Preliminary Findings of New Citrus Rootstocks Potentially Tolerant to Foot Rot Caused by Phytophthora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Isolate of Phytophthora
2.3. Inoculation Process
2.4. Disease Evaluation and Data Analysis
3. Results
3.1. Molecular Identification of Phytophthora Isolate
3.2. Tolerance Response of Rootstock to Foot Rot Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT, 2021. Food and Agriculture Organization (FAO) of the United Nations. Available online: http://www.fao.org/faostat/es/#home (accessed on 15 March 2021).
- Afek, U.; Sztejnberg, A.; Solel, Z. A rapid method for evaluating citrus seedlings for resistance to foot rot caused by Phytophthora citrophthora. Plant Dis. 1990, 74, 66–68. [Google Scholar] [CrossRef]
- Matheron, M.E.; Matejka, J.C. Seasonal differences in susceptibility of three citrus rootstocks to root lesions caused by Phytophthora citrophthora and P. parasitica. Plant Dis. 1993, 77, 729–732. [Google Scholar] [CrossRef]
- Bowman, K.D.; Albrecht, U.; Graham, J.H.; Bright, D.B. Detection of Phytophthora nicotianae and P. palmivora in citrus roots using PCR-RFLP in comparison with other methods. Eur. J. Plant Pathol. 2007, 119, 143–158. [Google Scholar] [CrossRef]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; American Phytopathological Society (APS Press): St. Paul, MN, USA, 1996; ISBN 0890542120. [Google Scholar]
- Alvarez, L.A.; Vicent, A.; De la Roca, E.; Bascón, J.; Abad-Campos, P.; Armengol, J.; García-Jiménez, J. Branch cankers on citrus trees in Spain caused by Phytophthora citrophthora. Plant Pathol. 2007, 57, 84–91. [Google Scholar] [CrossRef]
- Alvarez, L.A.; Gramaje, D.; Abad-Campos, P.; García-Jiménez, J. Seasonal susceptibility of citrus scions to Phytophthora citrophthora and P. nicotianae and the influence of environmental and host-linked factors on infection development. Eur. J. Plant Pathol. 2009, 124, 621–635. [Google Scholar] [CrossRef]
- Graham, J.H.; Menge, J.A. Root diseases. In Citrus Health Management; Timmer, L.W., Duncan, L.W., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1999; pp. 126–135. [Google Scholar]
- Matheron, M.E. Persistence of systemic activity for fungicides applied to citrus trunks to control Phytophthora gummosis. Plant Dis. 1988, 72, 170. [Google Scholar] [CrossRef]
- Adaskaveg, J.E.; Hao, W.; Förster, H. Postharvest strategies for managing Phytophthora brown rot of citrus using potassium phosphite in combination with heat treatments. Plant Dis. 2015, 99, 1477–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Waard, M.A.; Georgopoulos, S.G.; Hollomon, D.W.; Ishii, H.; Leroux, P.; Ragsdale, N.N.; Schwinn, F.J. Chemical control of plant diseases: Problems and prospects. Annu. Rev. Phytopathol. 1993, 31, 403–421. [Google Scholar] [CrossRef]
- Gullino, M.L.; Kuijpers, L.A.M. Social and political implications of managing plant diseases with restricted fungicides in Europe. Annu. Rev. Phytopathol. 1994, 32, 559–581. [Google Scholar] [CrossRef]
- Timmer, L.W.; Graham, J.H.; Zitko, S.E. Metalaxyl-resistant isolate of Phytophthora nicotianae: Occurrence, sensitivity, and competitive parasitic ability on citrus. Plant Dis. 1998, 82, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Dwiastuti, M.E. Citrus foot rot disease (Phytophthora spp.) control in Indonesia using good agricultural practices efforts green agroindustry. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012097. [Google Scholar] [CrossRef]
- Drenth, A.; Guest, D. Principles of Phytophthora disease management. In Diversity and Management of Phytophthora in Southeast Asia; Drenth, A., Guest, D., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 2004; pp. 154–160. [Google Scholar]
- Graham, J.; Feichtenberger, E. Citrus phytophthora diseases: Management challenges and successes. J. Citrus Pathol. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Graham, J.H. Root regeneration and tolerance of citrus rootstocks to root rot caused by Phytophthora nicotianae. Phytopathology 1995, 85, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Tallón Vila, C.I. Biotechnology Applied to the Genetic Improvement of Citrus Rootstocks. Development of a Protocol for Micropropagation and Adventitious Regeneration for Use in Generating Salt Toleran Mutant Lines. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2015; p. 105. [Google Scholar]
- Florida Citrus Rootstock Selection Guide, 4th Edition. 2021. Available online: https://crec.ifas.ufl.edu/extension/citrus_rootstock/tables.html (accessed on 30 August 2021).
- Bowman, K.D.; Joubert, J. Citrus rootstocks. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Eds.; Woodhead Publishing: Sawston, UK; Elsevier Inc.: Cambridge, MA, USA, 2020; pp. 105–127. ISBN 9780128121634. [Google Scholar]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Alvarez, L.A.; Vicent, A.; Soler, J.M.; De la Roca, E.; Bascón, J.; García-Jiménez, J. Comparison of application methods of systemic fungicides to suppress branch cankers in clementine trees caused by Phytophthora citrophthora. Plant Dis. 2008, 92, 1357–1363. [Google Scholar] [CrossRef]
- Vogel, R.; Bové, J.M. Réactions de quelques porte-greffe a l’exocortis. Fruits 1971, 26, 295–300. [Google Scholar]
- Hodgson, R.W. Taxonomy and nomenclature in citrus. In Proceedings of the 2nd Conference of the International Organization of Citrus Virologists, Gainesville, FL, USA, 7–13 November 1960; pp. 1–7. [Google Scholar]
- Forner, J.B.; Forner-Giner, M.A.; Alcaide, A.; Ten, C. Forner-Alcaide 5 and Forner-Alcaide 13: Two new citrus rootstocks released in Spain. HortScience 2003, 38, 629–630. [Google Scholar] [CrossRef] [Green Version]
- Grosser, J.W. Citrus rootstock named “UFR-1”. U.S. Patent PP27,277; United States Plant Patent Application Publication, 18 October 2016. [Google Scholar]
- Grosser, J.W. Citrus rootstock named “UFR-4”. U.S. Patent 2015/0195974; United States Plant Patent Application Publication, 7 March 2017. [Google Scholar]
- Grosser, J.W. Citrus rootstock named “UFR-5”. U.S. Patent PP27,298; United States Plant Patent Application Publication, 25 October 2016. [Google Scholar]
- Grosser, J.W. Citrus rootstock named “UFR-6”. U.S. Patent PP27,276; United States Plant Patent Application Publication, 20 August 2015. [Google Scholar]
- Grosser, J.W.; Chandler, J.L.; Ling, P.; Barthe, G.A. New somatic hybrid rootstock candidates for tree-size control and high juice quality. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: St. Petersburg, FL, USA, 2011; Volume 124, pp. 131–135. [Google Scholar]
- Grosser, B.J.; Gmitter, F.; Bowman, K.; Sciences, A. New Rootstocks in the Citrus Breeding Pipeline. Available online: https://citrusindustry.net/2020/07/15/new-rootstocks-in-the-citrus-breeding-pipeline/ (accessed on 18 May 2021).
- Grosser, J.W.; Ollitrault, P.; Olivares-Fuster, O. Somatic hybridization in citrus: An effective tool to facilitate variety improvement. In Vitro Cell. Dev. Biol. Plant 2000, 36, 434–449. [Google Scholar] [CrossRef]
- Grosser, J.; Graham, J.; Hoyte, A. Continued development of rootstocks tolerant of the Phytophthora-Diaprepes complex via greenhouse screening. In Proceedings of the Florida State Horticultural Society; Florida State Horticultural Society: St. Petersburg, FL, USA, 2007; Volume 120, pp. 103–109. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3-900051-07-0. Available online: https://www.r-project.org/ (accessed on 15 December 2020).
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: With Special Reference to the Biological Sciences; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1960. [Google Scholar]
- De Mendiburu, F. Statistical procedures for agricultural research. In Package “Agricolae”, Version 1.4-Comprehensive R Archive Network; Institute for statistics and mathematics: Vienna, Austria, 2013. [Google Scholar]
- Tuzcu, Ö.; Çinar, A.; Göksedef, M.O.; Özsan, M.; Biçici, M. Resistance of citrus rootstocks to Phytophthora citrophthora during winter dormancy. Plant Dis. 1984, 68, 502–505. [Google Scholar] [CrossRef]
- Aleza, P.; Forner-Giner, M.A.; Del-Pino, Á. El panorama varietal y los nuevos patrones. Análisis de la situación actual. In Una Hoja de Ruta para la Citricultura Española; García Álvarez-Coque, J.M., Motló, E., Eds.; Cajamar Caja Rural: Almería, Spain, 2020; pp. 151–166. [Google Scholar]
- Grosser, J.W.; Omar, A.A.; Gmitter, J.A.; Syvertsen, J.P. Salinity tolerance of ‘Valencia’ Orange trees on allotetraploid rootstocks. Proc. Fla. State Hortic. Soc. 2012, 125, 50–55. [Google Scholar]
Rootstocks | Parentals | Ploidy | Origin | Ref. |
---|---|---|---|---|
Carrizo citrange | Poncirus trifoliata × Citrus sinensis | 2x | [25] | |
Citrus macrophylla | Citrus macrophylla | 2x | [26] | |
Forner-Alcaide No. 5 | ‘Cleopatra’ mandarin x P. trifoliata | 2x | IVIA | [27] |
UFR-1 | Nova + HBP × Cleopatra + Arg trifoliata | 4x tetrazyg | CREC | [28] |
UFR-4 | Nova + HBP × Cleopatra + Arg trifoliata | 4x tetrazyg | CREC | [29] |
UFR-5 | Changsha mandarin + 50-7 trifoliate orange | 4x tetrazyg | CREC | [30] |
UFR-6 | ‘Changsha’ mandarin + Trifoliate orange 5 | 4x | CREC | [31] |
WGFT+ 50-7 | White grapefruit + Trifoliate orange 50-7 | 4x | CREC | [32] |
B11R3T24 | P. trifoliata x `Duncan’ grapefrutit | 2x | CREC | |
A + Volk × Orange19-11-8 | C. volkameriana x (‘Nova’ + HBP × ‘Cleopatra’ mandarin + Argentine trifoliate) | 4x tetrazyg | CREC | [33] |
AMB + CZO | C. amblycarpa + Carrizo citrange | 4x | CREC | [34] |
B11R5T25 | P. trifoliata × ‘Duncan’ grapefruit | 2x | CREC | |
N40R1T18 | P. trifoliata x LB 1-21 (Clementine x ‘Duncan’ grapefruit) | 2x | CREC | |
2247 × 2075-01-2 | ‘Nova’ + HBP × ‘Cleopatra’ mandarine + Swingle Citrumelo | 4x tetrazyg | CREC | |
N40R2T19 | P. trifoliata × LB 1-21 (Clementine x ‘Duncan’ grapefruit) | 2x | CREC | |
N40R3T25 | Flying Dragon × LB 1-21 (Clementine x `Duncan´ grapefruit) | 2x | CREC | |
B11R3T53 | (‘Cleopatra’ mandarin × C. ichangensis) x USD | 2x | CREC | |
B11R5T49 | Flying Dragon × Ridge Pinneapple sweet orange | 2x | CREC | |
B11R5T60 | Flying Dragon × Ridge Pinneapple sweet orange | 2x | CREC | |
CL-5146 | C. sunki × C.Wingie | 2x | CIRAD | |
2247 x 6070-02-2 | Nova + HBP × Sour orange + P. trifoliata | 4x tetrazyg | CREC | |
Orange-14 | Nova + HBP × Cleopatra + Arg trifoliate orange | 4x tetrazyg | CREC | [35] |
B11R3T27 | Flying Dragon × duncan grapefruit | 2x | CREC | |
B11R5T64 | Flying Dragon × Ridge Pinneapple sweet orange | 2x | CREC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio-Durán, L.; Arjona-López, J.M.; Hervalejo, A.; Calero-Velázquez, R.; Arenas-Arenas, F.J. Preliminary Findings of New Citrus Rootstocks Potentially Tolerant to Foot Rot Caused by Phytophthora. Horticulturae 2021, 7, 389. https://doi.org/10.3390/horticulturae7100389
Aparicio-Durán L, Arjona-López JM, Hervalejo A, Calero-Velázquez R, Arenas-Arenas FJ. Preliminary Findings of New Citrus Rootstocks Potentially Tolerant to Foot Rot Caused by Phytophthora. Horticulturae. 2021; 7(10):389. https://doi.org/10.3390/horticulturae7100389
Chicago/Turabian StyleAparicio-Durán, Lidia, Juan M. Arjona-López, Aurea Hervalejo, Rocío Calero-Velázquez, and Francisco J. Arenas-Arenas. 2021. "Preliminary Findings of New Citrus Rootstocks Potentially Tolerant to Foot Rot Caused by Phytophthora" Horticulturae 7, no. 10: 389. https://doi.org/10.3390/horticulturae7100389
APA StyleAparicio-Durán, L., Arjona-López, J. M., Hervalejo, A., Calero-Velázquez, R., & Arenas-Arenas, F. J. (2021). Preliminary Findings of New Citrus Rootstocks Potentially Tolerant to Foot Rot Caused by Phytophthora. Horticulturae, 7(10), 389. https://doi.org/10.3390/horticulturae7100389