride | Cycas | 1 | 117 | 0.5–2.3 mg·g−1 | [24] |
Copper | Cycas | 2 | 117 | 2.0–17.9 mg·kg−1 | [11,12,13,14,18,20] |
Copper | Macrozamia | 1 | 41 | 2.1–2.8 mg·kg−1 | [22] |
Iron | Bowenia | 2 | 2 | 189–207 mg·kg−1 | [9] |
Iron | Ceratozamia | 1 | 32 | 106 mg·kg−1 | [9] |
Iron | Cycas | 14 | 117 | 27–410 mg·kg−1 | [9,11,12,13,14,18,19,20,24] |
Iron | Dioon | 3 | 16 | 117–163 mg·kg−1 | [9] |
Iron | Encephalartos | 3 | 65 | 93–363 mg·kg−1 | [9,19] |
Iron | Lepidozamia | 2 | 2 | 166–176 mg·kg−1 | [9] |
Iron | Macrozamia | 3 | 41 | 83–253 mg·kg−1 | [9] |
Iron | Stangeria | 1 | 1 | 228 mg·kg−1 | [9] |
Iron | Zamia | 6 | 81 | 142–1700 mg·kg−1 | [9,19] |
Magnesium | Cycas | 4 | 117 | 1.4–8.2 mg·g−1 | [11,12,13,14,17,18,20,24] |
Magnesium | Macrozamia | 1 | 41 | 1.1–1.9 mg·g−1 | [22] |
Manganese | Cycas | 3 | 117 | 20–152 mg·kg−1 | [11,12,13,14,18,20,24] |
Manganese | Macrozamia | 1 | 41 | 6–57 mg·kg−1 | [22] |
Nitrogen | Bowenia | 2 | 2 | 24–41 mg·g−1 | [9,16] |
Nitrogen | Ceratozamia | 1 | 32 | 13 mg·g−1 | [9] |
Nitrogen | Cycas | 17 | 117 | 16–44 mg·g−1 | [9,10,11,12,13,14,15,16,17,18,19,20,21] |
Nitrogen | Dioon | 4 | 16 | 14–17 mg·g−1 | [9,22] |
Nitrogen | Encephalartos | 3 | 65 | 15–19 mg·g−1 | [9,19] |
Nitrogen | Lepidozamia | 2 | 2 | 17–31 mg·g−1 | [9,16] |
Nitrogen | Macrozamia | 8 | 41 | 8–55 mg·g−1 | [9,16,21,23] |
Nitrogen | Stangeria | 1 | 1 | 22 mg·g−1 | [9] |
Nitrogen | Zamia | 8 | 81 | 12–30 mg·g−1 | [9,15,19] |
Phosphorus | Bowenia | 2 | 2 | 1.0–1.1 mg·g−1 | [9] |
Phosphorus | Ceratozamia | 1 | 32 | 0.8 mg·g−1 | [9] |
Phosphorus | Cycas | 14 | 117 | 0.7–3.4 mg·g−1 | [9,10,11,12,13,14,17,18,19,20] |
Phosphorus | Dioon | 3 | 16 | 0.8–1.5 mg·g−1 | [9] |
Phosphorus | Encephalartos | 3 | 65 | 1.0–1.3 mg·g−1 | [9,19] |
Phosphorus | Lepidozamia | 2 | 2 | 0.8–1.2 mg·g−1 | [9] |
Phosphorus | Macrozamia | 4 | 41 | 0.5–1.2 mg·g−1 | [9,21] |
Phosphorus | Stangeria | 1 | 1 | 1.1 mg·g−1 | [9] |
Phosphorus | Zamia | 6 | 81 | 0.7–1.3 mg·g−1 | [9,19] |
Potassium | Bowenia | 2 | 2 | 5.5–6.2 mg·g−1 | [9] |
Potassium | Ceratozamia | 1 | 32 | 4.9 mg·g−1 | [9] |
Potassium | Cycas | 15 | 117 | 3.1–23.7 mg·g−1 | [9,10,11,12,13,14,17,18,20,24] |
Potassium | Dioon | 3 | 16 | 5.7–11.5 mg·g−1 | [9,19] |
Potassium | Encephalartos | 3 | 65 | 6.2–8.9 mg·g−1 | [9] |
Potassium | Lepidozamia | 2 | 2 | 9.5–10.6 mg·g−1 | [9] |
Potassium | Macrozamia | 4 | 41 | 5.1–11.3 mg·g−1 | [9,23] |
Potassium | Stangeria | 1 | 1 | 8.0 mg·g−1 | [9] |
Potassium | Zamia | 6 | 81 | 4.6–18.0 mg·g−1 | [9] |
Selenium | Cycas | 2 | 117 | 0.41–0.58 mg·kg−1 | [11,12] |
Sodium | Cycas | 2 | 117 | 0.2–1.2 mg·g−1 | [12,24] |
Sodium | Macrozamia | 1 | 41 | 0.3–1.0 mg·g−1 | [23] |
Sulfur | Bowenia | 2 | 2 | 1.9 mg·g−1 | [9] |
Sulfur | Ceratozamia | 1 | 32 | 1.4 mg·g−1 | [9] |
Sulfur | Cycas | 12 | 117 | 0.8–2.6 mg·g−1 | [9,17,19,20] |
Sulfur | Dioon | 3 | 16 | 1.1–1.4 mg·g−1 | [9] |
Sulfur | Encephalartos | 3 | 65 | 0.8–2.2 mg·g−1 | [9,19] |
Sulfur | Lepidozamia | 2 | 2 | 1.4–1.6 mg·g−1 | [9] |
Sulfur | Macrozamia | 4 | 41 | 0.8–1.9 mg·g−1 | [9,23] |
Sulfur | Stangeria | 1 | 1 | 2.3 mg·g−1 | [9] |
Sulfur | Zamia | 5 | 81 | 0.6–13.7 mg·g−1 | [9,19] |
Zinc | Bowenia | 2 | 2 | 19–21 mg·kg−1 | [9] |
Zinc | Ceratoamia | 1 | 32 | 24 mg·kg−1 | [9] |
Zinc | Cycas | 14 | 117 | 6–70 mg·kg−1 | [9,11,12,13,14,18,20,24] |
Zinc | Dioon | 3 | 16 | 12–23 mg·kg−1 | [9] |
Zinc | Encephalartos | 3 | 65 | 11–22 mg·kg−1 | [9] |
Zinc | Lepidozamia | 2 | 2 | 23–25 mg·kg−1 | [9] |
Zinc | Macrozamia | 4 | 41 | 4–22 mg·kg−1 | [9,22] |
Zinc | Stangeria | 1 | 1 | 53 mg·kg−1 | [9] |
Zinc | Zamia | 6 | 81 | 11–38 mg·kg−1 | [9] |
Element | Genera | Species Studied | Species in Genus | Range | Reference |
---|---|---|---|---|---|
Carbon | Cycas | 3 | 117 | 475–534 mg·g−1 | [10,11,18,35,38] |
Carbon | Macrozamia | 2 | 41 | 502–546 mg·g−1 | [16] |
Nitrogen | Cycas | 4 | 117 | 15–22 mg·g−1 | [10,11,18,35,38] |
Nitrogen | Macrozamia | 2 | 41 | 11–24 mg·g−1 | [16] |
Phosphorus | Cycas | 4 | 117 | 0.3–2.0 mg·g−1 | [10,11,18,38] |
Potassium | Cycas | 4 | 117 | 1.0–14.2 mg·g−1 | [10,11,18,38] |
Magnesium | Cycas | 3 | 117 | 1.32–7.54 mg·g−1 | [11,17,38] |
Calcium | Cycas | 3 | 117 | 2.5–32.3 mg·g−1 | [11,18,38] |
Sulfur | Cycas | 1 | 117 | 1.20–1.38 mg·g−1 | [38] |
Iron | Cycas | 2 | 117 | 28–547 mg·kg−1 | [11,18,38] |
Manganese | Cycas | 2 | 117 | 25–141 mg·kg−1 | [11,18,38] |
Boron | Cycas | 2 | 117 | 29.5–51.6 mg·kg−1 | [11,38] |
Copper | Cycas | 2 | 117 | 1.3–5.9 mg·kg−1 | [11,18,38] |
Zinc | Cycas | 2 | 117 | 4.48–31.21 mg·kg−1 | [11,18,38] |
Selenium | Cycas | 1 | 117 | 0.48 mg·kg−1 | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deloso, B.E.; Krishnapillai, M.V.; Ferreras, U.F.; Lindström, A.J.; Calonje, M.; Marler, T.E. Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Horticulturae 2020, 6, 85. https://doi.org/10.3390/horticulturae6040085
Deloso BE, Krishnapillai MV, Ferreras UF, Lindström AJ, Calonje M, Marler TE. Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Horticulturae. 2020; 6(4):85. https://doi.org/10.3390/horticulturae6040085
Chicago/Turabian StyleDeloso, Benjamin E., Murukesan V. Krishnapillai, Ulysses F. Ferreras, Anders J. Lindström, Michael Calonje, and Thomas E. Marler. 2020. "Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?" Horticulturae 6, no. 4: 85. https://doi.org/10.3390/horticulturae6040085
APA StyleDeloso, B. E., Krishnapillai, M. V., Ferreras, U. F., Lindström, A. J., Calonje, M., & Marler, T. E. (2020). Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Horticulturae, 6(4), 85. https://doi.org/10.3390/horticulturae6040085