Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thousand-Seed Weight
3.2. Seed Yield
3.3. Biological Yield
3.4. Harvest Index
3.5. Seed Oil Content
3.6. Oil Yield per Plant
3.7. Photosynthesizing Pigments
3.8. Total Phenol Content and Flavonoids Content
3.9. DPPH Antioxidant Activity
3.10. Concentrations of Trace Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gokturk, R.S.; Sumbul, H. A taxonomic revision of the genus cephalaria (Caprifoliaceae) in Turkey. Turkish. J. Bot. 2014, 38, 927–968. [Google Scholar] [CrossRef]
- Kirmizigul, S.; Sarikahya, N.B.; Sumbul, H.; Gokturk, R.S.; Yavasoglu, N.U.K.; Pekmez, M.; Arda, N. Fatty acid profile and biological data of four endemic cephalaria species grown in Turkey. Rec. Nat. Prod. 2012, 6, 151–155. [Google Scholar]
- Baytop, T. Turkiye’de Bitkiler ile Tedavi, Gecmiste ve Bugun; Istanbul University Yay: Istanbul, Turkey, 1999. [Google Scholar]
- Hamid, S.; Sabir, A.W.; Khan, S.A. cephalaria syriaca―An oilseed crop for the arid and semi-arid areas of Pakistan. Pak. J. Sci. Ind. Res. 1988, 31, 212–215. [Google Scholar]
- Gryndler, M.; Larsen, J.; Hrselova, H.; Rezacova, V.; Gryndlerova, H.; Kubat, J. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 2006, 16, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jalilia, J.; Modarres-Sanavy, S.A.M.; Saberali, S.F.; Sadat-Asilan, K. Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crops Res. 2012, 127, 26–34. [Google Scholar] [CrossRef]
- Chen, J.-H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In Proceedings of the International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use, Bangkok, Thailand, 16 – 20 October 2006; Land Development Department: Bangkok, Thailand; Volume 16, pp. 1–11. [Google Scholar]
- Kennedy, I.R.; Choudhury, A.T.M.A.; Kecskes, M.L. Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited. Soil. Biol. Biochem. 2004, 36, 1229–1244. [Google Scholar] [CrossRef]
- Zahir, A.Z.; Arshad, M.; Frankenberger, W.T. Plant growth-promoting rhizobacteria: Applications and perspectives in agriculture. Adv. Agron. 2004, 81, 97–168. [Google Scholar]
- Vessey, J.K. Plant growth-promoting Rhizobacteria as biofertilizers. Plant Soil. 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Yanga, L.; Zhaoa, F.; Changa, Q.; Li, T.; Li, F. Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agric. Water. Manag. 2015, 160, 98–105. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y.; Kumari, U.R. An experimental study of vermin-biowaste composting for agriculture soil improvement. Biores. Technol. 2008, 99, 1672–1681. [Google Scholar] [CrossRef]
- Blaize, D.; Singh, J.V.; Bonde, A.N.; Tekale, K.V.; Mayee, C.D. Effects of farmyard manure and fertilizers on yield, fiber quality, and nutrient balance of rainfield cotton (Gossypium hirsutum). Biores. Technol. 2005, 96, 345–349. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Transac. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemists, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food. Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Navai, S.F.; Dehpour, A.A. Antioxidant activity of hydroalcoholic extract of ferulagummosa Boiss roots. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 658–664. [Google Scholar]
- Perkin, E. Analytical Methods for Atomic Absorption Spectrophotometry; Perkin-Elmer: Waltham, MA, USA, 1982. [Google Scholar]
- Waling, I.; Van Vark, W.; Houba, V.J.G.; Van der Lee, J.J. Soil and plant analysis, a series of syllabi. In Plant Analysis Procedures; Wageningen Agricultural University: Wageningen, The Netherlands, 1988. [Google Scholar]
- Tahami, M.K.; Jahan, M.; Khalilzadeh, H.; Mehdizadeh, M. Plant growth-promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Ind. Crops. Prod. 2017, 107, 97–104. [Google Scholar] [CrossRef]
- Akbari, P.; Ghalavand, A.; Sanavy, A.M.; AghaAlikhani, M.; Kalkhoran, S. Comparison of different nutritional levels and the effect of plant growth-promoting rhizobacteria (PGPR) on the grain yield and quality of sunflower. Aust. J. Crop. Sci. 2011, 5, 1570–1576. [Google Scholar]
- Alami-Milani, M.; Amini, R.; High, A.B. Effect of Bio-fertilizers and combination with chemical fertilizers on grain yield and yield components of pinto bean (Phaseolus vulgaris L.). J. Sust. Agricu. Prod. Sci. 2013, 4, 15–29. [Google Scholar]
- Ghasemi, S.; Siavashi, K.; Choukan, R.; Khavazi, K.; Rahmani, A. Effect of biofertilizer phosphate on grain yield and its components of maize (Zea mays L.) cv. KSC704 under water deficit stress conditions. Seed. Plant. Prod. J. 2011, 2, 219–233. [Google Scholar]
- Darzivand, M.T.; Seyedhadi, M.H.; Rejali, F. Effects of the application of vermicompost and phosphate solubilizing bacterium on the morphological traits and seed yield of anise (Pimpinella anisum L.). J. Medi. Plants. Res. 2012, 6, 215–219. [Google Scholar] [CrossRef]
- Prasad, R. Cropping systems and sustainability of agriculture. Ind. Farm. 1996, 46, 39–45. [Google Scholar]
- Rahimi, A.; Siavash Moghaddam, S.; Ghiyasi, M.; Heidarzadeh, S.; Ghazizadeh, K.; Popovic-Djordjevic, J. The Influence of Chemical, Organic and Biological Fertilizers on Agrobiological and Antioxidant Properties of Syrian cephalaria (Cephalaria Syriaca L.). Agriculture 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Awad, N.M.; Turky, A.S.; Mazhar, A.A. Effects of bio-and chemical nitrogenous fertilizers on yield of anise Pimpinella anisum and biological activities of soil irrigated with agricultural drainage water. Egy. J. Soil. Sci. 2005, 45, 265–278. [Google Scholar]
- Eghball, B.; Weinhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil. Water. Conser. 2002, 56, 470–478. [Google Scholar]
- Goldberg, D.E. Components of resource competition in plant communities. In Perspectives on Plant Competition; Grace, J.B., Tilman, D., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 27–49. [Google Scholar]
- Yasari, E.; Patwardhan, A.M. Effects of (Azotobacter and Azospirillum) inoculants and chemical fertilizers on growth and productivity of canola (Brassica napus L.). Asian J. Plant. Sci. 2007, 6, 77–82. [Google Scholar] [CrossRef] [Green Version]
- El Kramany, M.F.; Bahr, A.A.; Mohamed, M.F.; Kabesh, M.O. Utilization of biofertilizers in field crops production 16-groundnut yield, its components and seeds content as affected by partial replacement of chemical fertilizers by bio-organic fertilizers. J. Appl. Sci. Res. 2007, 3, 25–29. [Google Scholar]
- Rest, J.A.; Vaughan, J.G. The development of protein and oil bodies in the seed of Sinapis alba L. Planta 1972, 105, 245–262. [Google Scholar] [CrossRef]
- Gryndler, M.; Sudova, R.; Rydlova, J. Cultivation of high-biomass crops on mine spoil banks: Can microbial inoculation compensate for high doses of organic matter? Biores. Technol. 2008, 99, 6391–6399. [Google Scholar] [CrossRef] [PubMed]
- Arazmjo, E.; Heidari, M.; Ghanbari, A. Effect of water stress and type of fertilizer on yield and quality of chamomile (Matricaria chamomilla L.). Iran. J. Crop. Sci. 2010, 12, 100–111. [Google Scholar]
- Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M. Role of plant growth-promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 2009, 7, 1–19. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nut. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Salama, Z.A.; El-Baz, F.K.; Gaafar, A.A.; Zaki, M.F. Antioxidant activities of phenolics, flavonoids and vitamin C in two cultivars of fennel (Foeniculum vulgare Mill.) in responses to organic and bio-organic fertilizers. J. Saudi. Soc. Agric. Sci. 2015, 14, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.; Khoshkhui, M.; Javidnia, K.; Firuzi, O.R.; Tafazoli, E.; Khalighi, A. Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J. Med. Plants Res. 2010, 4, 33–40. [Google Scholar] [CrossRef]
- McKey, D. The distribution of secondary compounds within plants. In Herbivores: Their Interaction with Secondary Plant Metabolites; Rosenthal, G.A., Barenbaum, M.R., Eds.; Academic Press: Cambridge, MA, USA, 1979; pp. 55–134. [Google Scholar]
- Muller, V.; Lankes, C.; Zimmermann, B.F.; Noga, G.; Hunsche, M. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus, or potassium. J. Plant. Physiol. 2013, 170, 1165–1175. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Kalinova, J.; Vrchotova, N. The influence of organic and conventional crop management, variety and year on the yield and flavonoid level in common buckwheat groats. Food Chem. 2011, 127, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Latha, P.; Sudhakar, P.; Sreenivasula, Y. Relationship between total phenol and aflatoxin production of peanut genotypes under end-of-season drought conditions. Acta Physiol. Planta 2007, 29, 563–566. [Google Scholar] [CrossRef]
- Abd El-Moniem, M.; Naguib, A.; Farouk, K.; El-Baz Zeinab, A. Enhancement of phenolics, flavonoids, and glucosinolates of Broccoli (Brassica oleracea, var. Italica) as antioxidants in response to organic and bioorganic fertilizers. J. Saudi. Soc. Agric. Sci. 2012, 11, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Sousa, C.; Pereira, D.M.; Pereira, J.A.; Bento, A.; Rodrigues, M.A.; Dopico-García, S.; Valentão, P.; Lopes, G.; Ferreres, F.; Seabra, R.M. Multivariate analysis of tronchuda cabbage (Brassica oleracea L. var. costata DC) phenolics: Influence of fertilizers. J. Agric. Food Chem. 2008, 56, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Azarifar, M.; Soroodi, O.; Jaafar, H.Z. Flavonoid compounds and their antioxidant activity in extract of some tropical plants. J. Med. Plant. Res. 2012, 6, 2639–2643. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Emmerling, C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J. Plant. Nut. Soil. Sci. 2006, 169, 295–309. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol. Res. 2008, 163, 173–181. [Google Scholar] [CrossRef]
- Caris, C.; Hordt, W.; Hawkins, H.J.; Romhel, V.; Eckhard, G. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 1998, 8, 35–39. [Google Scholar] [CrossRef]
- Egamberdiyevaa, D.; Hoflich, G. Influence of growth-promoting bacteria on wheat growth in different soils and temperatures. Soil. Biol. Biochem. 2003, 35, 973–978. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Arancon, N.; Edwards, C.A.; Metzger, J.D. The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Biores. Technol. 2002, 81, 103–108. [Google Scholar] [CrossRef]
- Yolcu, H.; Gunes, A.; Dasci, M.; Turan, M.; Serin, Y. The effects of solid, liquid, and combined cattle manure applications on the yield, quality, and mineral contents of common vetch and barley intercropping mixture. Ekoloji 2010, 19, 71–81. [Google Scholar] [CrossRef]
- Amaya-Carpio, L.; Davies, F.T.; Fox, T.; He, C. Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth Ipomoea carnea ssp. fistulosa. Photosynthetica 2009, 47, 1–10. [Google Scholar] [CrossRef]
- Behera, B.C.; Singdevsachan, S.K.; Mishra, R.R.; Dutta, S.K.; Thatoi, H.N. Diversity, mechanism and biotechnology of phosphate solubilizing microorganism in mangrove—A review. Biocatal. Agric. Biotechnol. 2014, 3, 97–110. [Google Scholar] [CrossRef]
- Mahant, D.; Rai, R.K.; Mishra, S.D.; Raja, A.; Purakayastha, T.J.; Varghese, E. Influence of phosphorus and biofertilizers on soybean and wheat root growth and properties. Field. Crops. Res. 2014, 166, 1–9. [Google Scholar] [CrossRef]
EC (dS/m) | pH | Texture | Clay | Silt | Sand | CCE (a) | SP | N | OC (b) | Mn | B | Zn | Fe | K | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (mg/kg) | ||||||||||||||
1.37 | 7.81 | Clay loam | 43 | 35 | 22 | 15.83 | 55 | 0.06 | 1.18 | 11.5 | 0.3 | 1 | 9.1 | 295 | 9.1 |
Treatment | 1000 Seed wt | Seed Yield per Plant | Biological Yield per Plant | Harvest Index | Oil % | Oil Yield per Plant (g) | Chl. a | Chl. b | Total Chl. | TPC | FC | DPPH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | (mg/g FW) | |||||||||||
Control | 13.73 c | 6.99 c | 16.86 e | 41.44 bc | 24.09 b | 1.68 c | 1.63 bc | 1.47 d | 3.10 c | 26.55 b | 0.52 a | 51.62 b |
Azotobacter | 13.76 bc | 6.99 c | 16.45 e | 42.30 b | 23.70 b | 1.66 c | 1.59 c | 1.58 c | 3.17 c | 26.96 ab | 0.55 a | 52.45 ab |
Azotobacter + manure | 14.23 bc | 7.98 bc | 20.77 c | 38.54 d | 21.76 c | 1.74 c | 1.95 a | 1.72 b | 3.67 ab | 27.89 a | 0.56 a | 53.16 a |
Azotobacter+ vermicompost | 14.53 ab | 9.55 a | 22.82 b | 41.85 b | 25.23 a | 2.41 a | 2.06 a | 1.96 a | 4.02 a | 22.49 c | 0.51 a | 49.20 c |
Azotobacter + Phosphate Barvar II | 14.02 bc | 8.68 ab | 18.54 d | 46.77 a | 22.57 c | 1.96 bc | 1.77 b | 1.69 b | 3.46 bc | 25.87 b | 0.53 a | 51.28 b |
Azotobacter + chemical fertilizer | 15.03 a | 9.97 a | 24.57 a | 40.30 c | 22.24 c | 2.22 ab | 2.04 a | 1.96 a | 4.00 a | 22.06 c | 0.42 b | 48.69 c |
S.O.V. | df | 1000-Seed Weight | Seed Yield/Plant | Yield/Plant | HI | Oil (%) | Oil Yield /Plant (g) | Chl. a | Chl. b | Total Chl. ll | TPC | FC | DPPH | Ca (mg/kg) | Fe | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | 5 | 0.746 | 4.79 | 32.40 | 7.01 | 2.33 | 0.293 | 0.138 | 0.117 | 0.471 | 17.837 | 0.007 | 9.496 | 11.191 | 181.23 | 26.13 | 22.07 |
Experimental error | 12 | 0.587 ns | 0.565 ** | 0.526 ** | 0.156 ** | 0.094 ** | 0.036 ** | 0.008 ** | 0.003 ** | 0.053 ** | 0.342 ** | 0.002 ** | 0.582 ** | 0.653 ** | 6.64 ** | 0.454 ** | 0.244 ** |
C.V. (%) | 5.39 | 8.99 | 3.62 | 0.94 | 1.31 | 9.78 | 4.86 | 3.16 | 6.44 | 2.31 | 8.76 | 1.49 | 6.38 | 1.53 | 2.42 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimi, A.; Amirnia, R.; Siavash Moghaddam, S.; El Enshasy, H.A.; Hanapi, S.Z.; Sayyed, R.Z. Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca. Horticulturae 2021, 7, 397. https://doi.org/10.3390/horticulturae7100397
Rahimi A, Amirnia R, Siavash Moghaddam S, El Enshasy HA, Hanapi SZ, Sayyed RZ. Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca. Horticulturae. 2021; 7(10):397. https://doi.org/10.3390/horticulturae7100397
Chicago/Turabian StyleRahimi, Amir, Reza Amirnia, Sina Siavash Moghaddam, Hesham Ali El Enshasy, Siti Zulaiha Hanapi, and R. Z. Sayyed. 2021. "Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca" Horticulturae 7, no. 10: 397. https://doi.org/10.3390/horticulturae7100397
APA StyleRahimi, A., Amirnia, R., Siavash Moghaddam, S., El Enshasy, H. A., Hanapi, S. Z., & Sayyed, R. Z. (2021). Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca. Horticulturae, 7(10), 397. https://doi.org/10.3390/horticulturae7100397