Do Eco-Friendly Floral Preservative Solutions Prolong Vase Life Better than Chemical Solutions?
Abstract
:1. Introduction
2. The Approach Factors for Floral Preservative Solutions
2.1. Chemical Preservative Solution
2.1.1. Bud Opening Development
2.1.2. Pulsing Treatment
2.1.3. Holding Solutions (Vase Solutions)
2.1.4. Sugar
2.1.5. Germicides or Biocides
2.2. Eco-Friendly Floral Preservative Solution
3. Further Investigations for Handling Eco-Friendly Preservative Solutions in the Flower Industry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onozaki, T.; Azuma, M. Breeding for long vase life in Dahlia (Dahlia variabilis) cut flowers. Hort. J. 2019, 88, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Macnish, A.J.; Jiang, C.Z.; Reid, M.S. Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest Biol. Technol. 2010, 56, 77–84. [Google Scholar] [CrossRef]
- Doorn, W.G.V. Effects of Daffodil flowers on the water relations and vase life of roses and tulips. J. Am. Soc. Hortic. Sci. 1998, 123, 146. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Rafiq, M.B.; Dole, J.M.; Abdullah, B.; Habib, K. Production and postharvest evaluation of selected exotic specialty annual cut flower species in Punjab, Pakistan. HortTechnology 2017, 27, 878. [Google Scholar] [CrossRef]
- Macnish, A.J.; Leonard, R.T.; Nell, T.A. Treatment with chlorine dioxide extends the vase life of selected cut flowers. Postharvest Biol. Technol. 2008, 50, 197–207. [Google Scholar] [CrossRef]
- Stephens, I.A.; Holcroft, D.M.; Jacobs, G. Postharvest treatments to extend vase life of selected proteaceae cut flowers. Acta Hortic. 2003, 602, 155–159. [Google Scholar] [CrossRef]
- Murali, T.P.; Reddy, T.V. Postharvest physiology of gladiolus flowers as influenced by cobalt and sucrose. In Horticulture—New Technologies and Applications; Current Plant Science and Biotechnology in Agriculture book series; Prakash, J., Pierik, R.L.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 12, pp. 393–396. [Google Scholar] [CrossRef]
- Choresca, R.G.C.; Secretaria, L.; Bayogan, E. Vase life of cut Torch ginger (Etlingera elatior) inflorescences as influenced by stem length. Mindanao J. Sci. Technol. 2019, 17, 112–125. [Google Scholar]
- Asadi-Kavan, Z.; Khavari-Nejad, R.A.; Iranbakhsh, A.; Najafi, F. Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). J. Plant Interact. 2020, 15, 166–179. [Google Scholar] [CrossRef]
- Sardinha, D.H.S.; Rodrigues, A.A.C.; Ribeiro, S.S.M.; Diniz, N.B.; Campos Neto, J.R.M.; Reis, F.D.O. Phytostimulants influence the vase life of Heliconia psittacorum CV. golden torch. Postharvest Biol. Technol. 2019, 155, 140–148. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M.; Amjad, A.; Ahmad, S. Dry storage effects on postharvest performance of selected cut flowers. HortTechnology 2012, 22, 463. [Google Scholar] [CrossRef] [Green Version]
- Asrar, A.-W.A. Effects of some preservative solutions on vase life and keeping quality of snapdragon (Antirrhinum majus L.) cut flowers. J. Saudi Soc. Agric. Sci. 2012, 11, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Khunmuang, S.; Kanlayanarat, S.; Wongs-Aree, C.; Meir, S.; Philosoph-Hadas, S.; Oren-Shamir, M.; Ovadia, R.; Buanong, M. Ethylene induces a rapid degradation of petal anthocyanins in cut vanda ‘Sansai Blue’ orchid flowers. Front. Plant Sci. 2019, 10, 1004. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.T.T.; Kim, Y.-T.; Jeon, Y.H.; Choi, H.W.; In, B.-C. Regulation of Botrytis cinerea infection and gene expression in cut roses by using nano silver and salicylic acid. Plants 2021, 10, 1241. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Ramírez-Martínez, M.; Castillo-González, A.M.; Trejo-Téllez, L.I. Lanthanum prolongs vase life of cut tulip flowers by increasing water consumption and concentrations of sugars, proteins and chlorophylls. Sci. Rep. 2020, 10, 4209. [Google Scholar] [CrossRef]
- Elibox, W.; Umaharan, P. Morphophysiological characteristics associated with vase life of cut flowers of anthurium. HortScience 2008, 43, 825. [Google Scholar] [CrossRef] [Green Version]
- Aalifar, M.; Aliniaeifard, S.; Arab, M.; Zare Mehrjerdi, M.; Dianati Daylami, S.; Serek, M.; Woltering, E.; Li, T. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Sedaghathoor, S.; Narouei, Z.; Sajjadi, S.A.; Piri, S. The effect of chemical treatments (silver thiosulfate and putrescine) on vase life and quality of cut Chrysanthemum morifolium (Ram.) flowers. Cogent Biol. 2020, 6, 1754320. [Google Scholar] [CrossRef]
- Asghari, R.; Salari, A.; Gharehdaghi, S. Effect of pulsing solution and packaging type under exogenous ethylene on physiological characteristics and post harvesting quality of cut roses (Rosa hybrida). Am.-Eurasian J. Agric. Environ. Sci. 2014, 14, 329–335. [Google Scholar] [CrossRef]
- Fanourakis, D.; Pieruschka, R.; Savvides, A.; Macnish, A.J.; Sarlikioti, V.; Woltering, E.J. Sources of vase life variation in cut roses: A review. Postharvest Biol. Technol. 2013, 78, 1–15. [Google Scholar] [CrossRef]
- El-Sayed, I.M.; El-Ziat, R.A. Utilization of environmentally friendly essential oils on enhancing the postharvest characteristics of Chrysanthemum morifolium Ramat cut flowers. Heliyon 2021, 7, e05909. [Google Scholar] [CrossRef]
- Van Meeteren, U. Causes of quality loss of cut flowers-A critical analysis of post-harvest treatments. Acta Hortic. 2009, 847, 27–36. [Google Scholar] [CrossRef]
- De, L.C. Commercial Orchids; De Gruyter Open Poland: Warsaw, Poland, 2015. [Google Scholar] [CrossRef]
- Naing, A.H.; Win, N.M.; Han, J.-S.; Lim, K.B.; Kim, C.K. Role of nano-silver and the bacterial strain enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant Sci. 2017, 8, 1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wongjunta, M.; Wongs-Aree, C.; Salim, S.; Meir, S.; Philosoph-Hadas, S.; Buanong, M. Involvement of ethylene in physiological processes determining the vase life of various hybrids of Mokara orchid cut flowers. Agronomy 2021, 11, 160. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Shi, Q.; Niu, L.; Zhang, Y. Transcriptomic analysis of leaf in tree peony reveals differentially expressed pigments genes. Molecules 2017, 22, 324. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B.; Carle, R. Chapter 7—Alterations of natural pigments. In Chemical Changes During Processing and Storage of Foods; Rodriguez-Amaya, D.B., Amaya-Farfan, J., Eds.; Academic Press: Oxford, UK, 2021; pp. 265–327. [Google Scholar] [CrossRef]
- Harris, N.N.; Javellana, J.; Davies, K.M.; Lewis, D.H.; Jameson, P.E.; Deroles, S.C.; Calcott, K.E.; Gould, K.S.; Schwinn, K.E. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol. 2012, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Mendoza, M.; Velasco-Arroyo, B.; Santamaria, M.E.; González-Melendi, P.; Martinez, M.; Diaz, I. Plant senescence and proteolysis: Two processes with one destiny. Genet. Mol. Biol. 2016, 39, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Benchabane, M.; Goulet, C.; Rivard, D.; Faye, L.; Gomord, V.; Michaud, D. Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol. J. 2008, 6, 633–648. [Google Scholar] [CrossRef]
- Rojo, E.; Zouhar, J.; Carter, C.; Kovaleva, V.; Raikhel, N.V. A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2003, 100, 7389. [Google Scholar] [CrossRef] [Green Version]
- Lingfang, K.; Fan, L.; Ronghui, D.; Huaiting, G.; Shifeng, L.; Jihua, W. Effects of different preservatives on cut flower of Luculia pinceana: A novel fragrant ornamental species. HortScience 2021, 56, 795–802. [Google Scholar] [CrossRef]
- Rogers, H.J. Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant Cell Environ. 2012, 35, 217–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naing, A.H.; Lee, K.; Arun, M.; Lim, K.B.; Kim, C.K. Characterization of the role of sodium nitroprusside (SNP) involved in long vase life of different carnation cultivars. BMC Plant Biol. 2017, 17, 149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, H.; Huo, J.; Huang, D.; Wang, B.; Liao, W. Involvement of calcium and calmodulin in nitric oxide-regulated senescence of cut lily flowers. Front. Plant Sci. 2018, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, W.G.; Woltering, E.J. Physiology and molecular biology of petal senescence. J. Exp. Bot. 2008, 59, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhindi, K.M. Evaluation of several holding solutions for prolonging vase-life and keeping quality of cut sweet pea flowers (Lathyrus odoratus L.). Saudi J. Biol. Sci. 2012, 19, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.C.; Luz, L.M.; Nascimento, V.L.; Araujo, F.F.; Santos, M.N.S.; França, C.D.F.M.; Silva, T.P.; Fugate, K.K.; Finger, F.L. Selenium-ethylene interplay in postharvest life of cut flowers. Front. Plant Sci. 2020, 11, 2055. [Google Scholar] [CrossRef]
- Davarynejad, E.; Tehranifar, A.; Ghayoor, Z.; Davarynejad, G.H. Effect of different pre-harvest conditions on the postharvest keeping quality of cut gerbera. Acta Hortic. 2007, 804, 205–208. [Google Scholar] [CrossRef]
- Mohammadi, M.; Aelaei, M.; Saidi, M. Pre-harvest spray of GABA and spermine delays postharvest senescence and alleviates chilling injury of gerbera cut flowers during cold storage. Sci. Rep. 2021, 11, 14166. [Google Scholar] [CrossRef]
- Rahmani, I.; Ahmadi, N.; Ghanati, F.; Sadeghi, M. Effects of salicylic acid applied pre- or post-transport on post-harvest characteristics and antioxidant enzyme activity of gladiolus cut flower spikes. J. Crop Hortic. Sci. 2015, 43, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Çelikel, F.G.; Karaçalý, Y. Effect of preharvest factors on flower quality and longevity of cut carnations (Dianthus caryophyllus L.). Acta Hortic. 1995, 405, 156–163. [Google Scholar] [CrossRef]
- In, B.-C.; Seo, J.Y.; Lim, J.H. Preharvest environmental conditions affect the vase life of winter-cut roses grown under different commercial greenhouses. Hortic. Environ. Biotechnol. 2016, 57, 27–37. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Jung, Y.O.; Lim, J.H. Tools for cut flower for export: Is it a genuine challenge from growers to customers? Flower Res. J. 2020, 28, 241–249. [Google Scholar] [CrossRef]
- Ha, S.T.T.; Kwon, M.J.; Nguyen, T.K.; Lim, J.H. Improvement in postharvest quality of cut spray roses ‘Haesal’ (Rosa hybrida L.) by pretreatment with Scutellaria baicalensis Georgi extract. Flower Res. J. 2019, 27, 177–185. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M. Homemade floral preservatives affect postharvest performance of selected specialty cut flowers. Hort. Technol. Hortte. 2014, 24, 384. [Google Scholar] [CrossRef] [Green Version]
- Han, S.S. Role of sugar in the vase solution on postharvest flower and leaf quality of oriental lily ‘Stargazer’. Hort. Sci. 2003, 38, 412. [Google Scholar] [CrossRef] [Green Version]
- Trusty, S.E.; Miller, W. Postproduction carbohydrate levels in pot chrysanthemums. J. Am. Soc. Hortic. Sci. 1991, 116, 1013–1018. [Google Scholar] [CrossRef] [Green Version]
- Park, J.E.; Thi, L.T.; Ya, L.; Jeong, B.R. Sucrose concentration, light intensity, and CO2 concentration affect growth and development of micropropagated carnation. Flower Res. J. 2018, 26, 61–67. [Google Scholar] [CrossRef]
- Kazuo, I.; Masayuki, K.; Ryo, N.; Yoshihiko, K.; Kunio, Y. Soluble carbohydrates and variation in vase-life of cut rose cultivars ‘Delilah’ and ‘Sonia’. J. Hortic. Sci. Biotechnol. 2005, 80, 280–286. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Rochala-Wojciechowska, J. Nanosilver and sucrose delay the senescence of cut snapdragon flowers. Postharvest Biol. Technol. 2020, 165, 111165. [Google Scholar] [CrossRef]
- Reid, M. Handling of Cut Flowers for Export; Proflora Bulletin: Bogotá, Colombia, 2009; pp. 1–26. [Google Scholar]
- Poonsri, W. Effect of modified and controlled atmosphere storage on enzyme activity and senescence of Dendrobium orchids. Heliyon 2020, 6, e05070. [Google Scholar] [CrossRef]
- Carlson, A.S.; Dole, J.M. Determining optimal production temperature, transplant stage, and postharvest protocols for cut ‘Esprit’ penstemon. Hort. Technol. Hortte. 2014, 24, 71. [Google Scholar] [CrossRef] [Green Version]
- Srilaong, V.; Buanong, M. Effect of hydroquinone pulsing treatment on vase life of cut rose. Acta Hortic. 2007, 755, 451–456. [Google Scholar] [CrossRef]
- Eason, J.R. Sandersonia aurantiaca: An evaluation of postharvest pulsing solutions to maximise cut flower quality. N. Z. J. Crop Hortic. Sci. 2002, 30, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Arias, G.A.; Alia-Tejacal, I.; Colinas-León, M.T.; Valdez-Aguilar, L.A.; Pelayo-Zaldívar, C. Postharvest physiology and technology of the tuberose (Polianthes tuberosa L.): An ornamental flower native to Mexico. Hortic. Environ. Biotechnol. 2019, 60, 281–293. [Google Scholar] [CrossRef]
- Finger, F.L. Pulsing with sucrose and silver thiosulfate extended the vase life of Consolida ajacis. Acta Hortic. 2001, 543, 63–67. [Google Scholar] [CrossRef]
- Pouri, H.A.; Nejad, A.R.; Shahbazi, F. Effects of simulated in-transit vibration on the vase life and post-harvest characteristics of cut rose flowers. Hortic. Environ. Biotechnol. 2017, 58, 38–47. [Google Scholar] [CrossRef]
- Skutnik, E.; Rabiza-Świder, J.; Jędrzejuk, A.; Łukaszewska, A. The effect of the long-term cold storage and preservatives on senescence of cut herbaceous peony flowers. Agronomy 2020, 10, 1631. [Google Scholar] [CrossRef]
- Doğan, A.; Yılmaz, G.; Erkan, M.; Baktır, I. Effects of sucrose and silver nitrate on the vase life of cut Ranunculus asiaticus L. Acta Hortic. 2013, 1002, 341–348. [Google Scholar] [CrossRef]
- Rattanawisalanon, C.; Ketsa, S.; van Doorn, W.G. Effect of aminooxyacetic acid and sugars on the vase life of Dendrobium flowers. Postharvest Biol. Technol. 2003, 29, 93–100. [Google Scholar] [CrossRef]
- Fujino, D.W.; Reid, M.S.; Yang, S. Effects of aminooxyacetic acid on postharvest characteristics of carnation. Acta Hortic. 1981, 113, 59–64. [Google Scholar] [CrossRef]
- Galati, V.C.; Marques, K.M.; Muniz, A.C.C.; Silva, J.P.; Guimarães, J.E.R.; Mattiuz, C.F.M.; Mattiuz, B.H. Use of calcium chloride in postharvest treatment of Alstroemeria cut flowers. Acta Hortic. 2015, 1104, 267–272. [Google Scholar] [CrossRef]
- Çelikel, F.G.; Reid, M.S.; Jiang, C.-Z. Postharvest physiology of cut Gardenia jasminoides flowers. Sci. Hortic. 2020, 261, 108983. [Google Scholar] [CrossRef]
- Yun Mi, L.; Sang Kun, P.; Wan Soon, K. Antibacterial effect of chlorine dioxide on extending the vase life of cut gerbera ‘Jenny’. Flower Res. J. 2014, 22, 161–166. [Google Scholar] [CrossRef]
- Gholami, M.; Rahemi, M.; Rastegar, S. Effect of pulse treatment with sucrose, exogenous benzyl adenine and gibberellic acid on vase life of cut rose ‘Red One’. Hortic. Environ. Biotechnol. 2011, 52, 482. [Google Scholar] [CrossRef]
- Pinto, A.C.R.; Mello, S.C.; Geerdink, G.M.; Minami, K.; Oliveira, R.F.; Barbosa, J.C. Benzyladenine and gibberellic acid pulse on postharvest of Calathea louisae cut foliage. Acta Hortic. 2007, 755, 397–402. [Google Scholar] [CrossRef]
- Van Meeteren, U. Water relations and keeping-quality of cut Gerbera flowers. I. The cause of stem break. Sci. Hortic. 1978, 8, 65–74. [Google Scholar] [CrossRef]
- Ahmad, I.; Saleem, M.; Dole, J. Postharvest performance of cut ‘White Prosperity’ gladiolus spikes in response to nano- and other silver sources. Can. J. Plant Sci. 2016, 96, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Kofranek, A.M.; Paul, J.L. the value of impregnating cut stems with high concentrations of silver nitrate. Acta Hortic. 1975, 41, 199–206. [Google Scholar] [CrossRef]
- Sharma, R.; Bhardwaj, S. Effect of silver thiosulphate, silver nitrate and distilled water on flower quality and vase life of cut carnation flowers. Bioscan 2015, 10, 1483–1487. [Google Scholar]
- Elgimabi, M.E.N.E. Vase life extension of rose cut flowers (Rosa hybirida) as influenced by silver nitrate and sucrose pulsing. Am. J. Agric. Biol. Sci. 2011, 6, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Teixeira da Silva, J. The cut flower: Postharvest considerations. J. Biol. Sci. 2003, 3, 406–442. [Google Scholar] [CrossRef] [Green Version]
- Skutnik, E.; Jędrzejuk, A.; Rabiza-Świder, J.; Rochala-Wojciechowska, J.; Latkowska, M.; Łukaszewska, A. Nanosilver as a novel biocide for control of senescence in garden cosmos. Sci. Rep. 2020, 10, 10274. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, K.; Taguchi, M.; Norikoshi, R. Extension of the vase life in cut roses by treatment with glucose, isothiazolinonic germicide, citric acid and aluminum sulphate solution. Agric. Res. Q. 2006, 40, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Doi, M.; Reid, M. Sucrose improves the postharvest life of cut flowers of a hybrid limonium. HortScience 1994, 30. [Google Scholar] [CrossRef] [Green Version]
- Ichimura, K. Improvement of postharvest life in several cut flowers by the addition of sucrose. Agric. Res. Q. 1998, 32, 275–280. [Google Scholar]
- Kiamohammadi, M.; Golchin, A.; Hashemabadi, D. The effects of different floral preservative solutions on keeping quality of cut lisianthus (Eustoma grandiflorum). Acta Hortic. 2010, 877, 1749–1755. [Google Scholar] [CrossRef]
- Reid, M.S.; Jiang, C.-Z. Postharvest biology and technology of cut flowers and potted plants. Hortic. Rev. 2012, 40, 1–54. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Chang, Y.-C.A. The role of soluble sugars in vase solutions during the vase life of Eustoma grandiflorum. HortScience 2013, 48, 222. [Google Scholar] [CrossRef] [Green Version]
- Doorn, W.G. Role of soluble carbohydrates in flower senescence: A survey. Acta Hortic. 2001, 543, 179–183. [Google Scholar] [CrossRef]
- Yahia, E.M.; Carrillo-López, A.; Bello-Perez, L.A. Chapter 9—Carbohydrates. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Oxford, UK, 2019; pp. 175–205. [Google Scholar] [CrossRef]
- Pun, U.; Ichimura, K. Role of sugars in senescence and biosynthesis of ethylene in cut flowers. Jpn. Agric. Res. Q. 2003, 37, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Lopez, F.B.; Barclay, G.F. Chapter 4—Plant Anatomy and Physiology. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 45–60. [Google Scholar] [CrossRef]
- Kottapalli, J.; David-Schwartz, R.; Khamaisi, B.; Brandsma, D.; Lugassi, N.; Egbaria, A.; Kelly, G.; Granot, D. Sucrose-induced stomatal closure is conserved across evolution. PLoS ONE 2018, 13, e0205359. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, B.J.W.; Schuurmans, J.A.M.J.; Smeekens, S.C.M. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol. Biol. 2008, 67, 151–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asad, M.A.U.; Zakari, S.A.; Zhao, Q.; Zhou, L.; Ye, Y.; Cheng, F. Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: Premature leaf senescence in plants. Int. J. Mol. Sci. 2019, 20, 256. [Google Scholar] [CrossRef] [Green Version]
- Knee, M. Selection of biocides for use in floral preservatives. Postharvest Biol. Technol. 2000, 18, 227–234. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanpour, M.; Bhargava, P.; Varma, A.; Choudhary, D.K. Biogenic Nano-Particles and Their Use in Agro-Ecosystems; Springer Nature: Gateway East, Singapore, 2020. [Google Scholar] [CrossRef]
- Mughal, B.; Zaidi, S.Z.; Zhang, X.; Hassan, S.U. Biogenic nanoparticles: Synthesis, characterisation and applications. Appl. Sci. 2021, 11, 2598. [Google Scholar] [CrossRef]
- Meena, M.; Zehra, A.; Swapnil, P.; Marwal, A.H.; Yadav, G.; Sonigra, P. Endophytic nanotechnology: An approach to study scope and potential applications. Front. Chem. 2021, 9, 47. [Google Scholar] [CrossRef]
- Yadeta, K.A.; J Thomma, B.P.H. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.T.T.; Lim, J.H.; In, B.C. Extension of the vase life of cut roses by both improving water relations and repressing ethylene responses. Hortic. Sci. Technol. 2019, 37, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Darras, A.I. Postharvest Disease Management. In Handbook of Florists’ Crops Diseases; McGovern, R.J., Elmer, W.H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–27. [Google Scholar] [CrossRef]
- Van Doorn, W.G. Vascular occlusion in stems of cut rose flowers: A survey. Acta Hortic. 1995, 405, 58–66. [Google Scholar] [CrossRef]
- Van Doorn, W.G. Vascular Occlusion in Stems of Cut Rose Flowers. Doctor’s Thesis, Agricultural University, Wageningen, The Netherlands, 1993. [Google Scholar]
- Van Doorn, W.G.; Otma, E. Vascular occlusion in cut flowering rose stems exposed to air: Role of water entry into the lumina of the xylem conduits opened by cutting. J. Plant Physiol. 1995, 145, 78–82. [Google Scholar] [CrossRef]
- Kishimoto, K. Effect of post-harvest management on scent emission of carnation cut flowers. Hort. J. 2021, 90, 341–348. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A.; Łukaszewska, A. Postharvest treatments improve quality of cut peony flowers. Agronomy 2020, 10, 1583. [Google Scholar] [CrossRef]
- Kazemi, M.; Abdossi, V.; Kalateh Jari, S.; Ladan Moghadam, A.R. Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to the vase life of cut rose flowers. J. Hortic. Sci. Biotechnol. 2018, 93, 81–90. [Google Scholar] [CrossRef]
- Combrink, N.J.J. Calcium improves gerbera (Gerbera hybrida) vase life. J. Plant Soil 2018, 35, 235–236. [Google Scholar] [CrossRef]
- Singh, K.; Singh, P.J.; Kumar, R. Effect of some chemicals on keeping quality of cut roses. Adv. Hortic. Sci. 2004, 18, 161–167. [Google Scholar]
- Put, H.M.C.; Clerkx, A.C.M.; Boekestein, A. Aluminium sulphate restricts migration of Bacillus subtilis in xylem of cut roses: A scanning electron microscope study. Sci. Hortic. 1992, 51, 261–274. [Google Scholar] [CrossRef]
- Farokhzad, A.R.; Khalighi, A.; Mostofi, Y.; Naderi, R. Effect of some chemical treatments on quality and vase life of lisianthus (Eustoma grandiflora) cut flowers. Acta Hortic. 2008, 768, 479–486. [Google Scholar] [CrossRef]
- Damunupola, J.W.; Joyce, D.C. When is a vase solution biocide not, or not only, antimicrobial? Soc. Hortic. Sci. 2008, 77, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Seyf, M.; Khalighi, A.; Mostofi, Y.; Naderi, R. Effect of sodium nitroprusside on vase life and postharvest quality of a cut rose cultivar (Rosa hybrida ‘Utopia’). J. Agric. Sci. 2012, 4, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.B.; Kim, W.S. Improving vase life and keeping quality of cut rose flowers using a chlorine dioxide and sucrose holding solution. Hortic. Sci. Technol. 2018, 36, 380–387. [Google Scholar] [CrossRef]
- Dung, C.D.; Seaton, K.; Singh, Z. Influence of type and concentration of sugars, supplemented with 8-hydroxyquinoline sulphate, on the vase life of waxflower. Folia Hortic. 2017, 29, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Joyce, D.C.; He, S.; Cao, J.; Lv, P. Effects of postharvest nano-silver treatments on cut-flowers. Acta Hortic. 2009, 847, 245–250. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 2011, 270974. [Google Scholar] [CrossRef] [Green Version]
- Nazemi Rafi, Z.; Ramezanian, A. Vase life of cut rose cultivars ‘Avalanche’ and ‘Fiesta’ as affected by nano-silver and S-carvone treatments. J. Bot. 2013, 86, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Lü, P.; Cao, J.; He, S.; Liu, J.; Li, H.; Cheng, G.; Ding, Y.; Joyce, D.C. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol. Technol. 2010, 57, 196–202. [Google Scholar] [CrossRef]
- Che Husin, N.M.; Liu, J.; Joyce, D.C.; Irving, D.E. Cutting wound ethylene production does not limit the vase life of Acacia holosericea. Sci. Hortic. 2016, 212, 35–48. [Google Scholar] [CrossRef]
- Ha, S.T.T.; In, B.C.; Choi, H.W.; Jung, Y.O.; Lim, J.H. Assessment of pretreatment solutions for improving the vase life and postharvest quality of cut roses (Rosa hybrida L. ‘Jinny’). Flower Res. J. 2017, 25, 101–109. [Google Scholar] [CrossRef]
- Ichimura, K.; Fujiwara, T.; Yamauchi, Y.; Horie, H.; Kohata, K. Effects of tea-seed saponins on the vase life, hydraulic conductance and transpiration of cut rose flowers. Agric. Res. Q. 2005, 39, 115–119. [Google Scholar] [CrossRef]
- Wu, L.Y.; Xiao, H.; Zhao, W.J.; Sun, P.; Lin, J.K. Effect of green tea extract powder on the vase-life of fresh-cut rose (Rosa hybrida L.) ‘Carola’ stems. J. Hortic. Sci. Biotechnol. 2016, 91, 279–284. [Google Scholar] [CrossRef]
- Akhtar, G.; Rajwana, I.A.; Sajjad, Y.; Shehzad, M.A.; Amin, M.; Razzaq, K.; Ullah, S.; Faried, H.N.; Farooq, A.; Sami, U.; et al. Do natural leaf extracts involve regulation at physiological and biochemical levels to extend vase life of gladiolus cut flowers? Sci. Hortic. 2021, 282, 110042. [Google Scholar] [CrossRef]
- Shokalu, A.O.; Akintoye, H.A.; Olatunji, M.T.; Adebayo, A.G.; James, I.E. Use of organic and inorganic solutions for extending the vase life of cut Heliconia ‘Golden Torch’ flowers. Acta Hortic. 2019, 1263, 497–502. [Google Scholar] [CrossRef]
- Maity, T.R.; Samanta, A.; Jana, D.; Saha, B.; Datta, S. Effect of Piper betle leaf extract on post-harvest physiology and vascular blockage in relation to vase life and keeping quality of cut spike of tuberose (Polianthes tuberosa L. cv. Single). Ind. J. Plant Physiol. 2014, 19, 250–256. [Google Scholar] [CrossRef]
- Solgi, M. The application of new environmentally friendly compounds on postharvest characteristics of cut carnation (Dianthus caryophyllus L.). Rev. Bras. Bot. 2018, 41, 515–522. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Fetouh, M.I. Does moringa leaf extract have preservative effect improving the longevity and postharvest quality of gladiolus cut spikes? Sci. Hortic. 2019, 250, 287–293. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.K.; Lim, J.H. Do Eco-Friendly Floral Preservative Solutions Prolong Vase Life Better than Chemical Solutions? Horticulturae 2021, 7, 415. https://doi.org/10.3390/horticulturae7100415
Nguyen TK, Lim JH. Do Eco-Friendly Floral Preservative Solutions Prolong Vase Life Better than Chemical Solutions? Horticulturae. 2021; 7(10):415. https://doi.org/10.3390/horticulturae7100415
Chicago/Turabian StyleNguyen, Toan Khac, and Jin Hee Lim. 2021. "Do Eco-Friendly Floral Preservative Solutions Prolong Vase Life Better than Chemical Solutions?" Horticulturae 7, no. 10: 415. https://doi.org/10.3390/horticulturae7100415
APA StyleNguyen, T. K., & Lim, J. H. (2021). Do Eco-Friendly Floral Preservative Solutions Prolong Vase Life Better than Chemical Solutions? Horticulturae, 7(10), 415. https://doi.org/10.3390/horticulturae7100415