Optimum Castor Meal Application in the Cultivation of Pak Choi (Brassica chinensis L.) with Toxicity Survey for Earthworms (Eisenia andrei)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Soil and Plant Analysis
2.3. Determination of Pak Choi Traits
2.4. Estimation of Earthworm Weight
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafez, M.; Popova, A.I.; Rashad, M. Integrated use of bio-organic fertilizers for enhancing soil fertility–plant nutrition, germination status and initial growth of corn (Zea mays L.). Environ. Technol. Innov. 2021, 21, 101329. [Google Scholar] [CrossRef]
- Wu, H.S.; Yang, X.N.; Fan, J.Q.; Miao, W.G.; Ling, N.; Xu, Y.C.; Huang, Q.W.; Shen, Q.R. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 2009, 54, 287–300. [Google Scholar] [CrossRef]
- Xiao, X.P.; Mazza, L.; Yu, Y.Q.; Cai, M.M.; Zheng, L.Y.; Tomberlin, J.K.; Yu, J.; Huise, A.; Yu, Z.N.; Fasulo, S.; et al. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. J. Environ. Manag. 2018, 217, 668–676. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.H.; Li, T.; Raza, W.; Liu, D.Y.; Shen, Q.R. The Growth Promotion of Peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-Based Biological Organic Fertilizer: Possible Role of Increasing Nutrient Availabilities. Microorganisms. 2020, 8, 1296. [Google Scholar] [CrossRef] [PubMed]
- Surin, P. Release of Various Elements from Organic Fertilizers Incubated in Organic and Non-organic Paddy Soils at Various Time Periods. Curr. App. Sci. Tech. 2019, 19, 276–288. [Google Scholar]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Raven, J.A.; Wollenweber, B.; Handley, L. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol. 1992, 121, 19–32. [Google Scholar] [CrossRef]
- Hachiya, T.; Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 2017, 68, 2501–2512. [Google Scholar] [CrossRef]
- Christie, P.; Wasson, E.A. Short-term immobilization of ammonium and nitrate added to a grassland soil. Soil Biol. Biochem. 2001, 33, 1277–1278. [Google Scholar] [CrossRef]
- Li, J.F.; Zhong, F.F. Nitrogen release and re-adsorption dynamics on crop straw residue during straw decomposition in an Alfisol. J. Integr. Agric. 2021, 20, 248–259. [Google Scholar] [CrossRef]
- Priya, V.; Lokesh, M.; Kesavan, D.; Komathi, G.; Naveena, S. Evaluating the Perfect Carbon: Nitrogen (C:N) Ratio for Decomposing. Inter. Res. J. Engin. Tech. 2017, 4, 1144–1147. [Google Scholar]
- Kumar, M.; Ou, Y.L.; Lin, J.G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Sudharmaidevi, C.R.; Thampatti, K.C.M.; Saifudeen, N. Rapid production of organic fertilizer from degradable waste by thermochemical processing. Int. J. Recycl. Org. Waste Agric. 2017, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.O.; Kissel, D.E. Comparison of Soil pH Methods on Soils of North America. Soil Sci. Soc. Am. J. 2010, 74, 1–7. [Google Scholar] [CrossRef]
- Anjani, K. A re-evaluation of castor (Ricinus communis L.) as a crop plant. Perspect. Agric. Vet. Sci. Nutr. Nat. Res. 2014, 9, 1–21. [Google Scholar]
- Ying, S.; Hill, A.T.; Pyc, M.; Anderson, E.M.; Snedden, W.A.; Mullen, R.T.; She, Y.M.; Plaxton, W.C. Regulatory phosphorylation of bacterial-type PEP carboxylase by the Ca2+-dependent protein kinase RcCDPK1 in developing castor oil seeds. Plant Physiol. 2017, 174, 1012–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, R.; Severino, L.S.; Sampaio, L.R.; Sofiatti, V.; Gomes, J.A.; Beltrão, N.E.M. Blends of castor meal and castor husks for optimized use as organic fertilizer. Indust. Crops Prod. 2011, 33, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Matos, J.B., Jr.; Dias, A.N.; Bueno, C.F.D.; Rodrigues, P.A.; Veloso, Á.L.C.; Filho, D.E.D.F. Metabolizable energy and nutrient digestibility of detoxified castor meal and castor cake for poultry. Rev. Bras. Zootec. 2011, 40, 2439–2442. [Google Scholar] [CrossRef] [Green Version]
- Severino, L.S.; Lima, R.L.S.; Beltrão, N.E.M. Composição Química de Onze Materiais Orgânicos Utilizados em Substratos para Produção de Mudas; Embrapa Algodão: Campina Grande, Brazil, 2006; p. 5. [Google Scholar]
- McKeon, T.A.; Shim, K.B.; He, X.H. Reducing the toxicity of castor seed meal through processing treatments. Biocatal. Agric. Biotech. 2013, 2, 159–161. [Google Scholar] [CrossRef]
- Akande, T.O.; Odunsi, A.A.; Adedeji, O.S. Toxicity and Nutritive assessment of castor (Ricinus cummunis) oil and processed cake in rat diet. Asian J. Anim. Sci. 2011, 5, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Roberto, A.C.R.; José, L.M.N.; Guido, A.P.T. Evaluation of seed yield and oil contents in four materials of Ricinus communis L. Agron. Colomb. 2011, 29, 43–48. [Google Scholar]
- Scoriza, R.N.; Bianchi, M.D.O.; Correia, M.E.F.; Leal, M.A.A. Effect of castor cake and elephant grass composting on edaphic fauna. Ciência Rural 2016, 46, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Meersmans, J.; Wesemael, B.V.; Molle, M.V. Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium). Soil Use Manag. 2009, 25, 346–353. [Google Scholar]
- Corwin, D.L. Soil Salinity Measurement. In Encyclopedia of Water Science; Marcel Dekker: New York, NY, USA, 2003; pp. 852–857. [Google Scholar]
- Miller, F.P.; Vandome, A.F.; McBrewster, J. Castor Oil; Alphascript Publishing: Beau Bassin, Mauritius, 2009; Volume 63. [Google Scholar]
- Wei, L.L.; Chen, C.R.; Xu, Z.H. The effect of low-molecular-weight organic acids and inorganic phosphorus concentration on the determination of soil phosphorus by the molybdenum blue reaction. Biotech. Fertil. Soil 2009, 45, 775–779. [Google Scholar] [CrossRef]
- Banerjee, P.; Prasad, B. Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer. Appl. Water Sci. 2020, 10, 113–120. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Alshaal, T.A.; Amer, M.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Fári, M. Soil Quality and Plant Nutrition. Sustain. Agric. Rev. 2014, 14, 345–446. [Google Scholar]
- Ali, M.M.; Janius, R.B.; Nawi, N.M.; Hashim, N. Prediction of total soluble solids and pH in banana using near infrared. J. Eng. Sci. Tech. 2018, 13, 254–264. [Google Scholar]
- Dikinya, O.; Mufwanzala, N. Chicken manure-enhanced soil fertility and productivity: Effects of application rates. J. Soil Sci. Environ. Manag. 2010, 1, 46–54. [Google Scholar]
- Roussos, P.A.; Gasparatos, D.; Kechrologou, K.; Katsenos, P.; Bouchagier, P. Impact of organic fertilization on soil properties, plant physiology andyield in two newly planted olive (Olea europaea L.) cultivars under Mediterranean conditions. Sci. Hortic. 2017, 220, 11–19. [Google Scholar] [CrossRef]
- Vengadaramana, A.; Jashothan, P.T.J. Effect of organic fertilizers on the water holding capacity of soil in different terrains of Jaffna peninsula in Sri Lanka. J. Nat. Prod. Plant Resour. 2012, 2, 500–503. [Google Scholar]
- Kiran, B.R.; Prasad, M.N.V. Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. EuroBiotech J. 2017, 1, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Abe, J.; Songmuang, P.; Harada, J. Root Growth of Paddy Rice with Application of Organic Materials as Fertilizers in Thailand. Jpn. Agric. Res. Q. 1995, 29, 77–82. [Google Scholar]
- Gupta, A.P.; Antil, R.S.; Narwal, R.P. Utilization of deoiled castor cake for crop production. Arch. Agron. Soil Sci. 2004, 50, 389–395. [Google Scholar] [CrossRef]
- Gomes, D.P.; de Carvalho, D.F.; Pinto, M.F.; Valença, D.D.C.; Medici, L.O. Growth and production of tomato fertilized with ash and castor cake and under varying water depths, cultivated in organic potponics. Acta Sci. Agron. 2017, 39, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.A.; dos Santos, C.A.P.; Lucas, A.A.T.; Bianchini, F.G.; de Souza, I.M.; Viégas, P.R.A. Lettuce production according to different sources of organic matter and soil cover. Agric. Sci. 2014, 5, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Hilioti, Z.; Michailof, C.M.; Valasiadis, D.; Iliopoulou, E.F.; Koidou, V.; Lappas, A.A. Characterization of castor plant-derived biochars and their effects as soil amendments on seedlings. Biomass Bioenergy 2017, 105, 96–106. [Google Scholar] [CrossRef]
- Shepherd, M.A.; Harrison, R.; Webb, J. Managing soil organic matter—Implications for soil structure on organic farms. Soil Use Manag. 2002, 18, 284–292. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, S.; Sattar, A.; Nasim, M.; Farooq, M.; Khan, M.M. Nutrient Availability and Maize (Zea mays) Growth in Soil Amended with Organic Manures. Int. J. Agric. Biol. 2010, 12, 621–624. [Google Scholar]
- Roy, M.; Karmakar, S.; Debsarcar, A.; Sen, P.K.; Mukherjee, J. Application of rural slaughterhouse waste as an organic fertilizer for pot cultivation of solanaceous vegetables in India. Int. J. Recycl. Org. Waste Agric. 2013, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sandvig, K.; van Deurs, B. Transport of protein toxins into cells: Pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 2002, 529, 49–53. [Google Scholar] [CrossRef]
- Olsnes, S.; Pihl, A. Different Biological Properties of the Two Constituent Peptide Chains of Ricin A Toxic Protein Inhibiting Protein Synthesis. Biochemistry 1973, 12, 3121–3126. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.M.; Roberts, L.M.; Robertus, J.D. Ricin: Structure, Mode of Action, and Some Current Applications. FASEB J. 1994, 8, 201–208. [Google Scholar] [CrossRef] [PubMed]
Treatments | pH | 3 EC (μS/cm) | 4 OM (%) | P2O5 (kg/ha) | K2O (kg/ha) |
---|---|---|---|---|---|
Before experiment | 5.14 b 5 | 53.5 ab | 3.5 c | 23.0 a | 43.6 bc |
1 CM25 | 5.61 a | 35.3 bc | 3.9 bc | 18.5 b | 27.1 c |
CM50 | 5.54 a | 26.8 c | 3.8 bc | 23.4 a | 27.3 c |
CM100 | 5.53 a | 33.1 bc | 4.0 bc | 20.2 ab | 29.4 c |
CM150 | 5.45 a | 42.3 b | 4.3 a | 21.8 ab | 29.9 c |
CM200 | 5.43 a | 79.7 a | 4.3 a | 23.0 a | 35.1 bc |
2 LC800 | 5.65 a | 42.9 b | 4.4 a | 23.4 a | 71.8 a |
Treatments | N (%) | P (%) | K (%) |
---|---|---|---|
1 CM25 | 3.00 bc 3 | 0.239 c | 3.40 c |
CM50 | 3.01 bc | 0.264 bc | 3.67 bc |
CM100 | 3.17 bc | 0.280 bc | 3.69 bc |
CM150 | 4.02 a | 0.281 bc | 3.98 a |
CM200 | 4.13 a | 0.334 a | 4.01 a |
2 LC800 | 2.75 c | 0.299 a | 4.39 a |
Fertilizers Rate (kg) | Plant Height (cm) | Leaves Number (No.) | Leaf Area (cm2) | Leaf Width (cm) | Fresh Weight (g) | Dry Weight (g) | Root Length (cm) | Sugar Degree (°Bx) |
---|---|---|---|---|---|---|---|---|
1 CM25 | 24.2 a 3 | 12 a | 82.6 c | 5.3 c | 18.8 c | 1.30 c | 12.5 c | 1.4 c |
CM50 | 22.2 a | 12 a | 90.2 c | 6.6 b | 20.3 b | 1.52 b | 12.6 c | 1.9 b |
CM100 | 25.3 a | 12 a | 105.4 b | 6.6 b | 23.7 ab | 1.76 ab | 15.9 b | 2.5 a |
CM150 | 25.1 a | 11 a | 120.9 b | 7.5 ab | 24.1 a | 1.85 a | 16.7 b | 2.5 a |
CM200 | 20.4 a | 10 a | 169.6 a | 7.8 a | 27.1 a | 1.98 a | 18.0 a | 2.8 a |
2 LC800 | 22.7 a | 10 a | 231.4 a | 8.3 a | 28.2 a | 1.85 a | 21.4 a | 3.0 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.-S.; Wu, J.-M.; Lin, Y.-H. Optimum Castor Meal Application in the Cultivation of Pak Choi (Brassica chinensis L.) with Toxicity Survey for Earthworms (Eisenia andrei). Horticulturae 2021, 7, 383. https://doi.org/10.3390/horticulturae7100383
Liu Z-S, Wu J-M, Lin Y-H. Optimum Castor Meal Application in the Cultivation of Pak Choi (Brassica chinensis L.) with Toxicity Survey for Earthworms (Eisenia andrei). Horticulturae. 2021; 7(10):383. https://doi.org/10.3390/horticulturae7100383
Chicago/Turabian StyleLiu, Zheng-Shang, Jia-Mei Wu, and Yong-Hong Lin. 2021. "Optimum Castor Meal Application in the Cultivation of Pak Choi (Brassica chinensis L.) with Toxicity Survey for Earthworms (Eisenia andrei)" Horticulturae 7, no. 10: 383. https://doi.org/10.3390/horticulturae7100383
APA StyleLiu, Z. -S., Wu, J. -M., & Lin, Y. -H. (2021). Optimum Castor Meal Application in the Cultivation of Pak Choi (Brassica chinensis L.) with Toxicity Survey for Earthworms (Eisenia andrei). Horticulturae, 7(10), 383. https://doi.org/10.3390/horticulturae7100383