Genome-Wide Identification and Bioinformatics Analysis of Auxin Response Factor Genes in Highbush Blueberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Isolation and Reverse Transcription
2.3. Identification of the ARF Gene Family in Blueberry
2.4. Analyses of Amino Acid Sequences and VcARF Gene Structure
2.5. Chromosome Location of VcARFs and Conservative Motif Analysis of VcARF Proteins
2.6. Identification of Cis Elements on VcARF Promoters
2.7. Expression Pattern of VcARF Genes during Fruit Development
3. Results
3.1. Identification of the Blueberry VcARF Gene Family
3.2. Phylogenetic Analysis of VcARF Amino Acids and Structure of VcARF Genes
3.3. Chromosome Location and Conservative Motif Analysis
3.4. Prediction of Cis-Acting Elements in Promoters of Gene Family Members
3.5. Expression Pattern of VcARF Genes at Three Development Stages of ‘Draper’ Fruits
3.6. Gene Expression during ‘Star’ and ‘O’Neal’ Fruit Development and Ripening
4. Discussion
4.1. Expanded VcARF Family Members and High Sequence Divergence in Blueberry
4.2. The Potential Contribution of VcARF Genes to Firmness Divergence between Firm Flesh and Soft Flesh Blueberries
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandler, J.W. Auxin response factors. Plant Cell Environ. 2016, 39, 1014–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilfoyle, T.J.; Hagen, G. Auxin response factors. Curr. Opin. Plant Biol. 2007, 10, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.J.; Estelle, M. Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Genet. 2009, 43, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhang, Y.; Kieffer, M.; Yu, H.; Kepinski, S.; Estelle, M. HSP90 regulates temperature–dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat. Commun. 2016, 7, 10269. [Google Scholar] [CrossRef] [PubMed]
- Salehin, M.; Bagchi, R.; Estelle, M. SCFTIR1/AFB-Based Auxin Perception: Mechanism and Role in Plant Growth and Development. Plant Cell 2015, 27, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Guilfoyle, T.J.; Hagen, G. Getting a grasp on domain III/IV responsible for Auxin Response Factor–IAA protein interactions. Plant Sci. 2012, 190, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.C.; Nemhauser, J.L. New tangles in the auxin signaling web. F1000Prime Rep. 2015, 7, 19. [Google Scholar] [CrossRef]
- Li, S.; Xie, Z.; Hu, C.; Zhang, J. A review of Auxin Response Factors (ARFs) in plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Boer, D.R.; Freire-Rios, A.; van den Berg, W.A.M.; Saaki, T.; Manfield, I.; Kepinski, S.; López-Vidrieo, I.; Franco-Zorrilla, J.M.; de Vries, S.C.; Solano, R.; et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 2014, 156, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.B.; Hagen, G.; Guilfoyle, T. The Roles of Auxin Response Factor Domains in Auxin-Responsive Transcription. Plant Cell 2003, 15, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Ulmasov, T.; Hagen, G.; Guilfoyle, T.J. Activation and repression of transcription by auxin-response factors. Proc. Natl. Acad. Sci. USA 1999, 96, 5844–5849. [Google Scholar] [CrossRef] [Green Version]
- Okushima, Y.; Overvoorde, P.J.; Arima, K.; Alonso, J.M.; Chan, A.; Chang, C.; Ecker, J.R.; Hughes, B.; Lui, A.; Nguyen, D.; et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. Plant Cell 2005, 17, 444–463. [Google Scholar] [CrossRef] [Green Version]
- Hardtke, C.; Ckurshumova, W.; Vidaurre, D.P.; Singh, S.A.; Stamatiou, G.; Tiwari, S.B.; Hagen, G.; Guilfoyle, T.J.; Berleth, T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 2004, 131, 1089–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Pei, K.; Fu, Y.; Sun, Z.; Li, S.; Liu, H.; Tang, K.; Han, B.; Tao, Y. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 2007, 394, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Guilfoyle, T.J.; Hagen, G. Auxin response factors. J. Plant Growth Regul. 2001, 20, 281–291. [Google Scholar] [CrossRef]
- Ellis, C.M.; Nagpal, P.; Young, J.C.; Hagen, G.; Guilfoyle, T.J.; Reed, J.W. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 2005, 132, 4563–4574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sessions, A.; Nemhauser, J.L.; McColl, A.; Roe, J.L.; Feldmann, K.A.; Zambryski, P.C. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 1997, 124, 4481–4491. [Google Scholar] [CrossRef] [PubMed]
- Pekker, I.; Alvarez, J.P.; Eshed, Y. Auxin Response Factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 2005, 17, 2899–2910. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Tian, Q.; Reed, J. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 2006, 133, 4211–4218. [Google Scholar] [CrossRef] [Green Version]
- Wilmoth, J.C.; Wang, S.; Tiwari, S.B.; Joshi, A.D.; Hagen, G.; Guilfoyle, T.J.; Alonso, J.M.; Ecker, J.R.; Reed, J.W. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J. 2005, 43, 118–130. [Google Scholar] [CrossRef]
- Wu, J.; Wang, F.; Cheng, L.; Kong, F.; Peng, Z.; Liu, S.; Yu, X.; Lu, G. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Rep. 2011, 30, 2059–2073. [Google Scholar] [CrossRef]
- Breitel, D.A.; Chappell-Maor, L.; Meir, S.; Panizel, I.; Puig, C.P.; Hao, Y.; Yifhar, T.; Yasuor, H.; Zouine, M.; Bouzayen, M.; et al. AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLoS Genet. 2016, 12, e1005903. [Google Scholar] [CrossRef] [Green Version]
- Sagar, M.; Chervin, C.; Mila, I.; Hao, Y.; Roustan, J.-P.; Benichou, M.; Gibon, Y.; Biais, B.; Maury, P.; Latché, A.; et al. SlARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol. 2013, 161, 1362–1374. [Google Scholar] [CrossRef] [Green Version]
- de Jong, M.; Wolters-Arts, M.; Feron RMariani, C.; Vriezen, W.H. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J. 2009, 57, 160–170. [Google Scholar] [CrossRef]
- Yuan, Y.; Mei, L.; Wu, M.; Wei, W.; Shan, W.; Gong, Z.; Zhang, Q.; Yang, F.; Yan, F.; Luo, Y.; et al. SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. J. Exp. Bot. 2018, 69, 5507–5518. [Google Scholar] [CrossRef] [Green Version]
- Xing, H.; Pudake, R.N.; Guo, G.; Xing, G.; Hu, Z.; Zhang, Y.; Sun, Q.; Ni, Z. Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genom. 2011, 12, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Sun, M.; Xu, R.; Shu, H.; Wang, J.; Zhang, S. Genome wide identification and expression analysis of the ARF gene family in apple. J. Genet. 2014, 93, 785–797. [Google Scholar] [CrossRef]
- Li, S.; Ouyang, W.; Hou, X.; Xie, L.; Hu, C.; Zhang, J. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Front. Plant Sci. 2015, 6, 119. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Li, W.; Zhu, Y.; Liu, Z.; Huang, W.; Zhan, J. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in Vitis vinifera. Plant Cell Rep. 2014, 33, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Fang, T.; Zhang, Y.; Zhang, M.; Zeng, L. Genome-Wide identification and sxpression analysis of Auxin Response Factor (ARF) gene family in Longan (Dimocarpus longan L.). Plants 2020, 9, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Shi, F.; Dong, X.; Li, Y.; Zhang, Z.; Li, H. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in strawberry (Fragaria vesca). J. Integr. Agric. 2019, 18, 1587–1603. [Google Scholar] [CrossRef]
- Bian, Y.; Ballington, J.; Raja, A.; Brouwer, C.; Reid, R.; Burke, M.; Wang, X.; Rowland, L.J.; Bassil, N.; Brown, A. Patterns of simple sequence repeats in cultivated blueberries (Vaccinium section Cyanococcus spp.) and their use in revealing genetic diversity and population structure. Mol. Breed. 2014, 34, 675–689. [Google Scholar] [CrossRef]
- Gupta, V.; Estrada, A.D.; Blakley, I.; Reid, R.; Patel, K.; Meyer, M.D.; Andersen, S.U.; Brown, A.F.; Lila, M.A.; Loraine, A.E. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. GigaScience 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Colle, M.; Leisner, C.P.; Wai, C.M.; Ou, S.; Bird, K.A.; Wang, J.; Wisecaver, J.H.; Yocca, A.E.; I Alger, E.; Tang, H.; et al. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 2019, 8, giz012. [Google Scholar] [CrossRef] [Green Version]
- Zifkin, M.; Jin, A.; Ozga, J.; Zaharia, L.I.; Schernthaner, J.P.; Gesell, A.; Abrams, S.R.; Kennedy, J.A.; Constabel, C.P. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol. 2011, 158, 200–224. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT: Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Schmidt, H.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Anand, L.; Lopez, C.M.R. ChromoMap: An R package for interactive visualization and annotation of chromosomes. bioRxiv 2020, 605600. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. A 2011, 174, 245–246. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Danilevskaya, O.N.; Meng, X.; Hou, Z.; Ananiev, E.V.; Simmons, C.R. A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 2007, 146, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tan, X.; Paterson, A.H. Different patterns of gene structure divergence following gene duplication in Arabidopsis. BMC Genom. 2013, 14, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, M.; Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 2000, 154, 459–473. [Google Scholar] [CrossRef]
- Kumar, R.; Tyagi, A.K.; Sharma, A.K. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol. Genet. Genom. 2011, 285, 245–260. [Google Scholar] [CrossRef]
- Remington, D.L.; Vision, T.J.; Guilfoyle, T.J.; Reed, J. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 2004, 135, 1738–1752. [Google Scholar] [CrossRef] [Green Version]
- Sato, A.; Yamamoto, K.T. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol. Plant. 2008, 133, 397–405. [Google Scholar] [CrossRef]
Gene Name | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence (5′-3′) |
---|---|---|
VcARF3 | GTGCTGGACCCCTTGTTACT | GGCAGCTGTTGATCCAATCC |
VcARF4 | GCTGGACCCCTTGTTACTCTT | ATTGAACGAAGGCAGCTGTTG |
VcARF14 | TATGGCGGGACCGTAACAAC | ACTGAGTCACCGGTAAAGAGC |
VcARF37 | CCGTAACAACCACCCCGATT | GGGGAAGTAGACAACGTGGG |
VcARF52 | GCACCAGATCACCCGATTCC | TACCAAGGGCAATCCCCTGC |
VcGAPDH | TGAGAAAGAATACAAGCCAGAT | CAGGCAACACCTTACCAA |
Gene Name | Genome Position | Gene Length | Protein Length | Molecular Weight | Isoelectric Point | |
---|---|---|---|---|---|---|
Start | End | |||||
VcARF1 | 18,439,481 | 18,443,830 | 4349 | 692 | 76,350.16 | 6.38 |
VcARF2 | 17,675,083 | 17,684,250 | 9167 | 573 | 62,768.41 | 5.91 |
VcARF3 | 35,513,223 | 35,522,595 | 9372 | 710 | 78,858.21 | 5.78 |
VcARF4 | 5,089,913 | 5,099,455 | 9542 | 706 | 78,334.61 | 6.11 |
VcARF5 | 17,374,973 | 17,379,982 | 5009 | 692 | 76,311.12 | 6.32 |
VcARF6 | 26,259,124 | 26,264,169 | 5045 | 707 | 78,336.45 | 6.23 |
VcARF7 | 23,759,116 | 23,764,049 | 4933 | 692 | 76,321.11 | 6.3 |
VcARF8 | 16,724,921 | 16,733,537 | 8616 | 709 | 78,059.18 | 7.05 |
VcARF9 | 22,380,725 | 22,385,479 | 4754 | 692 | 76,294.09 | 6.41 |
VcARF10 | 27,366,853 | 27,375,393 | 8540 | 889 | 98,168.12 | 6.20 |
VcARF11 | 30,200,121 | 30,204,632 | 4511 | 683 | 75,418.63 | 7.52 |
VcARF12 | 30,535,118 | 30,544,916 | 9798 | 782 | 86,669.81 | 6.21 |
VcARF13 | 31,908,720 | 31,918,385 | 9665 | 1073 | 118,643.05 | 6.08 |
VcARF14 | 31,971,246 | 31,975,574 | 4328 | 325 | 36,417.71 | 5.79 |
VcARF15 | 5,638,023 | 5,646,179 | 8156 | 896 | 99,747.22 | 5.46 |
VcARF16 | 2,964,750 | 2,975,312 | 10,562 | 818 | 91,211.21 | 5.88 |
VcARF17 | 39,198,442 | 39,206,540 | 8098 | 1092 | 21,781.74 | 6.26 |
VcARF18 | 7,176,872 | 7,179,011 | 2139 | 162 | 18,729.58 | 5.70 |
VcARF19 | 13,331,772 | 13,340,852 | 9080 | 574 | 62,818.47 | 5.91 |
VcARF20 | 30,285,241 | 30,295,980 | 10,739 | 880 | 98,106.11 | 6.94 |
VcARF21 | 25,800,314 | 25,808,896 | 8582 | 889 | 98,196.17 | 6.26 |
VcARF22 | 28,595,844 | 28,600,407 | 4563 | 683 | 75,510.72 | 7.52 |
VcARF23 | 28,958,634 | 28,968,521 | 9887 | 782 | 86,602.73 | 6.16 |
VcARF24 | 31,429,406 | 31,436,228 | 6822 | 827 | 92,363.56 | 6.21 |
VcARF25 | 27,786,604 | 27,803,950 | 17,346 | 260 | 28,558.81 | 5.67 |
VcARF26 | 30,557,305 | 30,565,768 | 8463 | 884 | 97,559.4 | 6.09 |
VcARF27 | 33,308,214 | 33,312,630 | 4416 | 683 | 75,381.6 | 7.85 |
VcARF28 | 33,590,293 | 33,600,143 | 9850 | 771 | 85,367.26 | 6.09 |
VcARF29 | 36,291,973 | 36,299,899 | 7926 | 747 | 84,171.56 | 7.97 |
VcARF30 | 36,316,721 | 36,323,616 | 6895 | 510 | 58,026.11 | 9.34 |
VcARF31 | 36,347,477 | 36,352,792 | 5315 | 572 | 63,904.6 | 5.55 |
VcARF32 | 17,724,006 | 17,728,602 | 4596 | 674 | 74,482.07 | 5.98 |
VcARF33 | 35,733,011 | 35,740,217 | 7206 | 623 | 69,462.96 | 7.82 |
VcARF34 | 34,950,200 | 34,957,557 | 7357 | 896 | 99,694.07 | 5.46 |
VcARF35 | 35,564,675 | 35,571,979 | 7304 | 896 | 99,804.31 | 5.46 |
VcARF36 | 4,968,620 | 4,978,140 | 9520 | 870 | 96,855.96 | 5.81 |
VcARF37 | 7,369,136 | 7,383,171 | 14,035 | 993 | 112,009.2 | 6.18 |
VcARF38 | 12,687,653 | 12,696,034 | 8381 | 884 | 97,599.42 | 6.12 |
VcARF39 | 9,683,280 | 9,692,882 | 9602 | 782 | 86,682.81 | 6.21 |
VcARF40 | 9,951,498 | 9,956,041 | 4543 | 683 | 75,383.64 | 7.85 |
VcARF41 | 23,235,922 | 23,244,210 | 8288 | 574 | 62,848.5 | 5.91 |
VcARF42 | 29,522,528 | 29,525,843 | 3315 | 267 | 30,862.32 | 5.21 |
VcARF43 | 35,261,834 | 35,272,570 | 10,736 | 880 | 98,106.11 | 6.94 |
VcARF44 | 17,822,463 | 17,827,109 | 4646 | 674 | 74,375.88 | 6.02 |
VcARF45 | 27,973,739 | 27,982,227 | 8488 | 828 | 92,414.65 | 6.21 |
VcARF46 | 1,273,882 | 1,279,100 | 5218 | 565 | 63,200.73 | 5.55 |
VcARF47 | 1,307,489 | 1,309,320 | 1831 | 402 | 45,446.23 | 8.97 |
VcARF48 | 17,166,955 | 17,171,684 | 4729 | 674 | 74,338.78 | 6.06 |
VcARF49 | 28,538,840 | 28,549,308 | 10,468 | 773 | 86,055.44 | 5.83 |
VcARF50 | 295,030 | 303,309 | 8279 | 1117 | 124,713.39 | 6.64 |
VcARF51 | 17,097,454 | 17,102,070 | 4616 | 674 | 74,269.76 | 6.06 |
VcARF52 | 6,479,810 | 6,486,650 | 6840 | 822 | 91,863 | 6.14 |
VcARF53 | 11,275,837 | 11,283,809 | 7972 | 745 | 82,051.86 | 6.89 |
VcARF54 | 28,655,149 | 28,663,653 | 8504 | 667 | 73,970.28 | 8.61 |
VcARF55 | 14,535,659 | 14,540,819 | 5160 | 707 | 78,310.36 | 6.23 |
VcARF56 | 18,962,251 | 18,971,430 | 9179 | 405 | 46,288.47 | 4.76 |
VcARF57 | 16,109,186 | 16,113,795 | 4609 | 707 | 78,280.34 | 6.23 |
VcARF58 | 16,725,386 | 16,730,572 | 5186 | 707 | 78,306.42 | 6.23 |
VcARF59 | 21,377,071 | 21,385,465 | 8394 | 972 | 107,956.17 | 5.98 |
VcARF60 | 21,432,199 | 21,439,229 | 7030 | 580 | 65,502.63 | 5.99 |
VcARF61 | 26,970,680 | 26,980,225 | 9545 | 870 | 96,855.96 | 5.81 |
VcARF62 | 27,717,127 | 27,724,764 | 7637 | 636 | 70,995.13 | 8.82 |
VcARF63 | 19,890,774 | 19,899,622 | 8848 | 901 | 99,470.38 | 6.15 |
VcARF64 | 19,942,680 | 19,949,685 | 7005 | 580 | 65,561.79 | 6.08 |
VcARF65 | 25,169,999 | 25,180,560 | 10,561 | 827 | 92,046.12 | 5.75 |
VcARF66 | 3,134,356 | 3,144,615 | 10,259 | 816 | 90,885.94 | 5.82 |
VcARF67 | 1,635,026 | 1,639,892 | 4866 | 540 | 60,252.66 | 8.29 |
VcARF68 | 16,996,236 | 17,002,796 | 6560 | 213 | 24,700 | 5.6 |
VcARF69 | 19,316,087 | 19,323,149 | 7062 | 623 | 69,462.01 | 7.82 |
VcARF70 | 18,207,611 | 18,214,839 | 7228 | 623 | 69,508.02 | 7.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Y.; Gu, L.; Shen, Z.; Kang, H.; Li, Y.; Liao, F.; Xu, L.; Guo, W. Genome-Wide Identification and Bioinformatics Analysis of Auxin Response Factor Genes in Highbush Blueberry. Horticulturae 2021, 7, 403. https://doi.org/10.3390/horticulturae7100403
Zong Y, Gu L, Shen Z, Kang H, Li Y, Liao F, Xu L, Guo W. Genome-Wide Identification and Bioinformatics Analysis of Auxin Response Factor Genes in Highbush Blueberry. Horticulturae. 2021; 7(10):403. https://doi.org/10.3390/horticulturae7100403
Chicago/Turabian StyleZong, Yu, Lili Gu, Zhuli Shen, Haiting Kang, Yongqiang Li, Fanglei Liao, Lishan Xu, and Weidong Guo. 2021. "Genome-Wide Identification and Bioinformatics Analysis of Auxin Response Factor Genes in Highbush Blueberry" Horticulturae 7, no. 10: 403. https://doi.org/10.3390/horticulturae7100403
APA StyleZong, Y., Gu, L., Shen, Z., Kang, H., Li, Y., Liao, F., Xu, L., & Guo, W. (2021). Genome-Wide Identification and Bioinformatics Analysis of Auxin Response Factor Genes in Highbush Blueberry. Horticulturae, 7(10), 403. https://doi.org/10.3390/horticulturae7100403