Can Edible Coatings Maintain Sweet Pepper Quality after Prolonged Storage at Sub-Optimal Temperatures?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Coating Materials
2.2. Quality Parameters
2.3. Nutritional Quality
2.4. External and Internal CO2 Production
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Lama, K.; Alkalai-Tuvia, S.; Chalupowicz, D.; Fallik, E. Extended storage of yellow pepper fruits at suboptimal temperatures may alter their physical and nutritional quality. Agronomy 2020, 10, 1109. [Google Scholar] [CrossRef]
- Fallik, E.; Perzelan, Y.; Alkalai-Tuvia, S.; Nemny-Lavy, E.; Nestel, D. Development of cold quarantine protocols to arrest the development of the Mediterranean fruit fly (Ceratitis capitata) in pepper (Capsicum annuum L.) fruit after harvest. Postharvest Biol. Technol. 2012, 70, 7–12. [Google Scholar] [CrossRef]
- Sharma, P.; Kehinde, B.A.; Kaur, S.; Vyas, P. Application of edible coatings on fresh and minimally processed fruits: A review. Nutr. Food Sci. 2019, 49, 713–738. [Google Scholar] [CrossRef]
- Sharif, M.; Mujtaba, M.; Rahman, M.U.; Shalmani, A.; Ahmad, H.; Anwar, T.; Tianchan, D.; Wang, X. The multifunctional role of chitosan in horticultural crops: A review. Molecules 2018, 23, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Arnon-Rips, H.; Poverenov, E. Improving food products’ quality and storability by using layer by layer edible coatings. Trends Food Sci. Technol. 2018, 75, 81–92. [Google Scholar] [CrossRef]
- Arnon, H.; Granit, R.; Porat, R.; Poverenov, E. Development of polysaccharide-based edible coatings for citrus fruits: A layer-by-layer approach. Food Chem. 2015, 166, 465–472. [Google Scholar] [CrossRef]
- Poverenov, E.; Zaitsev, Y.; Arnon, H.; Granit, R.; Alkalai-Tuvia, S.; Perzelan, Y.; Weinberg, T.; Fallik, E. Effects of a composite chitosan-gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biol. Technol. 2014, 96, 106–109. [Google Scholar] [CrossRef]
- Fallik, E.; Grinberg, S.; Alkalai, S.; Yekutieli, O.; Wiseblum, A.; Regev, R.; Bar-Lev, E. A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biol. Technol. 1999, 15, 25–32. [Google Scholar] [CrossRef]
- Vinokur, Y.; Rodov, V. Method for determining total (hydrophilic and lipophilic) radical-scavenging activity in the same sample of fresh produce. Acta Hortic. 2006, 709, 53–61. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, F.; Lu, Y.; Deng, J. Combination of chitosan and salicylic acid to control postharvest green mold caused by Penicillium digitatum in grapefruit fruit. Sci. Hort. 2018, 233, 54–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Xie, J.; Deng, L.; Yao, S.; Zeng, K. Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid, Pichia membranaefaciens and oligochitosan. Postharvest Biol. Technol. 2018, 142, 81–92. [Google Scholar] [CrossRef]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Krasniewska, K. Novel materials in preparation of edible films and coatings—A review. Coating 2020, 10, 674. [Google Scholar] [CrossRef]
- Vieira, J.M.; Flores-López, M.L.; de Rodríguez, D.J.; Sousa, M.C.; Vicente, A.A.; Martins, J.T. Effect of chitosan–aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 2016, 116, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Khorram, K.; Ramezanian, A. A cinnamon essential oil incorporated in shellac, a novel bio-product to maintain quality of ‘Thomson navel’ orange fruit. J. Food Sci. Technol. 2020, 58, 2963–2972. [Google Scholar] [CrossRef]
- Shah, S.; Hashmi, M.S. Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Hortic. Environ. Biotechnol. 2020, 61, 279–289. [Google Scholar] [CrossRef]
- Bar-Yosef, A.; Alkalai-Tuvia, S.; Perzelan, Y.; Aharon, Z.; Ilić, Z.; Lurie, S.; Fallik, E. Effect of shrink packaging in combination with rinsing and brushing treatment on chilling injury and decay of sweet pepper during storage. Adv. Hortic. Sci. 2009, 23, 225–230. [Google Scholar]
- Fallik, E.; Bar-Yosef, A.; Alkalai-Tuvia, S.; Aharon, Z.; Perzelan, Y.; Ilić, Z.; Lurie, S. Prevention of chilling injury in sweet bell pepper stored at 1.5 °C by heat treatments and individual shrink packaging—3 years of research. Folia Hortic. 2009, 21, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Hashim, N.F.A.; Ahmad, A.; Bordoh, P.K. Effects of chitosan coating on chilling injury, antioxidant status and postharvest quality of Japanese cucumber during cold storage. Sains Malays. 2017, 45, 287–294. [Google Scholar]
- Petriccione, M.; de Sanctis, F.; Pasquariello, M.S.; Mastrobuoni, F.; Rega, P.; Scortichini, M.; Mencarelli, F. The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during post-harvest life. Food Bioprocess Technol. 2015, 8, 394–408. [Google Scholar] [CrossRef]
- Gayed, A.A.N.A.; Shaarawi, S.A.M.A.; Elkhishen, M.A.; Elsherbini, N.R.M. Pre-harvest application of calcium chloride and chitosan on fruit quality and storability of ‘Early Swelling’ peach during cold storage. Ciência Agrotecnol. 2017, 41, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Du, Y.; Liang, X.; Wang, X.; Wang, X.; Yang, J. Effect of chitosan coating on respiratory behavior and quality of stored litchi under ambient temperature. J. Food Eng. 2011, 102, 94–99. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Madhav, J.V.; Sethi, S.; Sharma, R.R.; Nagaraja, A.; Arora, A.; Varghese, E. Influence of bilayer coating of salicylic acid and edible wax on chilling injury and functional attributes of guava. J. Food Process. Preserv. 2021, 45, e15601. [Google Scholar] [CrossRef]
- Drevinskas, T.; Naujokaitytė, G.; Maruška, A.; Kaya, M.; Sargin, I.; Daubaras, R.; Česonienė, L. Effect of molecular weight of chitosan on the shelf life and other quality parameters of three different cultivars of Actinidia kolomikta (kiwifruit). Carbohydr. Polym. 2017, 173, 269–275. [Google Scholar] [CrossRef] [PubMed]
Treatment | Weight Loss (%) | Elasticity (mm) | Color Index (1–5) | TSS (%) | Decay Incidence (%) |
---|---|---|---|---|---|
Control-7 °C | 6.4 a | 5.4 ab | 5.0 a | 6.8 b | 15.1 b |
Chitosan-7 °C | 5.3 ab | 4.8 bc | 4.7 ab | 7.0 ab | 3.7 c |
Gelatin-7 °C | 6.1 ab | 5.7 a | 5.0 a | 7.1 ab | 15.3 b |
Chitosan+gelatin-7 °C (LbL) | 5.6 ab | 5.1 abc | 4.9 ab | 7.2 a | 6.4 c |
Control-1.5 °C | 5.9 ab | 4.9 abc | 4.8 ab | 6.9 ab | 26.0 a |
Chitosan-1.5 °C | 4.0 b | 3.3 e | 4.3 b | 7.1 ab | 4.4 c |
Gelatin-1.5 °C | 5.1 ab | 4.4 cd | 4.6 ab | 7.0 ab | 15.4 b |
Chitosan+gelatin-1.5 °C (LbL) | 4.2 b | 3.6 de | 4.3 b | 7.1 ab | 7.5 bc |
LSD | 0.63 | 0.27 | 0.19 | 0.09 | 2.42 |
Mean of coating materials data | |||||
Control | 6.2 a | 5.1 a | 4.9 a | 6.9 b | 20.6 a |
Chitosan | 4.6 b | 4.1 b | 4.5 a | 7.1 a | 4.0 c |
Gelatin | 5.6 ab | 5.1 a | 4.8 a | 7.0 ab | 15.4 b |
Chitosan+gelatin (LbL) | 4.9 ab | 4.4 b | 4.6 a | 7.1 a | 7.0 c |
LSD | 0.45 | 0.19 | 0.14 | 0.05 | 1.71 |
Mean of storage temperatures data | |||||
7 °C | 5.9 a | 5.3 a | 4.9 a | 7.0 a | 13.3 a |
1.5 °C | 4.8 b | 4.0 b | 4.5 b | 7.0 a | 10.1 b |
LSD | 0.31 | 0.13 | 0.1 | 0.04 | 1.21 |
Table of variance (F-values) | |||||
Coating (C) | * | **** | NS | * | **** |
Temperature (T) | ** | **** | *** | NS | * |
C × T | NS | NS | NS | NS | * |
Treatment | Chilling Injury (%) | Chilling Index (CINX; 1–3) |
---|---|---|
Control-7 °C | 8.0 cd | 0.13 bcd |
Chitosan-7 °C | 1.7 d | 0.03 d |
Gelatin-7 °C | 8.3 cd | 0.07 cd |
Chitosan+gelatin-7 °C (LbL) | 5.0 d | 0.07 cd |
Control-1.5 °C | 47.7 ab | 0.83 abc |
Chitosan-1.5 °C | 13.7 bcd | 0.43 bcd |
Gelatin-1.5 °C | 56.3 a | 1.30 a |
Chitosan+gelatin-1.5 °C (LbL) | 43.3 abc | 0.89 ab |
LSD | 10.53 | 0.22 |
Mean of coating materials data | ||
Control | 27.8 ab | 0.48 ab |
Chitosan | 7.7 b | 0.23 b |
Gelatin | 32.3 a | 0.68 a |
Chitosan+gelatin (LbL) | 24.2 ab | 0.47 ab |
LSD | 7.44 | 0.15 |
Mean of storage temperature data | ||
7 °C | 5.8 b | 0.08 b |
1.5 °C | 40.3 a | 0.86 a |
LSD | 5.27 | 0.11 |
Table of variance (F-value) | ||
Coating (C) | * | * |
Temperature (T) | **** | **** |
C × T | NS | NS |
Treatment | Ascorbic Acid (AsA) (mg/100 g FW) | Antioxidant Activity (AOX) (µM TE/g DW) |
---|---|---|
Control-7 °C | 105 a | 11.6 c |
Chitosan-7 °C | 117 a | 12.5 c |
Gelatin-7 °C | 116 a | 9.6 c |
Chitosan+gelatin-7 °C (LbL) | 112 a | 10.7 c |
Control-1.5 °C | 108 a | 16.5 ab |
Chitosan-1.5 °C | 110 a | 16.8 a |
Gelatin-1.5 °C | 109 a | 12.5 bc |
Chitosan+gelatin-1.5 °C (LbL) | 106 a | 13.3 abc |
LSD | 5.82 | 1.16 |
Mean of coating materials data | ||
Control | 107 a | 14.0 ab |
Chitosan | 113 a | 14.6 a |
Gelatin | 112 a | 11.0 c |
Chitosan+gelatin (LbL) | 109 a | 12.0 bc |
LSD | 4.12 | 0.82 |
Mean of storage temperature data | ||
7 °C | 112 a | 11.1 b |
1.5 °C | 108 a | 17.8 a |
LSD | 2.91 | 0.58 |
Table of variance (F-value) | ||
Coating (C) | NS | ** |
Temperature (T) | NS | **** |
C × T | NS | NS |
Treatment | External CO2 (µg/g FW/h) | Internal CO2 (µg/g FW/h) |
---|---|---|
Mean of coating materials data | ||
Control | 56 a | 73 ab |
Chitosan | 28 c | 63 b |
Gelatin | 35 b | 74 a |
Chitosan+gelatin (LbL) | 30 bc | 79 a |
LSD | 2.06 | 2.89 |
Mean of storage temperature data | ||
7 °C | 36 a | 60 b |
1.5 °C | 38 a | 84 a |
LSD | 1.45 | 2.04 |
Table of variance (F-value) | ||
Coating (C) | **** | *** |
Temperature (T) | NS | **** |
C × T | NS | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kehila, S.; Alkalai-Tuvia, S.; Chalupowicz, D.; Poverenov, E.; Fallik, E. Can Edible Coatings Maintain Sweet Pepper Quality after Prolonged Storage at Sub-Optimal Temperatures? Horticulturae 2021, 7, 387. https://doi.org/10.3390/horticulturae7100387
Kehila S, Alkalai-Tuvia S, Chalupowicz D, Poverenov E, Fallik E. Can Edible Coatings Maintain Sweet Pepper Quality after Prolonged Storage at Sub-Optimal Temperatures? Horticulturae. 2021; 7(10):387. https://doi.org/10.3390/horticulturae7100387
Chicago/Turabian StyleKehila, Shani, Sharon Alkalai-Tuvia, Daniel Chalupowicz, Elena Poverenov, and Elazar Fallik. 2021. "Can Edible Coatings Maintain Sweet Pepper Quality after Prolonged Storage at Sub-Optimal Temperatures?" Horticulturae 7, no. 10: 387. https://doi.org/10.3390/horticulturae7100387
APA StyleKehila, S., Alkalai-Tuvia, S., Chalupowicz, D., Poverenov, E., & Fallik, E. (2021). Can Edible Coatings Maintain Sweet Pepper Quality after Prolonged Storage at Sub-Optimal Temperatures? Horticulturae, 7(10), 387. https://doi.org/10.3390/horticulturae7100387